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Abstract: The aim of this paper is to simulate the laminar motion of viscous incompressible fluid

and the transition between the laminar and the turbulent state in simply connected domains. The

developed numerical algorithms are based on the solution of an initial-boundary value problem for

the full incompressible Navier-Stokes equations, written in the form of a fourth-order equation for

the stream function. The spatial derivatives and the boundary conditions are discretized on uniform

grids by means of sixth-order compact schemes together with fourth-order finite-difference formulas,

while the continuity of the time variable is preserved. The resulting system of ordinary differential

equations has been integrated using the backward-differentiation predictor-corrector method. The

efficiency of the numerical algorithms is demonstrated by solving two problems of viscous liquid

plane flows in a square driven cavity and a backward-facing step. Calculations for the cavity flow

configuration have been obtained for Reynolds numbers ranging from Re = 100 to Re = 30 000 on

uniform 50×50 and 100×100 grids. Calculations for the backward-facing step have been made for

Re≤ 3000 with channel lengths, L, within the range 10–30, on 30L×30 uniform grids. The computed

stream-function contours and velocity fields have been compared with numerical results reported in

the literature.

Keywords: Navier-Stokes equation, stream-function formulation, method of lines, compact schemes,

driven cavity problem, backward-facing step flow

1. Navier-Stokes equations in the stream-function form

The problem of determination of the unsteady plane motion of viscous incom-

pressible fluid can be formulated mathematically as an initial-boundary value problem

for the fourth-order equation which governs the stream-function distribution [1, 2]:

∂~∇2ψ

∂t
+
∂~∇2ψ

∂x

∂ψ

∂y
−
∂~∇2ψ

∂y

∂ψ

∂x
=
1

Re
~∇4ψ, (1)
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18 Z. Kosma

where Re denotes the Reynolds number, and ~∇2 is the Laplace operator. The

governing Equation (1) was transformed into a dimensionless form with appropriate

normalizations.

The simplicity of formulation of Equation (1) lies in the fact that the continuity

equation is satisfied automatically, and then the boundary conditions for the stream-

function in simply connected domains are explicitly specified by given velocity

distributions. A disadvantage of this formulation is the high order of Equation (1).

The velocity components are defined as:

u=
∂ψ

∂y
, v=−

∂ψ

∂x
, (2)

and vorticity, ω= ∂v/∂x−∂u/∂y, satisfies the equation ω=−~∇2ψ.

2. Numerical approach

Approximations of all the derivatives with respect to spatial independent

variables x, y occuring in Equation (1) have been performed using compact finite

difference schemes [3], defined as generalizations of the classical Padé schemes.

The results of the theory of these schemes, applied to an auxiliary discrete

function, ϕk, of a real variable ξk:

ϕk =ϕ(ξk), ξk = ξ0+kh (k=0,1,. .. ,N), (3)

yield the following sixth-order tridiagonal approximations of the first derivatives:

1

3
ϕ′k−1+ϕ

′

k+
1

3
ϕ′k+1=

14

9

ϕk+1−ϕk−1
2h

+
1

9

ϕk+2−ϕk−2
4h

,

(k=2,3, . .. ,N−2),
(4)

and a similar three-point formula for the second derivatives:

2

11
ϕ′′k−1+ϕ

′′

k+
2

11
ϕ′′k+1=

12

11

ϕk+1−2ϕk+ϕk−1
h2

+
3

11

ϕk+2−2ϕk+ϕk−2
4h2

,

(k=2,3, . .. ,N−2).
(5)

In practice, the non-periodic boundary formulation for the first derivatives is

given by the following third- and fourth-order relations:

ϕ′0+2ϕ
′
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1

h

(

−
5

2
ϕ0+2ϕ1+

1

2
ϕ2

)

(k=0),

1

4
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′
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1

4
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3
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ϕ2−ϕ0

)

(k=1),

1

4
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′
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1

4
ϕ′N =

3

4h
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)
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2ϕ′N−1+ϕ
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1
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5

2
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(k=N),

(6)
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while the non-periodic boundary formulation for the second derivatives is taken in

the following form:

ϕ′′0+11ϕ
′′

1 =
1

h2

(

13ϕ0−27ϕ1+15ϕ2−ϕ3

)

(k=0),

1

10
ϕ′′0+ϕ

′′

1+
1

10
ϕ′′2 =

6

5h2

(

ϕ2−2ϕ1+ϕ0

)

(k=1),

1

10
ϕ′′N−2+ϕ

′′

N−1+
1

10
ϕ′′N =

5

6h2

(

ϕN−2−2ϕN−1+ϕN

)

(k=N−1),

11ϕ′′N−1+ϕ
′′

N =
1

h2

(

−ϕN−3+15ϕN−2−27ϕN−1+13ϕN

)

(k=N).

(7)

A set of formulas for determining the spatial derivatives of the ~∇2ψ function

can be obtained directly from Equations (4)–(7) by replacing ϕk with (~∇
2ψ)
∣

∣

k
.

In order to solve the initial-boundary value problem for Equation (1), we cover

the relevant quadratic or rectangular domain in the x×y plane with a grid system

defined by:

x=x0+kh (k=0,1, . .. ,K),

y= y0+ lh (l=0,1, . .. ,L),
(8)

where h is the same spacing of the grid in the x and y directions.

Using central differences [4], the Laplacian operator ~∇2 in the non-stationary

term ∂~∇2ψ/∂t can be replaced with its finite difference approximations:

(

~∇2ψ
)

i,j
=
1

12h2

(

−ψi−2,j−ψi+2,j−ψi,j−2−ψi,j+2+

+16ψi−1,j+16ψi+1,j+16ψi,j−1+16ψi,j+1−60ψi,j

)

+O(h4),
(9)

at interior grid points i = 2,3, . .. ,K − 2, j = 2,3, .. . ,L− 2. Systems of ordinary

differential equations can thus be obtained in these nodes of the assumed uniform

computational grid (8):

ai−2,jψ̇i−2,j+ai+2,jψ̇i+2,j+ai,j−2ψ̇i,j−2+ai,j+2ψ̇i,j+2+

+ai−1,jψ̇i−1,j+ai+1,jψ̇i+1,j+ai,j−1ψ̇i,j−1+ai,j+1ψ̇i,j+1+ai,jψ̇i,j = f̃(ψk,l),
(10)

where the dots indicate first derivatives with respect to time, being the only continuous

independent variable, and coefficients ai,j are constant. The right-hand side, f̃(ψk,l),

contains approximated values of the discretized convective and diffusive terms of

Equation (1), while indices k, l are mesh points (8).

The lacking equations along the i=1, i=K−1, j=1 and j=L−1 lines can be

obtained from boundary conditions involving a constant and specified stream-function

and its normal derivatives on the boundaries. Based on the following finite-differences

expressions [4]:

ϕ′0=
1

12h

(

−25ϕ0+48ϕ1−36ϕ2+16ϕ3−3ϕ4

)

+O(h4),

ϕ′N =
1

12h

(

3ϕN−4−16ϕN−3+36ϕN−2−48ϕN−1+25ϕN

)

+O(h4),

(11)
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we can find additional relationships:

ψ̇1,j =
3

4
ψ̇2,j−

1

3
ψ̇3,j+

1

16
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3
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3
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3

4
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1

3
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1

16
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3

4
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1

3
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1

16
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(12)

Hence we can obtain fourth-order accurate difference approximations to
(

~∇2ψ̇
)

i,j
with mesh points values of i = 2, 3, K−3, K−2, j = 2, 3, L−3, L−2,

and the corresponding Equations (10) at these points, for example:

32

3
ψ̇3,2+

32

3
ψ̇2,3−36ψ̇2,2= f̃(ψk,l),

61

4
ψ̇2,2+

255

16
ψ̇4,2− ψ̇5,2+

32

3
ψ̇3,3−

(

18+
89

3

)

ψ̇3,2= f̃(ψk,l),

61

4
ψ̇2,3+

255

16
ψ̇4,3− ψ̇5,3+

61

4
ψ̇3,2+

255

16
ψ̇3,4− ψ̇3,5−2

89

3
ψ̇3,3= f̃(ψk,l).

(13)

The modified system of linear algebraic equations (10) with coefficients de-

termined from Equations (9) and (13) for the time derivatives can be easily solved

by means of the over-relaxation Gauss-Seidel method [4] and leads to a system of

ordinary differential equations in the Cauchy form (a method of lines approach):

ψ̇i,j = f(ψk,l). (14)

The obtained initial value problem for the system of ordinary differential

equations (14) is integrated using the two-step backward-differentiation predictor-

corrector method [5, 6].

Considering an initial value problem for an unknown function ϕ(t):

dϕ

dt
= f(t,ϕ), ϕ=ϕ(t),

ϕ(0)=ϕ0, t∈ [0,T ],
(15)

for this particular case becomes:

predictor

ϕ
(0)
n+1=ϕn−1+2∆t f(tn,ϕn), (16)

corrector

ϕ
(q+1)
n+1 =

1

3

[

(4ϕn−ϕn−1)+2∆t f(tn+1,ϕ
(q)
n+1)
]

(q=0,1, .. .). (17)

BDF-methods are currently in common use for stiff equations. The right-hand

sides in Equations (16) and (17) are calculated only once at each step of integration,

which allows one to decrease the calculation time. The 2-step BDF-formula (17) is

stable in all the left conformal half-planes of the corresponding characteristic equation.

Another numerical scheme for incompressible viscous flow, formulated as Equa-

tion (1) for the stream-function, was proposed in [7]. In this paper the biharmonic
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equation is discretized with a compact scheme and the advection of vorticity is im-

plemented with a high-resolution central scheme.

3. The driven cavity problem

3.1. Computational domain and boundary conditions

Let us consider as the first example of the developed method the driven cavity

flow shown in Figure 1, containing water in contact with a steady air flow over its

surface. In this case, the stream function, ψ, has to fulfil the following boundary

conditions:
ψ(0,y)=ψ(1,y)=ψ(x,0)=ψ(x,1)= 0,

ψx(0,y)=ψx(1,y)=ψy(x,0)= 0,

ψy(x,1)= 1.

(18)

Figure 1. The driven cavity problem: geometry and boundary conditions

Cavity flows have been frequently employed to test the accuracy of Navier-

Stokes solvers [7–46]. Numerical simulation of viscous incompressible fluid motion in

a square cavity is not only important technologically, it is also of great scientific

interest as it displays most fluid mechanical phenomena in a simple geometrical

setting. Multiple regions of re-circulation, non-uniqueness, transition and turbulence

occur naturally and can be studied in the same domain.

3.2. Numerical results

The quadratic domain in the x-y plane (Figure 1) was covered by a grid system,

N×N , defined by x= ih, y= jh (i,j=0,1, .. . ,N), where h=1/N .

Several preliminary tests had been done [47–49] on 50×50 and 100×100 grids

according to the algorithm with second- and fourth-order approximations of ~∇2ψ

in the time-dependent term in connection with fourth-order approximations of the

spatial derivatives derived from the theory of cubic spline functions. The proposed

method seemed to be quite promising as an incompressible Navier-Stokes solver for

laminar as well as turbulent flows, taking into account that the transition from laminar

to turbulent flows occurs about Re≈ 8000 [38, 41].
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The computed streamlines on the 50×50 and 100×100 grids obtained according

to the present algorithm for Reynolds numbers ranging from Re=100 to Re=30000

are presented in Figures 2–6. Converged solutions for Re=100 with the assumption of

ψ0=0 were obtained and then used as the initial conditions for the case of Re=400,

and so forth. The time steps were taken as ∆t = 10−3 for the 50× 50 grid and

∆t= 10−4 for the 100×100 grid, while iterations for the solution of the system of

Equations (10) and the backward-differentiation corrector (17) were repeated until an

accuracy of [1·10−11,1·10−7] was achieved. The process of integration was terminated

after arriving at the steady state (Re≤ 10000), defined as:

max
∣

∣

∣
∆
(

Re ψ̇i,j
)

∣

∣

∣
≤ δ, δ ∈ [1 ·10−9,1 ·10−7]. (19)

The effect of the spatial grid’s size on the accuracy of the time-dependent

solution has also been studied. It was possible to compute steady solutions for

Reynolds numbers up to 10 000, but the results on the 50×50 grid at Re > 1000

differed considerably from results reported in the literature [7–45]. Steady states

were reached after about 20000–50000 time steps. As confirmed in [15], an unstable

solution at Re = 30000 was also found on the 100× 100 grid and in this case the

computations were performed until a specified number of iterations (equal to 20000)

was reached.

Figures 2–6 show how flows in the cavity depend on the Reynolds number. The

flow configuration is characterized by the locations of the centres and sizes of the main

vortex and the secondary vortices. The primary vortex moves down to the centre of

the cavity as the Reynolds number increases. It is getting stronger and its location

becomes virtually invariant for Re≥ 5000 [15]. Small eddies develop in the vicinity of

the two lower corners and in the upper right corner, and their centres also move very

slowly towards the cavity’s centre with the increase of Re. The interaction of these

eddying motions with the mean shear-driven flow eventually leads to a turbulence, as

small eddies are unstable and the strength of the primary eddy at the centre of the

cavity varies in time. All the secondary vortices on the 100×100 grid for the steady

state solutions are shown in Figures 7–12, where velocity vectors are plotted with

vector length proportional to the magnitude of velocity.

3.3. Discussion of results

The driven square cavity flow is a good benchmark problem as it offers

a deceptively simple model on which numerical techniques may be examined and

very accurate numerical results are available for comparison. The computed stream-

function contours and distributions of velocity components, appearance of vortices

in the flow field and the observed locations of primary, secondary and additional

corner vortices are compatible with the numerical results reported in the literature

[7–46]. Especially the stream-function contours are graphically comparable with

the well-known figures obtained by Ghia et al. [9]. The 100×100 grid is found to

be good enough to capture the flow details including the tertiary vortices up to

Re=10000.

Figures 13–20 show the computed profiles concerning the u velocity component

on the vertical centreline of the cavity (x = 0.5), the v velocity component along

the horizontal centreline of the cavity (y = 0.5) and their comparisons with the
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Figure 2. Stream-function contours: Re=100 and 400, 50×50 grid

corresponding data from Ghia et al. [9]. It is worth noting that Ghia et al. used

a 129×129 mesh at Re≤ 3200 and a 257×257 mesh at Re≥ 5000. Although we used

50×50 and 100×100 meshes, the accuracy of the solutions appears almost the same

as those in the referenced paper. For the Reynolds numbers of 7500 and 10000 the

present method yields slightly higher extremal values of the velocity components since

it is difficult to resolve the very thin boundary layer with a uniform grid, although

the rate of this thinning is very slow for Re≥ 5000.

The results indicate that with an increase of the Reynolds number the effect

of viscosity is confined to a thin layer close to the solid boundaries. Another

effect is that the local curvature of the resulting mean velocity profiles increases.

In order to obtain additional detailed local flow characteristics for high Reynolds

numbers (Re ≥ 10000), very fine uniform or non-uniform meshes should be used

[9, 13, 15, 16, 40, 42]. In [49] grids have been clustered near the walls using algebraic

stretching functions.

4. Backward-facing step flow

4.1. Computational domain and boundary conditions

The second case considered is the motion of viscous liquid in a rectilinear two-

dimensional backward-facing step (flow over a sudden expansion), the flow geometry

of which is shown in Figure 21. The downstream channel was defined to have unit

height. The step height and the height of the inlet region are the same. The length

of the computational domain, L, was taken from the range 10–30 and increased

with the Reynolds number. The co-ordinate system for describing locations in the

channel is centred in the top corner and its axes are parallel to the channel sides.

A parabolic velocity profile u(y)= 24y(0.5−y) for 0≤ y≤ 0.5 at the inlet and no-slip

conditions on solid walls are prescribed. This produces a maximum inflow velocity of

umax = 1.5 and an average inflow velocity of uave = 1.0. At the outlet, the imposed

boundary conditions also assumed a parallel flow and depended on the flow model.

A parabolic velocity profile is also used for laminar flow, while for laminar-turbulent

flow the ∂ψ/∂y derivative via an extrapolation formula is calculated and ∂2ψ/∂y2=0
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Figure 3. Stream-function contours: Re=1000 and 3200, 50×50 grid

Figure 4. Stream-function contours: Re=1000 and 3200, 100×100 grid

Figure 5. Stream-function contours: Re=5000 and 7500, 100×100 grid
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Figure 6. Stream-function contours: Re=10000 and 30000, 100×100 grid

Figure 7. Velocity distribution in the bottom left-hand corner: Re=3200 and 5000

Figure 8. Velocity distribution in the bottom left-hand corner: Re=7500 and 10000
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Figure 9. Velocity distribution in the bottom right-hand corner: Re=400 and 1000

Figure 10. Velocity distribution in the bottom right-hand corner: Re=3200 and 5000

Figure 11. Velocity distribution in the bottom right-hand corner: Re=7500 and 10000
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Figure 12. Velocity distribution in the upper right corner: Re=3200, 5000, 7500 and 10000

is postulated. Hence, boundary conditions for laminar flow correspond to those defined

in the literature [19, 35, 49–73] and can be expressed in the following manner:

ψ=0 for y=−0.5, x∈ [0,L],

ψ=0 for x=0, y ∈ [−0.5,0],

ψ=2y2(3−4y) for x=0, y ∈ [0,0.5],

ψ=0.25+(3−4y2)y/4 for x=L, y ∈ [−0.5,0.5],

ψ=0.5 for y=0.5, x∈ [0,L].

(20)

Figure 21. Geometry of the backward-facing step problem

Results of computations of viscous incompressible flows in a backward-facing

geometry have been reported by many of authors [19, 28, 35, 49–73]. This simple

configuration involves a few re-circulating flow regions (see Figure 22) and vortex-

shedding phenomena, experimentally studied by Armaly et al. [50] for the flow of air.

Unfortunately, the three-dimensional effects in the channel become significant for

Re> 400, which makes comparison of the measurements with the two-dimensional

simulations less than satisfactory. However, the laminar (Re < 1200), transitional

(1200 < Re < 6600) and turbulent (Re > 6600) zones of the flow can be clearly

identified from the measurements.
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Figure 13. Distributions of the x and y components of velocity on the centrelines

of the cavity at Re=400, the 50×50 grid

Figure 14. Distributions of the x and y components of velocity on the centrelines

of the cavity at Re=1000, the 50×50 grid

Figure 15. Distributions of the x and y components of velocity on the centrelines

of the cavity at Re=3200, the 50×50 grid

Figure 16. Distributions of the x and y components of velocity on the centrelines

of the cavity at Re=1000, the 100×100 grid
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Figure 17. Distributions of the x and y components of velocity on the centrelines

of the cavity at Re=3200, the 100×100 grid

Figure 18. Distributions of the x and y components of velocity on the centrelines

of the cavity at Re=5000, the 100×100 grid

Figure 19. Distributions of the x and y components of velocity on the centrelines

of the cavity at Re=7500, the 100×100 grid

Figure 20. Distributions of the x and y components of velocity on the centrelines

of the cavity at Re=10000, the 100×100 grid
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Figure 22. Re-circulation zones in the backward-facing step geometry

4.2. Numerical results

The assumed rectangular computational domain (Figure 21) on a uniform

Cartesian N×M grid (8) can be discretized as follows:

xi= ih, yj =−0.5+jh, (21)

where h= 1/M is the identical grid size in the x and y directions, and indices i, j,

(0≤ i≤N , 0≤ j≤M) are related to the x and y directions, respectively.

By using the presented algorithm, computations were undertaken on the

30L×30 grid (Equation (21)) and for channel lengths, L, within the range 10–30,

with time steps ∆t= 1 ·10−3 – Re = 200, ∆t= 5 ·10−3 – Re = 400 and ∆t= 1 ·10−2

– Re ≥ 600. Iterations ranging from 10000 to 30000 were necessary to achieve for

laminar flows (Re≤ 1200) with accuracy (19) within the range [1 ·10−8,1 ·10−5], while

keeping the other calculation parameters same as in Section 3.2. Steady state solutions

of this problem were obtained for Reynolds number values of 200, 400, 600, 800, 1200

and 2000 (see Figures 23–28).

Calculations according to the algorithm with second-order discretizations of the

∂~∇2ψ/∂t term and cubic spline function approximations of the spatial derivatives can

be found in [49]. The computations were performed on 30L×30 and 40L×40 grids,

L=20 and L=25, for Reynolds numbers Re≤ 2500.

4.3. Comments on the results

The proposed algorithms have been proved to be also applicable as an incom-

pressible Navier-Stokes solver for the numerical simulation of laminar and transitional

motion of viscous incompressible fluids over a backward-facing step. The computed

separation and reattachment points are in very good agreement with the numeri-

cal results reported in the literature. For example, the lengths of the re-circulation

Figure 23. Stream-function contours for Re=200 on the 300×30 grid
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Figure 24. Stream-function contours for Re=400 on the 450×30 grid

Figure 25. Stream-function contours for Re=600 on the 450×30 grid

Figure 26. Stream-function contours for Re=800 on the 600×30 grid

Figure 27. Stream-function contours for Re=1200 on the 750×30 grid
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Figure 28. Stream-function contours for Re=2000 on the 900×30 grid

Figure 29. Stream-function contours for Re=3000 on the 900×30 grid,

laminar inlet velocity profile

regions (Figure 22) obtained with the present method for Re= 800 are compared in

Table 1 with those reported by other authors.

In all the papers [50–73] computations have been performed for the 100≤Re≤

800 laminar regime only, since it has been established that the flow is steady for

inlet Reynolds numbers up to Re = 800. The present calculations have shown that

the problem converges to a steady state solution for Re=1200 (as already confirmed

by experimental results [50] and numerical calculations [49]) and for Re= 2000. The

calculations have indicated that flows over a backward-facing step become unsteady

and unstable for Reynolds numbers Re> 2000 (see Figure 29). Therefore, the choice of

proper boundary conditions for the inlet and outlet velocity profiles arises as another

important problem. The influence of inflow and outflow boundary conditions has been

studied by assuming experimentally determined turbulent velocity profiles in the inlet

as well as in the outlet channel [62]; the results are shown in Figure 30. At Re=3000,

for both kinds of velocity profiles, the transient flow behind the backward-facing step

is composed of successive eddies generated along the lower and upper walls.
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Table 1. Comparison of predicted separation and reattachment points for Re=800

Authors Grid x1 x4 x5

Gartling [51] 800×40 6.10 4.79 10.48

Pentaris et al. [52] 155×51 5.51 4.65 9.74

Pappou, Tsangaris [54] 150×31 6.10 4.87 10.37

Barton [55] 240×80 5.76 4.57 10.33

Barton [57] 80×50 6.10 4.82 10.45

Keskar, Lyn [58] 90×12 6.10 4.85 10.48

Domański, Kosma [66] 800×40 5.55 4.61 9.85

Kosma [49] 600×30 5.55 4.55 10.35

Kosma [49] 800×40 5.75 4.65 10.4

Present calculations (Figure 26) 600×30 6.1 5.0 10.3

Figure 30. Stream-function contours for Re=3000 on the 900×30 grid,

turbulent inlet and outlet velocity profiles

5. Concluding remarks

The developed computational algorithms for the solution of incompressible

flow of viscous fluids substantially improve the previous versions proposed in papers

[47–49]. The author is not aware of any other similar method for the solution of

incompressible viscous flows; only in [7] a central difference scheme for a pure stream-

function formulation of incompressible viscous flow was introduced. In their present

form, the algorithms are applicable to numerical simulation of both laminar and

turbulent motion as a solution of incompressible Navier-Stokes equations written in

the form of a fourth-order equation for the stream function. The method of lines

is adopted, the essence of which lies in discretizing all the spatial derivatives, while

preserving the continuity of the time variable. The computed stream-function contours

and distributions of velocity components in a wind-driven cavity and a rectilinear

backward-facing step fit well the numerical results presented in numerous previously

cited references. Because of their two-dimensionality, the present simulations are
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limited to the unsteady flow regime and can be regarded as preliminary calculations

for turbulent flow.
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