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Abstract: A direct two-dimensional numerical simulation has been performed to study the tran-
sition flow in an annual rotating cavity. The spectral collocation method based on the Chebyshev
polynomial is used to solve the incompressible Navier-Stokes equation. The time scheme is semi-
implicit and second-order accurate; it corresponds to a combination of the second-order backward
differentiation formula for the viscous diffusion term and the Adams-Bashforth scheme for the non-
linear terms. The method uses a projection scheme to maintain the incompressibility constrain. The
numerical computations, performed for an annular cavity of the aspect ratio L=2 and 5 and for the
curvature parameters Rm=(R1+R0)/(R1−R0)= 5, exhibit instability structures in the form of cir-
cular rolls. These structures are in good agreement with the other investigations, both experimental
and theoretical.

Keywords: rotating cavity, direct method, laminar-turbulent transition

1. Introduction

Flows in rotating disk systems are not only a subject of fundamental interest
but also a topic of practical importance. Typical configurations are cavities between
the compressors and turbines disks. Numerous works have recently been devoted to
the investigation of instabilities associated with a single disk flow (Kobayashi [1],
Lingwood [2–4]) and differentially rotating disks’ flow (Daube [5], Itoh [6], Tuliszka-
Sznitko [7, 8], Serre [9–11], Cousin-Rittemard [12, 13]). In the case of the rotor/stator
flows at high rotation rates, the flow consists of two boundary layers, e.g. of the Ekman
type on the rotating disk and of the Bödewadt type on the stationary disk, separated
by an inviscid rotating core. The transition process in both boundary layers is related
to type I and type II generic linear instabilities. A type I instability is due to the
presence of an inflection point in the boundary layer’s velocity profile. The mechanism
of type II instabilities is related to the combined effects of the Coriolis and viscous
forces. Faller [14] and Caldwell [15] have investigated experimentally type I and type II
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instabilities in the Ekman flow and found reasonably good agreement with the linear
stability theory. Savas [16] has studied experimentally unsteady, uniformly rotating
flow over a stationary disk and found both rings and spiral structures recognised as
type II and type I instabilities, respectively. In both the rotor/stator cavity flow and
the flows around a single disk, the experimental results exhibit similar instability
structures; however, the confinement of the (rotor/stator) geometry has an effect on
the critical Reynolds number.

Lingwood [2, 3] showed in her theoretical and experimental studies that the flow
around a single rotating disk is absolutely unstable. Lingwood [4] also demonstrated
theoretically that a rotating flow over a stationary disk is absolutely unstable. The
recent theoretical (Tuliszka-Sznitko [7, 8]) and experimental (Gauthier [17]) research
has revealed absolute instability in the rotor/stator flow.

The flow between two disks rotating in the rotor/stator configuration has been
analysed with the assumption that the radius of the disks is either infinite (Itoh [6],
Tuliszka-Sznitko [7, 8]) or finite (Daube [5], Serre [9–11], Cousin-Rittemard [12]). In
the case of a finite radius of the disks, additional parameters are needed to describe
the geometrical configuration and the imposed boundary conditions. Modifications
introduced by the presence of external and internal shrouds and the influence of the
attachment of the shrouds to the rotor or the stator have been discussed in many
papers (Dijkstra [18], Adams [19], Cousin-Rittemard [12, 13], Oliveira [20]). Great
influence of the end-walls boundary layers on the flow structure has been reported.

In the present paper we present our preliminary axisymmetric calculations for
an annular geometry of the aspect ratio L=5 and 2 and for the curvature parameter
Rm=5. This 2D assumption was principally dictated by computing requirements. The
validity of the 2D assumption is questionable. Many of the experimental and numerical
stability studies of the flow around rotating disks have shown that 3D spiral vortices
are dominant. However, the experimental study performed by Savas [16] has proven
the existence of cylindrical waves in the Bödewadt flow. The stability analysis of the
similarity basic state performed by Itoh [6] and Tuliszka-Sznitko [7] has shown that
the stationary disk boundary layer is far more unstable than the rotating one and that
modes which propagate almost radially are the most unstable. Recent experimental
works by Gauthier [17] and Schouveiler [21] have demonstrated that for small radial
ratios R1/R0 cylindrical vortices can be found in the early transition stage. We treat
the 2D calculations as a preliminary stage for further 3D calculations. At the same
time we emphasise that the 2D calculations are not unphysical.

The paper is organized as follows. The geometrical and mathematical models are
described in Sections 2 and 3, respectively, while the numerical technique is discussed
in Section 4. The results are presented in Section 5 and the concluding remarks are
given in Section 6.

2. The geometrical model

The geometrical model is a rotor-stator annular cavity of the aspect ratio
L = (R1−R0)/2h = 2 and 5 and the curvature parameter Rm =

(R1+R0)
(R1−R0)

= 5. The
disks are bounded by stationary cylinders of height 2h (Figure 1).
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Figure 1. Schematic picture of the annular rotating cavity
with monitoring points in radial direction

The rotor rotates with uniform angular velocity Ω = Ωez, ez being the unit
vector. The origin of the z-axis is located at the mid-height between the disks.
The governing parameters are the Reynolds number based on the external radius
of the disks, ReR=R21Ω/v̂, the Reynolds number based on the height of the cylinder,
Re= (2h)2Ω/v̂, and the local Reynolds number based on the viscous scale δ=

√

v̂/Ω,
Reδ = δr∗Ω/v̂=

√

r∗2Ω/v̂ (the asterisk denotes the dimensional value, and v̂ denotes
kinematic viscosity). The ReR=R21Ω/v̂ Reynolds number is the upper bound to the
square of the local Reynolds number, Reδ =

√

r∗2Ω/v̂. The local Reynolds number
is used to discuss the instability thresholds and characteristic parameters of the
instability waves.

3. The mathematical model

The governing equations are the 3D Navier-Stokes equations written in the
velocity-pressure formulation together with the continuity equation. The equations are
written in a cylindrical polar coordinate system (r, z, ϕ), with respect to a stationary
frame of reference:

∂V

∂t
=
1
Re
∆V −(V ·∇)V −∇P, ∇·V =0, (1)

where t is time, V is the velocity vector, (u, w, v) are the velocity components in the
r, z, and ϕ directions, respectively, and P is pressure. The scales for the dimensionless
variables of time and velocity are Ω−1 and ΩR1, respectively. The dimensionless
axial co-ordinate is z = z∗/h; z ∈ [−1,1]. The radius co-ordinate is normalized to
obtain the [−1,1] domain required by the spectral method based on the Chebyshev
polynomials: r=(2r∗−(R1+R0))/(R1−R0). The boundary conditions are as follows:
no slip boundary conditions at all rigid walls u=w = 0. For the azimuthal velocity
component the boundary conditions are v=0 on the stator and v=(Rm+r)/(Rm+1)
on the rotating disk. The azimutal velocity on the stationary end-walls is equal to zero,
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v=0.0. However, this boundary condition must be modified because of the singularity
of the azimuthal velocity at the junction between the stationary end-walls and the
rotating disk. The singularity expresses a physical situation where there is a thin gap
between the edge of the rotating disk and the stationary end-walls. To eliminate the
singularity, different azimuthal velocity profiles are used for r=±1: the linear profile
v = (1+z)(Rm+ r)/2(Rm+1) (Serre and Pulicani [10]) and the exponential profile
v=exp((z−1)/0.006) (Serre, Tuliszka-Sznitko and Bontoux [11]).

The computations start with a Reynolds number low enough to obtain stable
flow, e.g. ReR =R21Ω/v̂=3000. This solution is then used as an initial condition for
a computation for a higher Reynolds number. For the first iteration we use as the
initial condition the flow which corresponds to no motion in the meridional plane and
to the linear azimutal velocity profile: u=0, v=(1+r)(z+1)/4, w=0.

4. Direct numerical simulation (DNS)

In this paper we restrict ourselves to a 2D flow. The numerical solution is based
on a spectral collocation method (Canuto [22]). The Gauss-Lobatto collocation points
are used:

ri=cos(iπ/N), zj =cos(jπ/M), i=0, .. . ,N, j=0, .. . ,M,

(ri,rj)∈ [−1,1]× [−1,1],
(2)

where N andM are the number of collocation points in the radial and axial directions,
respectively. The Ψ= (u,w,v,P ) solution of Equations (1) is approximated by means
of a Chebyshev polynomial expansion in the r and z directions (Serre [9, 10]):

Ψ(r,z,t)=
N
∑

n=0

M
∑

m=0

Ψ̂nmTn(r)Tm(z) for −1≤ r,z≤ 1, (3)

where Ψ̂nm are the spectral coefficients, while Tn and Tm are Chebyshev polynomials.
The time scheme is semi-implicit and second-order accurate. It corresponds to
a combination of the second-order backward differentiation formula for the viscous
diffusion term and the Adams-Bashforth scheme for the non-linear terms. The method
uses a projection scheme to maintain the incompressibility constrain. Details are
described in [10].

We transform Equations (1) into a more convenient form (Serre [9, 10]):
1
L

∂u

∂r
+

u

L(Rm+r)
+
∂w

∂z
=0, (4)

∂u

∂t
+L(Rm+1)Au=−(Rm+1)

∂P

∂r
+
L2(Rm+1)2

ReR

[

∆u−
u

L2(Rm+r)2

]

, (5)

∂v

∂t
+L(Rm+1)Av=

L2(Rm+1)2

ReR

[

∆v−
v

L2(Rm+r)2

]

, (6)

∂w

∂t
+L(Rm+1)Aw=−L(Rm+1)

∂P

∂z
+
L2(Rm+1)2

ReR
[∆w], (7)

where

Au=
1
L
u
∂u

∂r
+w
∂u

∂z
−

v2

L(Rm+r)
, Av=

1
L
u
∂v

∂r
+w
∂v

∂z
+

uv

L(Rm+r)
,

Aw=
1
L
u
∂w

∂r
+w
∂w

∂z
.

(8)
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The cylindrical Laplacian operator for the two-dimensional flow is defined in the
following way:

∆=
1
L2
∂2

∂r2
+

1
L2(Rm+r)

∂

∂r
+
∂2

∂z2
. (9)

4.1. Predictor

The first task is to obtain pressure distribution. The pressure predictor, P p,
is computed from the so-called pressure elliptic equation derived from the continuity
Equation (4) and Navier-Stokes Equations (5)–(7):

∆P p=−divergence(N(V )), (10a)

where N(V ) denotes the non-linear terms of the Navier-Stokes equations, N(V ) =
[(N(V ))r,(N(V ))ϕ,(N(V ))z]T . For numerical purposes and the 2D flow, we write
this equation in the following manner:

1
L2
∂2P p

∂r2
+

1
L2(Rm+r)

∂P p

∂r
+
∂2P p

∂z2
=−2

[

1
L

∂

∂r
Aun+

1
L

1
Rm+r

Aun+
∂

∂z
Avn

]

+

+
[

1
L

∂

∂r
Aun−1+

1
L

1
Rm+r

Aun−1+
∂

∂z
Avn−1

]

.

(10)

Equation (10) is solved with the following boundary conditions:

∂P p

∂r
=−L

[(

2Aun−Aun−1
)]

+

+
L2(Rm+1)
ReR

[

2
(

∆un−
un

L2(Rm+r)2

)

−

(

∆un−1−
un−1

L2(Rm+r)2

)]

,

∂P p

∂z
=−

[(

2Awn−Awn−1
)]

+

+
L(Rm+1)
ReR

[

2
(

∆wn−
wn

L2(Rm+r)2

)

−

(

∆wn−1−
wn−1

L2(Rm+r)2

)]

.

(11)

The velocity predictor is calculated from the following equations:

∆up−up
1

L2(Rm+r)2
−

ReR
L2(Rm+1)2

3
2
up

δt
=

ReR
L2(Rm+1)2

(

−4un+un−1

2(δt)
+L(Rm+1)(2Aun−Aun−1)+(Rm+1)

∂P p

∂r

)

,

∆vp−vp
1

L2(Rm+r)2
−

ReR
L2(Rm+1)2

3
2
vp

δt
=

ReR
L2(Rm+1)2

(

−4vn+vn−1

2(δt)
+L(Rm+1)(2Avn−Avn−1)

)

,

∆wp−
ReR

L2(Rm+1)2
3
2
wp

δt
=

ReR
L2(Rm+1)2

(

−4wn+wn−1

2(δt)
+L(Rm+1)(2Awn−Awn−1)+L(Rm+1)

∂P p

∂z

)

.

(12)
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The boundary conditions for the above equations are as follows:

up=un−1, vp= vn−1, wp=wn−1. (13)

4.2. Corrector

Corrections of pressure and velocity are calculated from the following equations:

3
2(δt)
(un+1−up)=−(Rm+1)

(

∂Pn+1

∂r
−
∂P p

∂r

)

,

3
2(δt)
(vn+1−vp)= 0, (14)

3
2(δt)
(wn+1−wp)=−(Rm+1)L

(

∂Pn+1

∂z
−
∂P p

∂z

)

,

and
1
L

∂un+1

∂r
+
un+1

L(Rm+r)
+
∂wn+1

∂z
=0. (15)

The boundary conditions for Equations (15) are:

V n+1 ·n=V p ·n. (16)

We calculate un+1, vn+1, wn+1, pn+1 by introducing a new value,

φ=2δt(Pn+1−P p)/3, (17)

to Equations (14)–(15). Finally, we obtain:

1
L2
∂2φ

∂r2
+

1
L2(Rm+r)

·
∂φ

∂r
+
∂2φ

∂z2
=

1
L(Rm+1)

(

1
L

∂up

∂r
+

up

L(Rm+r)
+
∂wp

∂z

)

.

(18)

The boundary condition for this equation is:

grad(φ) ·n=0. (19)

The corrected pressure and velocity are as follows:

Pn+1=P p+
3
2∂t
φ, V n+1=V p−grad(φ). (20)

At every new time level (n+1)δt each flow variable Ψ(up, vp, wp, pp, φ) is the solution
of a 2D equation of the following form (Serre [10]):

1
L2
∂2Ψ
∂r2
+

1
L2(Rm+r)

∂Ψ
∂r
+
∂2Ψ
∂z2
−λΨ=S, (21)

where λ is a constant. The above equation is approximated by the spectral colloca-
tion method and the right-hand side of the Equation (21) is evaluated by a standard
spectral technique. Then, full diagonalization is used to solve Equation (21) (Halden-
wang [23]). For an annular cavity, the matrices of the radial and axial operators are
diagonalizable with real eigenvalues. Details of the technique can be found in Serre
and Pulicani [10] and Haldenwang [23].
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5. Results

Numerical investigations have been performed for a rotating annular cavity of
aspect ratio L=2 and 5, for the curvature parameter Rm=5. A linear profile for the
azimutal velocity component was used to eliminate the singularity at the junctions
between the stationary end-walls and the rotor, v = (1+ z)(Rm + r)/2(Rm + 1).
After some preliminary computations, a special resolution of 65× 41 in the r and
z directions, respectively, was chosen. However, we are aware that some additional
grid tests are necessary, particularly in computations for higher ReR planned for
future publications. The incorporated time step was equal to 5 ·10−3. The velocity
fluctuations were computed with respect to the average flow solution.

Computations started with a Reynolds number low enough to obtain the
steady flow, e.g. ReR = R21Ω/v̂ = 3000. The criterion assumed for the steady flow
was as follows:

|V n+1−V n|/δt≤ 10−5. (22)

The rotation of the rotor was then increased step by step with a very small increment
equal to ∆ReR = 500. The behaviour of the dependent variables was monitored at
15 points in five different positions in the radial direction N(1/6, 1/3, 1/2, 2/3, 5/6)
and in three positions in the axial direction M(9/10, 1/2, 1/10), where N and M
are numbers of collocation points in the radial and axial direction, respectively. The
monitoring points in the radial direction are marked by letters A, B, M , C and D in
Figure 1.

Preliminary results obtained for L=2 and 5 and Rm=5 are presented below.
Let us first consider the results obtained for the aspect ratio L=2.

The base flow was steady and composed of two disjoint boundary layers (one
on each disk) and a central core flow. A fluid was pumped radially outwards along
the rotating disk and radially inwards over the stationary disk. Both boundary layers
were separated by the core rotating with near solid rotation.

In Figures 2a and 2b the time histories are presented of the axial velocity
component obtained for ReR = 32000 and 34000, respectively, at monitoring point
M in the stationary and rotating disk boundary layers. Having examined the time
history obtained for ReR=32000, we can see that the first disturbances, introduced
by the change of the Reynolds number, were dampened and the flow finally reached
a steady state. For the higher Reynolds number, ReR=34000, the first disturbances
were dampened as well but then disturbances began to grow. We recognised the
Reynolds number of 34000 as the critical Reynolds number of the first bifurcation
for the case of Rm = 5 and L= 2. This solution is fully oscillatory, as noticeable in
Figure 2c, where part of the time history of this case is presented. From Figure 2c we
can calculate the angular frequency σ=2π/∆t∼ 3.11. For this Reynolds number, the
amplitudes of disturbances in both boundary layers are small, but they grow quickly
with the increasing Reynolds number. Their maximum occurs at the monitoring point
D. We have observed the same angular frequency of disturbances at all monitoring
points.

The disturbances’ structure obtained for Re = 34000 and t= 250 is presented
in Figure 3, where the iso-lines of the azimuthal velocity component disturbances are
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12 E. Tuliszka-Sznitko et al.

shown. In the stationary disk’s boundary layer we can observe four pairs of counter-
rotating vortices of the average wave length about λ∗/h= 0.85 or λ∗/δ = 13, which
propagate radially inwards with the average phase speed of Vφ/Ωr=(λ∗r/δ)/∆tReδ =
−0.042 (the minus sign shows the direction of propagation). In the rotating disk’s
boundary layer we can observe three pairs of spiral vortices propagating with the
phase speed of 0.073 radially outwards, in accordance with direction of the base flow.
The radial wavelength of disturbances is defined as λ∗r =∆r

∗/nr, where ∆r∗ is the
radial length occupied by nr rolls.

(a)

(b)

(c)

Figure 2. The time history of the axial velocity component obtained at monitoring point M of
the stator and rotor boundary layers for (a) ReR=32000 and (b) 34000. (c) is a fragment of the

time history presented in (b); Rm=5 and L=2

The time histories obtained for L= 5 and for ReR = 69000 and 72000 in the
stationary and rotating disk boundary layers are presented in Figures 4a and 4b,
respectively. In both boundary layers we can observe the oscillatory solution of the
angular frequency σ= 2π/∆t= 4.5. We determined the Reynolds number critical to
unsteadiness to be 68500. In Figure 5a, 5b and 5c the iso-lines of the azimuthal
velocity component fluctuations obtained for ReR =69000 at t=10, 40 and 120 are
presented, respectively.
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Numerical Investigation of Instability of an Annular Rotating Cavity 13

Figure 3. The iso-lines of disturbances of the azimuthal velocity component
in the (r∗/h,z∗/h) plane; ReR=34000, Rm=5, L=2 and t=250

(a)

(b)

Figure 4. The time history of the axial velocity component obtained at monitoring point M of
the stator and rotor boundary layer obtained for

(a) ReR=69000 and (b) ReR=72000; Rm=5 and L=5

From Figure 5 we can see that stationary disk’s boundary layer is less stable
than that of the rotating disk (see also the time history). In the stationary disk’s
boundary layer we can observe four pairs of spiral vortices of wavelengths 8.7 <
λ∗r/δ < 30, which propagate radially inwards with the phase speed −0.097<V

∗

φ /Ωr
∗<

−0.0338. In the rotating disk’s boundary layer we can observe two pairs of vortices,
with λ∗r/δ∼ 35 and V

∗

φ /Ωr
∗=0.114. We can see that structures obtained for t=40 and

120 are very similar, whereas for t=10 (the beginning of the time history, Figure 4a)
the disturbances in the rotating disk’s boundary layer are hardly visible. The iso-
lines obtained for ReR = 72000 and t = 120 (Figure 6) are very similar to those
obtained for ReR = 69000 (Figure 5c). The presented structures obtained for L= 5
have been compare with the 2D results obtained by Daube [5] (who has published
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14 E. Tuliszka-Sznitko et al.

(a)

(b)

(c)

Figure 5. The iso-lines of disturbances of the azimuthal velocity component in the (r∗/h,z∗/h)
plane; (a) t=10, (b) t=40, (c) t=120; ReR=69000, Rm=5, L=5

Figure 6. The iso-lines of disturbances of the azimuthal velocity component in the (r∗/h,z∗/h)
plane; ReR=72000, Rm=5, L=5 and t=120

several results for L=5 and various R0/R1 factors) and good qualitative agreement
has been found.

6. Conclusions

The two-dimensional incompressible flow in the annular rotating cavity of the
aspect ratio L= 2, 5 and Rm = 5 has been investigated numerically using a direct
numerical simulation based on the spectral collocation method. We focused our
attention on the first bifurcation to unsteadiness. The study of the first stages of
the transition to turbulence, using as highly accurate DNS as here, is valuable as it
allows for an accurate description of the instability mechanisms which are known to
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Numerical Investigation of Instability of an Annular Rotating Cavity 15

play an important role in the process of breakdown to turbulence. We have presented
the instability structures occurring in the stationary and rotating disks’ boundary
layers and the critical Reynolds numbers of the transition to unsteadiness have been
given. The presented structures are in good qualitative agreement with the 2D results
of Daube [5]. For both of the analyzed cases, L=2 and L=5, we have obtained an
oscillatory solution.
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