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Abstract: The aim of the present paper is to propose a special kind of finite element procedure

for dynamic and static analysis of civil engineering structures (e.g. trusses, beams, shells and spatial

structures) including elasto-viscoplastic models. The Chaboche model with damage has been chosen

from the wide range of available elasto-viscoplastic constitutive models for numerical calculations.

The main advantage of the presented approach is the possibility of interference in subroutines and

adjusting them to a particular problem (e.g. altering the form of constitutive equations). A user-

defined UVSCPL subroutine has been proposed to introduce the elasto-viscoplastic model into the

MSC.Marc system.
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1. Introduction

In materials where the viscous properties within the plastic range play an

important role it is necessary to apply the elasto-viscoplastic constitutive relations. We

can cite the following elasto-viscoplastic models for example: Perzyna [1], Chaboche

[2], Aubertin [3], Lehmann-Imatani [4], Miller [5], Bodner-Partom [6], Krempl [7],

Tanimura [8], Krieg-Swearengen-Jones [9], Walker [10], Korhonen-Hannjula-Li [11],

Freed-Virrilli [12]. A detailed description of these models can be found in paper [13].

Their relatively large number shows that they are not universal and can be applied

only under certain conditions or for a limited range of materials. From the wide

range of available elasto-viscoplastic laws, the Chaboche model with damage has

been selected in the present paper. This constitutive model is suitable for analysis

of isotropic materials (mainly metals at high temperatures) in the range of small

inelastic strains.
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2. Description of the applied programs

Two computer programs have been applied in the present work. One has

been a self-made FORTRAN code (OFC) for elasto-viscoplastic truss analysis. The

theoretical description, FEM coding, details and application limits of this code are

discussed in [14]. The other is the MSC.Marc system developed by MSC Software,

a multipurpose finite element program for advanced engineering simulations. A great

advantage of this system is the possibility to apply over 100 user-subroutines, which

can be modified by the user. The standard MSC.Marc system does not support the

Chaboche model with the damage concept proposed by Lemaitre (see e.g. [15]).

Therefore, a user-defined UVSCPL subroutine [16] has been used to introduce the

Chaboche model with continuous damage into the MSC.Marc system.

3. The Chaboche model

3.1. Basic equations of the Chaboche model with damage

In the first step, we assume an additive decomposition of the strain rates into

the elastic ε̇E and inelastic ε̇I rate parts in the following form:

ε̇= ε̇E+ ε̇I , (1)

so that it is necessary to assume small strains. The relation between the stress and

strain rates can be described for an isotropic material as:

σ̇=(1−D)B : ε̇E =B∗ :
(

ε̇− ε̇I
)

, (2)

where B is the tensor of elastic modules.

In the Chaboche model, the inelastic strain rate has the form of:

ε̇
I =
3

2
ṗ
S′−X′

J(S′−X′)
, (3)

where ṗ, S′ and X′ are the rate of the equivalent plastic strain (the dots denote

differentiation with respect to time) and the deviatoric parts of stress and back stress

tensors, respectively. The J(a) invariant is defined by the following equation:

J(a)=

√

3

2
a :a=

√

3

2
aijaij . (4)

We will consider the isotropic damage expressed by the scalar parameter 0≤D≤ 1.

The ṗ rate in the Chaboche model with damage is defined in [15] as:

ṗ=

〈

J(S′−X′)
1−D −R−k

K

〉n

, (5)

where k, D and K, n are the initial yield stress, the damage parameter and material

parameters, respectively. The angle bracket 〈x〉 has the following form:

〈x〉=
1

2
(x+ |x|) (6)

and is called the McCauley bracket.
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The isotropic hardening, R, and kinematic hardening, X, are defined by the

following expressions:

Ṙ= b(R1−R) ṗ, (7)

Ẋ=
2

3
a ε̇I−cX ṗ, (8)

where a, c, b and R1 are material parameters.

According to the damage model proposed by Kachanov [17], the damage

evolution D used in Equation (5) is expressed by the following equation (see [15]):

Ḋ=

(

−
Y

S

)s

ṗ, (9)

where S, s are the material parameters of the damage and the −Y function is given as:

−Y =
1

2(1−D)2E

(

2

3
(1+ν)σ2eq+3(1−2ν)σ

2
H

)

, (10)

where E is Young’s modulus, ν is Poisson’s ratio, and σeq and σH are the Huber-

Misses equivalent stress and hydrostatic stress.

In the case of an uniaxial tension or compression state, the inelastic strain rate

can be written as:

ε̇
I = ṗ sign(σ−X)=

〈

|σ−X|
1−D −R−k

K

〉n

sign(σ−X) (11)

while kinematic hardening has a simple form, [2]:

Ẋ = a ε̇I−cX |ε̇I |. (12)

It is worth noting that the stress tensor, S, has one non-vanishing component,

σ, while the S′ and X′ tensors have three non-zero components:

S=







σ 0 0
0 0 0
0 0 0






, S′=







2
3σ 0 0
0 − 13σ 0
0 0 − 13σ






, X′=







2
3X 0 0
0 − 13X 0
0 0 − 13X






. (13)

3.2. UVSCPL – the calculation algorithm

The UVSCPL [16] routine allows very general material laws to be entered into

MSC.Marc. This user subroutine has been used in the present work for computing

the inelastic strain increment for the elastic-viscoplastic Chaboche material model.

In general, the inelastic strain rate and the stress increment must be defined in the

procedure. The main part of the algorithm used in the computation is presented in

Figure 1 (where j is the number of time steps). As in expressions for step j, the

components from the same step are used and iterations are necessary at each step.

Additionally, the PLOTV [16] routine has been used to visualize the evolution

of the damage parameter. In this procedure, it is simple to define the variable to be

plotted and written to the post file.

4. Numerical examples

Numerical calculations have been performed for simple solid (Figure 2) and

truss (Figure 3) structures. Such tests are usually performed in a laboratory during
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[step 1]→













∆X=
∆t

2

(

Ẋj−1+Ẋj

)

, Xj =Xj−1+∆X

∆R=
∆t

2

(

Ṙj−1+Ṙj

)

, Rj =Rj−1+∆R

∆D=
∆t

2

(

Ḋj−1+Ḋj

)

, Dj =Dj−1+∆D













[step 2]→
[

S′j , X
′
j , J(S

′
j−X

′
j), J(S

′
j), tr(Sj)

]

[step 3]→

[

ṗj =

〈

J(S′j−X
′
j)/(1−Dj)−Rj−k

K

〉n
]

[step 4]→

[

ε̇
I
j =
3

2
ṗj
S′j−X

′
j

J(S′j−X
′
j)

]

[step 5]→

[

Ẋj =
2

3
a ε̇Ij −cXj ṗj

]

[step 6]→
[

Ṙj = b(R1−Rj) ṗj

]

[step 7]→

[

Ḋj =

(

−
Y

S

)s

ṗj

]

[step 8]→
[

B∗j =(1−Dj)B
]

[step 9]→
[

∆εIj = ε̇
I
j∆tj

]

[step 10]→
[

∆Sj =B
∗
j (∆εj−∆ε

I
j )
]

Figure 1. Flow graph of the UVSCPL subroutine

identification of the Chaboche model material parameters [18]. The identification’s

results can be immediately applied in 3D or 2D analysis, on the assumptions of small

strains and isotropy of the material.

Three-dimensional eight-node isoparametric solid (Element 7, see [19]) and

three-dimensional two-node straight truss (Element 9, see [19]) elements were applied

in theMSC.Marc calculations. Trilinear interpolation functions were used in the former

Figure 2. Geometry of the solid structure
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Figure 3. Geometry of the truss structure

and thus the strains tend to be constant throughout the element. Linear interpolation

was used in the latter for coordinates and displacements. At the same time, only the

straight two-nodes truss element with simple linear interpolation was used in the

OFC program.

The geometrical parameters of l = 1.0m (length) and A = 0.001m2 (square

cross section area for the truss and solid elements) were assumed. Due to the purely

numerical character of the work the values of the material parameters were taken

from the literature. The author is aware that sometimes different sets of parameters

can be found in the literature for the same material under the same conditions due

to the strong physical nonlinearity of the problem (see [20]). In practical applications

such sets must be carefully verified.

4.1. Example 1 (without damage)

The following material parameters were assumed in the first step of the nu-

merical calculations (INCO718 nickel-based alloy at 650̊ C from [21]): E=159.0GPa,

ν=0.3, k=514.21MPa, b=60.0, R1=−194.39MPa, a=170.0GPa, c=500.0, n=4.0,

K =1023.5 (MPa ·s)1/n, S=0.0MPa, s=0.0.

The stress versus strain diagrams for various strain rates (10−7≤ ε̇≤ 10−1 s−1)

are presented in Figure 4. The result of the creep test is shown in Figure 5 (the

constant stress condition applied at the level of σ=1000MPa). There is no difference

Figure 4. Constant stress rate tests
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Figure 5. Creep test

Figure 6. Constant stress rate tests

between the results obtained from the two computer programs and the types of finite

elements used in the numerical calculations.

4.2. Example 2 (with damage)

The following material parameters were taken for the Chaboche model coupled

to damage (INCO718 alloy at 627̊ C from [18]): E=162.0GPa, ν=0.3, k=501.0MPa,

b=15.0, R1=−165.4MPa, a=80.0GPa, c=200.0, n=2.4, K =12790.0 (MPa ·s)
1/n,

S = 4.48MPa, s= 3.0. The reference calculations for this case were conducted with

damage constants S=0.0MPa, s=0.0.

The stress versus strain graphs for the two strain rates, ε̇ = 0.001s−1 and

ε̇= 0.01s−1, are shown in Figure 6, where the influence of damage is apparent. In
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Figure 7. Change of the damage parameter in the constant stress rate tests

Figure 8. Creep test

the analysed range of strain and stress, damage of the structure and a break in the

numerical calculations was observed in the case of the ε̇=0.01s−1 computation. The

evolution of the damage parameter is given in Figure 7; for the ε̇=0.01s−1 calculation

damage exceeds the value limit. The simulations of creep tests are presented in

Figures 8 and 9 and for the stress values of σ = 1000MPa and σ = 1500MPa. In

this case, the damage has great influence for σ=2000MPa. Finally, a diagram of the

cyclic load test for ε̇=0.001s−1 is shown in Figure 10. The cyclic test was carried out

in the range of ε= 0.03. Like in the first example, there is no significant difference

between the results obtained from the two computer programs. It is worth pointing out

the additive character of the damage parameter. Its value increases at each successive

step, expect for the elastic range of deformation, where its value is constant due to
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Figure 9. Change of the damage parameter in the creep tests

Figure 10. Cyclic test

the lack of inelastic effects (see Figures 11 and 12). The failure of the specimen after

a single cycle of loading is attributable to the relatively high strain rate. An error in

the determination of material constants is another possible explanation. For example,

the material parameter K has a very high value compared to other references in the

literature (cf. e.g. [22, 23]).

5. Conclusions

The following conclusion and remarks may now be formulated:

(1) Thanks to the possibility of including user’s constitutive model subroutines

into the MSC.Marc system, the Chaboche model with damage can be directly

applied in calculations.
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Figure 11. Change of the damage parameter of the cyclic test in the time domain

Figure 12. Change of the damage parameter of the cyclic test in the strain domain

(2) A non-linear analysis of simple solid and truss structures with elastic-viscoplas-

tic physical equations for the Chaboche model has been successfully carried

out.

(3) The MSC.Marc and OFC programs respond almost identically in all the calcu-

lated test variants.

(4) The obtained results require a revision for more complex structures, types of

analysis and kinds of load. Especially the influence of layering in the shell

elements should be investigated.

(5) Further research should focus on the development of the UVSCPL routine with

an emphasized influence of temperature.
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