
TASK QUARTERLY 9 No 3, 357–367

RELATIVIZED HELPING OPERATORS

PATRIZIO CINTIOLI

Dipartimento di Matematica e Informatica, Università di Camerino,

Via Madonna delle Carceri, 62032 Camerino, Italy

patrizio.cintioli@unicam.it

(Received 19 June 2005)

Abstract: Schöning and Ko respectively introduced the concepts of helping and one-side-helping,

and then defined new operators, Phelp(·) and P1−help(·), acting on classes of sets C and returning
classes of sets Phelp(C) and P1−help(C). A number of results have been obtained on this subject,
principally devoted to understanding how wide the Phelp(C) and P1−help(C) classes are. For example,
it seems that the Phelp(·) operator contracts NP∩ coNP, while the P1−help(·) operator enlarges
UP. To better understand the relative power of P1−help(·) versus Phelp(·) we propose to search,
for every relativizable class D containing P, the largest relativizable class C containing P such that
for every oracle B PBhelp(CB)⊆PB1−help(DB). In [1] it has been observed that Phelp(UP∩coUP) =
P1−help(UP∩coUP), and this is true in any relativized world. In this paper we consider the case
of D=UP∩coUP and demonstrate the existence of an oracle A for which PAhelp(UPA2 ∩coUPA2 ) is
not contained in PA1−help(UP

A∩coUPA). We also prove that for every integer k≥ 2 there exists an
oracle A such that PAhelp(UP

A
k ∩coUPAk ) 6⊆UPAk .

Keywords: oracle Turing machines, structural complexity, relativized separations, helping

1. Robust machines

The notion of a robust algorithm was defined about twenty years ago in [2]

by Uwe Schöning. He was mainly interested in questions of problem solving and the

man-machine interaction. Let us describe in detail the setting he had in mind.

Let us assume that a machine has to solve a computational problem and can

rely on the assistance of a human operator. Thus, during computation the machine

can ask the human operator, who answers according to his/her knowledge, experience,

intuition, etc. Of course, this may help the machine, but it would be desiderable for the

machine to preserve some independence from such assistance and be able to provide

the right output even when the human operator is wrong, or a new human operator,

with different knowledge and intuition, is asked. At the same time, it is reasonable

to expect that right answers and reliable experts speed up computation and thus

improve the machine’s efficiency.

The formal approach proposed by Uwe Schöning to handle these settings was

that of robust Turing machines [2]. Let us recall this notion, dealing with oracle Turing

machines, i.e. Turing machines M which can query an “oracle” (meaning a set A of

words). Let us assume for the sake of simplicity that the following hold:

tq309t-g/357 27IX2005 BOP s.c., http://www.bop.com.pl



358 P. Cintioli

i) the queries the machine raises to oracle A are of membership nature, i.e. they

have the form of “is y in A?” where y is a generic word on the alphabet of A;

ii) the problems handed by the machine are decisional, i.e. their outputs are “yes”

or “no”; we also assume that every computation of the machine has an end.

Let M be a machine as described in ii) and let Σ be the alphabet of M . Then,

L(M) denotes the language of the words y in Σ∗ for which M outputs “yes”. If M is
an oracle Turing machine and A is a given oracle, then MA is the M machine with

the additional licence of querying oracle A.

Definition 1. i) A deterministic oracle Turing machine M is called robust if for

every oracle A⊆Σ∗, L(M∅)=L(MA).
ii) An oracle A is called a helper for a robust machineM ifMA runs in polynomial

time. In this case we also say that language L(M∅)=L(MA) is helped by A.

A weaker notion is that of one-side helper.

Definition 2. A set A is called a one-side helper for a robust machine M if there

exists a polynomial p such that for every x∈L(M∅) MA(x) runs in time p(|x|) where
|x| is the length of x.

2. Helping Operators

Definition 3. If A is a set, then a language L is in Phelp(A) if and only if there

exists a robust Turing machine M with helper A such that L=L(M∅); if C is a class
of sets, Phelp(C) :=

⋃

A∈CPhelp(A).

Definition 4. If A is a set, then a language L is in P1−help(A) if and only if there
exists a robust machine M one-side helped by A such that L=L(M∅); if C is a family
of sets, P1−help(C) :=

⋃

A∈CP1−help(A).

Hence Phelp(·) and P1−help(·) can be viewed as operators acting on classes of
sets C and returning classes of sets Phelp(C) and P1−help(C). Schöning and Ko have
established the following basic characterizations:

Theorem 1. (Schöning [2]) Phelp(NP)=NP∩coNP.

Theorem 2. (Ko [3]) P1−help(NP)=NP.

Actually, the proofs of these two theorems apply to any relativized world and

show that for every oracle A PAhelp(NP
A) =NPA∩coNPA. Indeed, this relativized

framework is our main interest throughout this paper, previously described in detail

in [1]. But, just to explain the A exponent in the last statement, let us recall

that NPA is the class of languages accepted by non deterministic polynomial-time

oracle Turing machines with oracle A, while coNPA is the class of languages L

with L ∈NPA. Introducing PAhelp(·) and PA1−help(·) is more laborious and refers to
machines M with two oracles, A and B, to the L(MA,B) languages they decide and

in particular to A-robust machines M (meaning that, for every additional B oracle,

L(MA,∅) =L(MA,B)). Then, for every relativizable class C, PAhelp(CA) is the class of
languages accepted by A-robust machines helped by oracles in CA, and PA1−help(CA)
is defined similarly, referring to one-side helpers. As has been said, [1] provides

tq309t-g/358 27IX2005 BOP s.c., http://www.bop.com.pl



Relativized Helping Operators 359

more detail. Phelp(·) and P1−help(·) have been intensively studied in several papers,
including [1–7]. For instance, one can see that both of them increase with respect to

inclusion, which means that for any two relativizable classes C and D, and for every
oracle A, CA ⊆DA implies PAhelp(CA)⊆PAhelp(DA) and PA1−help(CA)⊆PA1−help(DA).
By the way, this is just what the Turing operator P(·) does. However, Phelp(·) and
P1−help(·) sometimes exhibit peculiar behaviour, different from that of P(·) or other
operators. For instance, P(·) satisfies the non-contraction property, that is, for every
relativizable class C, CA ⊆PA(CA) for all oracles A, while the helping operators do
not exhibit this property. Indeed, it is almost possible to show that they exhibit

the opposite property, i.e. the following condition: Whenever a relativizable class C
is closed under ≤pT , then PAhelp(CA)⊆ CA and PA1−help(CA)⊆ CA for every oracle A
(see [3]). Furthermore, in some cases and for certain oracles, the inclusion is proper.

However, for an arbitrary relativizable class C the relationship between C andPhelp(C),
or P1−help(C) is not uniform, and yet to be completely understood. Let us offer a list
of examples likely to summarize all the possible known behaviours of Phelp(·) and
P1−help(·).
Examples for Phelp(·):
1. (contraction) if C=NP∩coNP, then for any A PAhelp(CA)⊆CA, and for some
A this inclusion is proper (see [7]);

2. (equality) if C =UP∩ coUP, then for any A PAhelp(CA) = CA; actually UP∩
coUP is the only class known so far with this property, apart from the trivial

case of C=P;
3. (incomparability) if C =UP, then there exist A,B such that PAhelp(CA) 6⊆ CA
(see [7]) and PBhelp(CB) 6⊇ CB (take B such that NPB∩coNPB 6⊇UPB).

Examples for P1−help(·):
1. (contraction) if C=NP∩coNP, then for any A PA1−help(CA)⊆CA, and for some
A this inclusion is proper (see [7]);

2. (equality) if C=UP∩coUP, then for any A PA1−help(CA)= CA (see [1]); this is
also true when C=NP, and of course in the trivial case of C=P;

3. (enlargement) if C =UP, then for every A PA1−help(CA)⊇CA [3] and for some
B PBhelp(CB)⊃CB [4];

4. (incomparability) if C =UPk ∩ coUPk with k ≥ 2, then there exists A such
that PA1−help(CA) 6⊇ CA [1] and there exists B such that PB1−help(CB) 6⊆ CB
(see Theorem 5 and Corollary 2 of this paper).

It should be noted that a complete characterization of the C classes of fixed behaviour
(contraction, incomparability, etc.) with respect to Phelp(·) or P1−help(·) is often lack-
ing. It should also be noted that the previous list does not contain any “enlargement”

example for Phelp(·); indeed, no class satisfying this property is known at the present
time.

The starting point of this paper is the following simple observation: the

examples listed above show that the Phelp(·) operator contracts NP∩ coNP with
respect to some oracles, and that P1−help(·) enlargesUP with respect to some oracles.
So, it might be the case that the Phelp(·) operator really contracts the NP∩coNP
class and the P1−help(·) operator really enlarges the UP class. Hence, we could ask if

tq309t-g/359 27IX2005 BOP s.c., http://www.bop.com.pl



360 P. Cintioli

PAhelp(NP
A∩coNPA) is contained in PA1−help(UPA) for every A. This leads to a more

general line of research, aiming at understanding the relative power of P1−help(·)
versus Phelp(·). In detail, given a fixed relativizable class D containing P, we ask which
is the largest relativizable class C such that for every A PAhelp(CA)⊆PA1−help(DA).
Looking for such class C makes sense since, for any two relativizable classes C1 and
C2 and for any oracle A, PAhelp(CA1 )∪PAhelp(CA2 ) =PAhelp(CA1 ∪CA2 ). To formulate the
problem more precisely , let us restrict ourselves to a family F of classes defined as
follows. F is the smallest family containing the basic counting classes {UPk}k≥1,
NP, and such that for any classes C1 and C2 in F , C1 ∪C2, C1 ∩C2 and coC1 are
also in F . This choice is not restrictive, and the family of classes can be extended or
altered by allowing other operators or starting from different basic classes. The (F ,⊆)
structure is partially ordered with maximum element NP∪ coNP and minimum
element UP∩coUP. Of course, we assume that P 6=UP 6=UP2 6= · ·· 6=NP. In fact,
if P=NP then F is trivialized and reduced to a unique point. However, it should be
borne in mind that for some class D in F our problem may not have a solution C in F .
Nevertheless, when D=NP, then the largest C ∈F class solving our problem is C =
NP∪coNP, as NPA∩coNPA=PAhelp(NPA∪coNPA)⊆PA1−help(NPA)=NPA, for
every oracleA (see [2, 3]). In this paper we continue this investigation for the case when

D=UP∩coUP and show that, for a suitable oracle A, PAhelp(UPA2 ∩coUPA2 ) is not
contained in PA1−help(UP

A∩coUPA). We leave open the question of existence of an
oracle B for which PBhelp(UP

B
2 ∩coUPB) is not contained in PB1−help(UPB∩coUPB),

but observe that, if such oracle B exists, then our problem for D =UP∩ coUP is
solved by C=UP∩coUP (see Section 5).

In section 3 notation is introduced and some preliminaries are provided. Section

4 contains the main results of our paper. Section 5 is devoted to concluding remarks.

The reader’s familiarity with basic concepts of the complexity theory and formal

languages has been assumed (for example, see [8–10]).

3. Notation and preliminaries

For the sake of simplicity, we refer to the usual binary alphabet {0,1} with an
additional technical symbol ].

Let Σ denote the {0,1,]} alphabet formed in this way. Let Σ∗ denote the set
of finite words on Σ and, for every positive integer n, let Σn be the set of words of

length n in Σ∗. For x∈Σ∗:
• |x| denotes the length of x,
• for every 1≤ i≤ |x|, (x)i is the ith symbol of x,
• for a∈{0,1,]}, |x|a is the number of occurrences of symbol a in x,
• for every positive integer n and for every a∈{0,1,]}, an is the word of exactly
n repetitions of symbol a.

For u,v ∈Σ∗, we say that u is a prefix of the word uv and v is a suffix of the
word uv.

As has been mentioned, if C1 and C2 are two classes of languages, then
C1∪C2= {L :L∈C1 or L∈C2}, C1∩C2= {L :L∈C1 and L∈C2}, coC= {L :L∈C}. It
should be noted that this complement operator behaves in a manner different from

tq309t-g/360 27IX2005 BOP s.c., http://www.bop.com.pl



Relativized Helping Operators 361

that of the analogous set-theoretic operator. For example, it is easy to see that for

C1,C2 classes of languages co(C1∪C2)= coC1∪coC2 and co(C1∩C2)= coC1∩coC2.
An acceptor or transducer machine M is polynomial-time if there exists

a polynomial p such that for every x ∈ Σ∗, M on input x halts in at most p(|x|)
steps.

Definition 5. [11] For any set B and for every integer k ≥ 1, a language L is in
UPBk if there exists a non deterministic polynomial-time oracle acceptor N such that,

for every finite string x, if x∈L then NB(x) has at most k accepting paths.

Definition 6.

1. A function τ : Σ∗→ Σ∗ is polynomially bit-computable with oracle E if there
exist two functions f : Σ∗ ×N → Σ and g : Σ∗ → Σ, both polynomial-time
computable with oracle E, such that, for every string x, τ(x)= f(x,1)f(x,2)· ··
f(x,g(x)).

2. Let (A,B) be a pair of disjoint languages. For any oracle E, we denote by

C(A,B)E the class of all the languages L for which there exists a function τ

polynomially bit-computable with oracle E such that, for every string x,

x∈L⇔ τ(x)∈A and x 6∈L⇔ τ(x)∈B.
[12, 13] characterize most complexity classes between P and PSPACE in terms

of pairs of languages. For instance, let AUP2∩coUP2 = {x ∈ {1,]}∗ : 1 ≤ |x|1 ≤ 2}
and BUP2∩coUP2 = {x ∈ {0,]}∗ : 1 ≤ |x|0 ≤ 2}, then it is possible to check that
C(AUP2∩coUP2 ,BUP2∩coUP2)

E =UPE2 ∩coUPE2 for all oracles E. More generally, for
every k ≥ 2, let AUPk∩coUPk = {x ∈ {],1}∗ : 1 ≤ |x|1 ≤ k} and BUPk∩coUPk = {x ∈
{],0}∗ : 1 ≤ |x|0 ≤ k}. Then the (AUPk∩coUPk ,BUPk∩coUPk) pair characterizes the
UPk∩coUPk class, in the sense that C(AUPk∩coUPk ,BUPk∩coUPk)E =UPEk ∩coUPEk
for every oracle E.

Let us also mention the following characterization of theUP class via a suitable

pair of languages (AUP,BUP) [12, 13]: For every oracle E, UP
E = C(AUP,BUP)

E

where AUP := {x∈{0,1}∗ : |x|1=1} and BUP := {0}∗.
Let us also at this stage introduce languages AUPk := {x∈{0,1}∗ : 1≤ |x|1≤ k}

and BUP := {0}∗ and recall that their pair (AUPk ,BUPk) characterizes UPk.
[12, 13] also provide a basic tool for obtaining relativized separations between

complexity classes defined by pairs of languages. This tool relies on a new type of

reducibility between pairs of languages, called polylogarithmic-time bit-reduction.

Definition 7. A pair of languages (A,B) is polylogarithmic-time bit-reducible to

a pair (A′,B′), in short (A,B) ≤plm (A′,B′), iff there exist two polylogarithmic-time
computable1 functions f : Σ∗×N→Σ and g : Σ∗→Σ such that, for every string x,

x∈A ⇔ f(x,1)f(x,2)· ··f(x,g(x))∈A′

1. A function is polylogarithmic-time computable if it can be computed in polylogarithmic time

by a deterministic Turing machine with an additional tape on which the machine can write down

an index i and then receive the ith symbol of the input string (if i is greater than the length of the

input string the machine receives a fixed special symbol).

tq309t-g/361 27IX2005 BOP s.c., http://www.bop.com.pl



362 P. Cintioli

Figure 1. A helping tree of depth 3 and its encoding;

the correct path is that labelled with arrows

and

x∈B⇔ f(x,1)f(x,2)· ··f(x,g(x))∈B′.

Theorem 3. ([12, 13]) Let (A,B) and (A′,B′) be two pairs of languages. Then there
exists an oracle E for which C(A,B)E 6⊆C(A′,B′)E if and only if (A,B) 6≤plm (A′,B′).

Let us single out a pair of languages (APhU2 ,BPhU2) characterizing Phelp(UP2∩
coUP2) i.e. satisfies C(APhU2 ,BPhU2)

E =PEhelp(UP
E
2 ∩coUPE2 ) for all oracles E. Let

t be a complete and ordered binary tree whose inner nodes are labelled by strings

in AUP2∩coUP2 ∪BUP2∩coUP2 , all of the same length 2(depthof t), and whose leaves are
labelled by symbols in {0,1,]}. We call such a tree t a helping tree. For any helping
tree t there is a special path, that we call the correct path of t, defined as follows:

starting from the root, at any node n we go to its left son if the label of n is in BUP2
and we go to its right son if the label is in AUP2 . Any helping tree t can be encoded by

a string x= z1z2 · ··z2h−1y1y2 · ··y2h where h is the depth of t, strings zi are the labels
of the inner nodes (all of length 2h), symbols yi are the labels of the leaves, and all

the labels are concatenated by the order of a breadth first search (see Figure 1). At

this point, we can define the (APhU2 ,BPhU2) pair in the following way: APhU2 = {x |x
encodes a helping tree t whose leaf labels are in {1,]} and the label of the leaf of the
correct path of t is 1} and BPhU2 = {x | x encodes a helping tree t whose leaf labels
are in {0,]} and the label of the leaf of the correct path of t is 0}. Then, for every
oracle E, C(APhU2 ,BPhU2)

E =PEhelp(UP
E
2 ∩coUPE2 ).

4. Main result

Now we can state the main result of our paper.

Theorem 4. There exists an oracle E such that PEhelp(UP
E
2 ∩ coUPE2 ) is not con-

tained in UPE.

Proof. As UPE = C(AUP,BUP)
E and PEhelp(UP

E
2 ∩ coUPE2 ) = C(APhU2 ,BPhU2)E

for every E, it suffices to show that C(AUP,BUP)
E does not include C(APhU2 ,BPhU2)

E

for some E, equivalently that (APhU2 ,BPhU2) 6≤plm (AUP,BUP) (due to Theorem 3). So,

tq309t-g/362 27IX2005 BOP s.c., http://www.bop.com.pl



Relativized Helping Operators 363

we have to exclude the existence of two polylogarithmic-time computable functions

f : {0,1,]}∗×N→{0,1,]} and g : {0,1,]}∗→N such that, ∀x∈{0,1,]}∗:
x∈APhU2⇔ f(x,1)f(x,2)· · ·f(x,g(x))∈AUP

and

x∈BPhU2⇔ f(x,1)f(x,2)· · ·f(x,g(x))∈BUP .
Assume towards a contradiction that these functions f and g exist. Let R and T be

two polylogarithmic-time Turing transducers computing f and g, respectively. The

running time of R and T is bounded by a given polynomial q, which means that for

every x∈{0,1,]}∗ and every i≤T (x), both T (x) and R(x,i) perform at most q(log |x|)
steps. Let n=22d for some positive integer d be such that

√
n

2q(logn) >q(logn)+1. From

now on, we put the following, for every string x of length n=22d:

• σ(x) :=R(x,1)R(x,2) ·· ·R(x,T (x)),
• nodes(x) := the prefix of x of length 22d−2d,
• leaves(x) := the suffix of x of length 2d.

For example, if x encodes the helping tree in Figure 1, then d=3, nodes(x)= ]]0]]]0]

]1]]]1]]]1]]]]]]]1]1]]]]]]]0]]]]0]]]]]]0]]]]]]0] and leaves(x) = 1]1]]1]]. We claim

that there exists a word x, |x|=n, with x∈APhU2 and R(x,1)R(x,2) ·· ·R(x,T (x)) 6∈
AUP (which contradicts the former assumption on f and g).

Given any word x ∈ {0,1,]}∗, a position of x is any integer i with 1≤ i≤ |x|.
Before starting with the construction of word x, we make a preliminary hypothesis

on the Turing transducer R:

“for every string x∈APhU2 of length n and for every i≤T (x),
if R(x,i)= 1 then R(x,i) reads at least a symbol ‘1’ in leaves(x)”.

In fact, if R(x,i) = 1 but R(x,i) does not read any symbol ‘1’ in leaves(x), then

consider the string x̃ with |x̃|= |x|, nodes(x̃)=nodes(x) and leaves(x̃)= ]m−10]
√
n−m

for some position m of x which is not read by R(x,i): x̃ is in BPhU2 but σ(x̃) is not

in BUP, since R(x̃,i) = 1, which contradicts the latter assumption on f and g. Let r

be the least positive integer greater than or equal to
√
n

2q(logn) ; we obtain word x by

a procedure of r stages, each containing in its turn r substages.

Begin procedure

Stage 1. Let us put:

• Q10 := {s∈N :T (]n) reads the position s≤n of ]n},
• p1 := the least positive integer such that n−

√
n+p1 6∈Q10,

• b1b2 · ··bd := the sequence in {0,1}d associated with the correct path leading
to the leaf p1.

Substage 1.1. For every i, 1 ≤ i ≤ m = 2d − 1, let s(1)i be the minimal positive

integer ≤ 2d such that 2d(i− 1) + s(1)i 6∈ Q10. Take x1.1 ∈ {0,1,]}n such
that leaves(x1.1) = ]

p1−11]
√
n−p1 and nodes(x1.1) = z

(1)
1 z

(1)
2 ·· ·z

(1)
m , where

for every 1≤ i≤m

z
(1)
i =







]s
(1)
i
−1bj]

√
n−s(1)

i if node i is the jth node
of the correct path leading to leaf p1,

]
√
n otherwise.

The word x1.1 is in APhU2 , so there exists i1≥ 1 such that R(x1.1,i1)= 1.

tq309t-g/363 27IX2005 BOP s.c., http://www.bop.com.pl



364 P. Cintioli

• Q11 :=Q10∪{s : 1≤ s≤n and s is a position of x1.1 read by either R(x1.1,i1)
or R(]n,i1)},
• I1 := {i1}.
Go to the next substage.

Substage 1.k, 1<k≤ r. For every i, 1≤ i≤m=2d−1, let s(k)i be the minimal positive
integer ≤ 2d such that 2d(i− 1)+ s(k)i 6∈ Q1k−1. Take x1.k ∈ {0,1,]}n such
that leaves(x1.k) = ]

p1−11]
√
n−p1 and nodes(x1.k) = z

(k)
1 z

(k)
2 · ··z

(k)
m , where

for every 1≤ i≤m

z
(k)
i =







]s
(k)
i
−1bj]

√
n−s(k)

i if node i is the jth node
of the correct path leading to leaf p1,

]
√
n otherwise.

The word x1.k is in APhU2 , so there exists ik ≥ 1 such that R(x1.k,ik)= 1.
Put

• Q1k :=Q1k−1∪{s : 1≤ s≤n and s is a position of x1.k read by eitherR(x1.k,ik)
or R(]n,ik)},
• Ik := Ik−1∪{ik}.
Go to the next substage.

Let Ir := {i1,i2,. . .,ir} be the set of all the indices obtained at the end of
substage 1.r.

Claim 1. There exists an index j1 ∈ Ir such that R(x1.j1 ,j1) outputs 1 without reading
positions of nodes(x1.j1) containing a symbol in {0,1}.

The proof of this claim is provided in the Appendix of the paper.

Stage h> 1, h≤ r. Let
• j1,j2, .. . ,jh−1 be such that, for t = 1,2,. . .,h− 1, R(x1.jt ,jt) outputs 1
without reading any positions of nodes(x1.jt) containing a symbol in {0,1}.
Put

• Qh−1 :=Qh−1r ,
• ph= the least positive integer such that n−

√
n+ph 6∈Qh−1,

• b1b2 ·· ·bt= the sequence of symbols in {0,1} associated to the correct path
leading to the leaf ph.

Substage h.1. For every i, 1 ≤ i ≤ m = 2d − 1, let s(1)i be the minimal positive

integer ≤ 2d such that 2d(i− 1)+ s(1)i 6∈ Qh−1. Take xh.1 ∈ {0,1,]}n such
that leaves(xh.1) = ]

ph−11]
√
n−ph and nodes(xh.1) = z

(1)
1 z

(1)
2 ·· ·z

(1)
m , with

m=2d−1, where for every 1≤ i≤m

z
(1)
i =







]s
(1)
i
−1bj]

√
n−s(1)

i if node i is the jth node
of the correct path leading to leaf ph,

]
√
n otherwise.

The word xh.1 is in APhU2 , so there exists i1 ≥ 1 such that R(xh.1,i1) = 1.
Let us pose

• Qh1 :=Qh−1∪{s : 1≤ s≤n and s is a position of xh.1 read by either R(xh.1,i1)
or R(]n,i1)},
• I1 := {i1}.

tq309t-g/364 27IX2005 BOP s.c., http://www.bop.com.pl



Relativized Helping Operators 365

Go to the next substage.

Substage h.k, 1<k≤ r. For every i, 1≤ i≤m=2d−1, let s(k)i be the minimal positive
integer ≤ 2d such that 2d(i− 1)+ s(k)i 6∈ Qhk−1. Take xh.k ∈ {0,1,]}n such
that leaves(xh.k) = ]

ph−11]
√
n−ph and nodes(xh.k) = z

(k)
1 z

(k)
2 ·· ·z

(k)
m , with

m=2d−1, where for every 1≤ i≤m

z
(k)
i =







]s
(k)
i
−1bj]

√
n−s(k)

i if node i is the jth node
of the correct path leading to leaf ph,

]
√
n otherwise.

The word xh.k is in APhU2 , so there exists ik ≥ 1 such that R(xh.k,ik)= 1.
Put

• Qhk := Qhk−1 ∪ {s : 1 ≤ s ≤ n and s is a position of xh.k read by either
R(xh.k,ik) or R(]

n,ik)},
• Ik := Ik−1∪{ik}.
Go to the next substage.

Claim 2. There exists an index jh ∈ Ir := {i1,i2, . .. ,ir} such that R(xh.jh ,ijh) outputs
1 without reading positions of nodes(xh.jh) containing a symbol in {0,1}.
(Claim 2 can be proven in a way similar to Claim 1. We omit its proof).

Go to the next stage.

End Procedure

Let j1,j2,. . .,jr be the indices obtained at the end of stage r, and let p1 <

p2< · ··<pr be the positions of leaves(x1.j1), leaves(x2.j2),· · ·,leaves(xr.jr )
read by R(x1.j1 ,j1),R(x2.j2 ,j2), · ··,R(xr.jr ,jr), respectively. It should be
noted that indices j1,j2, .. . ,jr are pairwise distinct, because for every s=

1,2, .. . ,r, the computation R(xs.js ,js) reads the position ps of leaves(xs.js),

which is not read by R(xh.jh ,jh) for h=1,2, .. . ,s−1.
Let us consider the R(xr.jr ,jr) computation. This computation performs

at most q(logn) steps, and since r > q(logn) + 1 there exists an s in

{1,2, .. .,r− 1} such that the R(xr.jr ,jr) computation does not read the
position ps of leaves(xr.jr ), which is read by R(xs.js ,js).

Let x be the word of length n built as follows:

• leaves(x)= ]ps−11]pr−ps−11]
√
n−pr , and

• nodes(x) encodes a correct path c1c2 . ..cd ∈ {0,1}d leading to leaf ps,
where each symbol ci is in a position of nodes(x) which is read neither

by R(xs.js ,js) nor by R(xr.jr ,jr).

It follows that R(x,jr)= 1 and R(x,js)= 1, with x∈APhU2 , so |σ(x)|1≥ 2,
that is σ(x) 6∈AUP .

Corollary 1. There exists an oracle A such that PAhelp(UP
A
2 ∩ coUPA2 ) is not

contained in PA1−help(UP
A∩coUPA).

Proof. For every oracle E PE1−help(UP
E ∩coUPE) =UPE ∩coUPE ⊆UPE . So, if

A is the oracle of the theorem above, then PAhelp(UP
A
2 ∩ coUPA2 ) 6⊆PA1−help(UPA∩

coUPA).

tq309t-g/365 27IX2005 BOP s.c., http://www.bop.com.pl



366 P. Cintioli

We can now show the result stated in Section 2 (see Example 4 concerning P1−help(·)).

Theorem 5. For every integer k≥ 2 there exists an oracle A such that PAhelp(UPAk ∩
coUPAk ) 6⊆UPAk .

Proof. (Sketch). The proof is similar to that of Theorem 4, with minor changes. First

of all, one builds a pair of languages (APhUk ,BPhUk) characterizing Phelp(UPk ∩
coUPk). For k ≥ 2 the words in APhUk and in BPhUk can be described as
those in APhU2 and in BPhU2 , respectively, but the inner nodes are labelled by

words in AUPk∩coUPk ∪BUPk∩coUPk , where AUPk∩coUPk = {x ∈ {],1}∗ : 1 ≤ |x|1 ≤
k} and BUPk∩coUPk = {x ∈ {],0}∗ : 1 ≤ |x|0 ≤ k}. As has been mentioned, the
(AUPk∩coUPk ,BUPk∩coUPk) pair characterizes the UPk∩coUPk class. Moreover, let
us take (AUPk ,BUPk) the pair of languages and recall that the (AUPk ,BUPk) pair char-

acterizes UPk. The next step is to prove that (APhUk ,BPhUk) 6≤plm (AUPk ,BUPk). For
this purpose, let us choose n=22d such that

√
n

2q(logn) >kq(logn)+k. We then define

a procedure as in Theorem 4, but with r >kq(logn)+k stages, each containing in its

turn r substages, and so obtain k+1 indices i1,i2,. . .,ik+1 and a word x in APhUk such

that R(x,i1) =R(x,i2) = · · ·=R(x,ik+1) = 1. Then |R(x,i1)R(x,i2) ·· ·R(x,ik+1)|>k,
hence R(x,i1)R(x,i2)·· ·R(x,ik+1) is not in AUPk .

Corollary 2. For every integer k≥ 2 there exists an oracle A such that PAhelp(UPAk ∩
coUPAk ) 6⊆UPAk ∩coUPAk .

5. Concluding remarks

We do not know if our separation result solves the question introduced at the

end of section 1 when D=UP∩coUP. Let us discuss this point now.
Let C denote the largest class for which Phelp(C) ⊆ P1−help(UP∩ coUP) in

every relativized world, if any.

Case 1. There exists an oracle A for which PAhelp(UP
A
2 ∩coUPA) 6⊆PA1−help(UPA∩

coUPA). In this case C = UP ∩ coUP. In fact, PAhelp(UPA2 ∩ coUPA) 6⊆
PA1−help(UP

A∩coUPA) impliesPAhelp(UPA∩coUPA2 ) 6⊆PA1−help(UPA∩coUPA).
In fact co(UP2∩coUP)=UP∩coUP2 and PXhelp(EX)=PXhelp(coEX) for every
relativizable class E and for every oracle X. Furthermore, the unique class in
F included in both UP2∩ coUP and UP∩ coUP2 is (UP2∩ coUP)∩ (UP∩
coUP2)=UP∩coUP.

Case 2. For some k ≥ 2 PAhelp(UPAk ∩ coUPA)⊆PA1−help(UPA ∩ coUPA) for every
oracle A and there exists an oracle B for which PBhelp(UP

B
k+1 ∩ coUPB) 6⊆

PB1−help(UP
B ∩ coUPB). Reasoning as in Case 1, C = (UPk ∪ coUP)∪ (UP∩

coUPk).

Case 3. For every integer k ≥ 1 and every oracle A it holds that PAhelp(UPAk ∩
coUPA) ⊆ PA1−help(UPA ∩ coUPA) and there exists an oracle B for which
PBhelp(NP

B ∩ coUPA) 6⊆ PB1−help(UPB ∩ coUPB). In this case no class in F
works as C.

Case 4. For every oracle A it holds that PAhelp(NP
A ∩ coUP) ⊆ PA1−help(UPA ∩

coUPA). In this case C=(NP∩coUP)∪(UP∩coNP).

tq309t-g/366 27IX2005 BOP s.c., http://www.bop.com.pl



Relativized Helping Operators 367

Appendix

Proof of Claim 1.

Let us first prove that there are two indices iu,iv ∈{i1,i2, .. . ,ir} with u 6= v and
iu = iv. It is enough to prove that |{i1,i2, . .. ,ir}| ≤ q(logn)+1, since r > q(logn)+1.
Let us suppose towards a contradiction that |{i1,i2,. . .,ir}|>q(logn)+1 and consider
R(x1.r,ir). This computation reads at most q(logn) positions of x1.r, so there is

at least an index ik ∈ {i1,i2, .. . ,ir}, ik 6= ir, such that R(x1.r,ir) does not read any
positions of nodes(x1.k) read by R(x1.k,ik). At the same time, the procedure ensures

that R(x1.k,ik) does not read the positions of nodes(x1.r) read by R(x1.r,ir). So, let

us construct x̃∈{0,1,]}∗ such that
• leaves(x̃)= ]p1−11]

√
n−p1 and

• nodes(x̃) is the word of length 22d−2d such that for every 1≤ i≤ 22d−2d,
- (nodes(x̃))i=1 if (nodes(xk))i=1 or (nodes(xr))i=1,

- (nodes(x̃))i=0 if (nodes(xk))i=0 or (nodes(xr))i=0,

- (nodes(x̃))i= ] if (nodes(xk))i= ] and (nodes(xr))i= ].

It should be noted that no index i, i≤ 22d−2d, satisfies (nodes(xk))i =0 and
(nodes(xr))i=1 or vice versa. Then x̃∈APhU2 but R(x̃,ik)= 1 and R(x̃,ir)= 1 with
ik 6= ir, that is |σ(x̃)|1 ≥ 2. This contradicts the fact that the (APhU2 ,BPhU2) pair is
polylogarithmic-time bit-reducible to the (AUP,BUP) pair.

So |{i1,i2, .. .,ir}| ≤ q(logn), which implies that there are two integers u < v
with iu = iv. Let m = 2

d− 1. We know that R(x1.u,iu) does not read positions
s
(v)
1 ,2

d+s
(v)
2 ,2

d ·2+s(v)3 , . .. ,2d(m−1)+s
(v)
m of nodes(x1.v). But iu= iv, so R(x1.v,iv)

does not read positions s
(v)
1 ,2

d+ s
(v)
2 ,2

d · 2+ s(v)3 ,. . .,2d(m− 1)+ s
(v)
m of nodes(x1.v)

either, hence the claim follows provided we put j1 := iv, where x1.j1 =x1.v.

References

[1] Cintioli P and Silvestri R 1997 Inf. Proc. Let. 61 189

[2] Schöning U 1985 Theor. Comp. Sci. 40 57

[3] Ko K 1987 Theor. Comp. Sci. 52 15

[4] Cai J, Hemachandra L A and Vyskǒc J 1993 Complexity Theory (Ambos-Spies K, Homer S

and Schöning U, Eds.), Cambridge University Press, pp. 101–146

[5] Hemachandra L 1993 Proc. 20 th Int. Colloquium on Automata, Languages and Programming;

Lecture Notes in Computer Science 700 189

[6] Ogihara M 1995 Inf. Proc. Lett. 54 41

[7] Cintioli P and Silvestri R 1997 Theor. Comp. Systems 30 165

[8] Bovet D P and Crescenzi P 1994 Introduction to the Theory of Complexity, Prentice-Hall,

Englewood Cliffs, NJ

[9] Balcázar J L, Dı́az J and Gabarró J 1988 Structural Complexity I, vol. 1, Springer Verlag

[10] Johnson D S 1990 Handbook of Theoretical Computer Science (van Leeuwen J, Ed.) A,

pp. 67–161

[11] Beigel R, Hemachandra L and Wechsung G 1989 Proc. 4 th IEEE Structure in Complexity

Theory Conference, University of Oregon, Eugene, Oregon, USA, pp. 225–227

[12] Bovet D P, Crescenzi P and Silvestri R 1992 Theor. Comp. Sci. 104 263

[13] Vereshchagin N K 1994 Russian Academy of Sciences. Izvestiya Mathematics (AMS) 42 261

tq309t-g/367 27IX2005 BOP s.c., http://www.bop.com.pl



368 TASK QUARTERLY 9 No 3

tq309t-g/368 27IX2005 BOP s.c., http://www.bop.com.pl


