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Abstract: The concept of a reduction between subsets of a given space is described, giving rise to

various complexity hierarchies, studied both in descriptive set theory and in automata theory. We

discuss in particular the Wadge and Lipschitz hierarchies for subsets of the Baire and Cantor spaces

and the hierarchy of Borel reducibility for finitary relations on standard Borel spaces. The notions

of Wadge and Lipschitz reductions are related to corresponding perfect information games.
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1. Introduction

A common feature of descriptive set theory and theoretical computer science

is the prominent role of hierarchies as a tool for measuring the complexity of given

objects. Here we are interested in the complexity of sets under various notions of

reducibility. A very general way to compare subsets of a given non-empty set X is the

following: fix F ⊆XX , a family of functions from X to itself, closed under composition

and containing the identity function. For A,B⊆X define:

A≤F B ⇔ ∃g ∈F (A= g−1(B)).

In this case A is said to be F-reducible to B and the function g is called a reduction

of A to B. Note that g is then also a reduction of ¬A to ¬B, where ¬ denotes

complementation in the spaceX. So the problem of determining whether x∈A reduces

to establishing if g(x)∈B: this gives the intuition that the complexity of A does not
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338 A. Andretta and R. Camerlo

exceed the complexity of B, assuming the function g sufficiently amenable. By the

conditions on F , the relation ≤F is in fact a preorder on:

P (X)
def
= {A |A⊆X}

the power-set of X. Set also:

A<F B ⇔ A≤F B∧B 6≤F A,

A≡F B ⇔ A≤F B∧B≤F A.

The relation ≡F is an equivalence relation, whose equivalence classes [A]F are called

(F-)degrees. So ≤F induces an order on F-degrees. A set A is called (F-)self-dual if

A≤F ¬A (equivalently, A≡F ¬A). Being invariant under ≡F , the definition of self

duality can be extended to F-degrees. The dual of a degree [A]F is the degree [¬A]F .

Often the condition that F contains all constant functions is required, to the

effect that, for ∅ 6=A 6=X, the inequalities ∅<F A, X <F A will hold (note that the

degrees [∅]F , [X]F are always singletons and they are always incomparable).

Several preorders of the form ≤F have been extensively studied. Purpose of this

note is to survey their theory in a few meaningful cases and to give some reference

to how the subject is being applied in theoretical computer science. Various remarks

will discuss some open questions.

The structure of ≤F strongly depends on F and the set X, as it can be seen

looking at two extreme cases. If F =XX , then the hierarchy of F-degrees consists of

two bottom degrees [∅]F , [X]F and, if X has at least two elements, a third degree

containing all proper non-empty subsets of X (actually, for this picture to arise it is

enough that F contains all two valued functions). If F consists only of the identity

and the constant functions, then ≡F is equality on P (X); in this case there are two

bottom degrees [∅]F , [X]F , while all other degrees are pairwise incomparable. A degree

[A]F is a successor degree if it has an immediate predecessor [B]F , i.e., if B <F A

and there is no C such that B <F C <F A. A degree [A]F other than [∅]F or [X]F
which is not a successor is called limit : in this case [A]F is of countable cofinality just

in case there is a sequence of degrees [An]F such that An<F A for all n, and there is

no B<F A such that ∀n(An<F B).

2. The Wadge and Lipschitz hierarchies

The aim of this section is to introduce the Wadge and Lipschitz hierarchies

and to study them in some detail for the Baire space N
N and the Cantor spaces kN,

with k ≥ 2. The basic theory throughout this section will be the Zermelo–Frænkel

set theory ZF augmented with the axiom of dependent choices over the reals, DC(R).

This principle is strictly weaker than the full axiom of choice AC, and the reason from

retreating from ZFC (the theory ZF with the axiom of choice) to ZF+DC(R) is that

ZFC is not suited for our investigation, as will soon become clear.

Let X be a topological space and let F = C(X,X) be the set of continuous

functions of X into itself. If X is a metric space consider also the set G of functions

g :X→X such that

∀x,y ∈X d(g(x),g(y))≤ d(x,y)

(these will be called Lipschitz functions). The preorders≤F , ≤G (in the sequel denoted

≤XW, ≤
X
L or even ≤W, ≤L when the space X is clear from the context – W standing
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for Wadge, L for Lipschitz) are relations arising quite naturally in topology. However

it seems that the first systematical study of their structural properties was performed

by W.W. Wadge in [1]. The subject has been then investigated in the Caltech-UCLA

logic seminars and many results are collected in [2, 3]. These investigations exploited

the relationship between games and functions on product spaces.

Endow a non-empty set Z with the discrete topology and ZN with the product

(Tychonov) topology. Then ZN is a metric space, with the metric defined by letting:

d(x,y)=

{

0 if x= y,
1
2n if n is least with x(n) 6= y(n).

We shall write Z<N for the set of finite strings (i.e., finite sequences) of elements of

Z, always identifying 1-tuples with elements of Z. Define also Z≤N def= Z<N∪ZN, the

set of finite or infinite strings from Z. If x∈Z≤N is such a sequence then:

x ⇁n
def
= 〈x(0),x(1),. . .,x(n−1)〉

is the finite string obtained from the first n values of x. (The symbol ⇁ usually

denotes the restriction operator: this is consistent with our definition since in set

theory a natural number is construed as the collection of its predecessors, hence

n= {0,1, . .. ,n−1}.) Let ϕ :Z<N→Z<N be monotone with respect to inclusion, that

is s⊆ s′⇒ϕ(s)⊆ϕ(s′). Then ϕ is:

• continuous if ∀x∈ZN limn→∞ length(ϕ(x ⇁n))=+∞;

• Lipschitz if ∀s∈Z<N length(s)= length(ϕ(s)).

The reason for this terminology is that, if ϕ is continuous or Lipschitz, then defining

for x∈ZN

fϕ(x)=
⋃

n∈N

ϕ(x ⇁n)

one gets a continuous, respectively Lipschitz, function fϕ :Z
N→ZN; conversely each

continuous or Lipschitz function arises this way, providing thus a parametrisation

ϕ 7→ fϕ of the set of continuous functions, or of the set of Lipschitz functions,

respectively. Thus a function f : ZN → ZN is continuous just in case in order to

compute f(x) ⇁n it is enough to know a large enough initial segment x ⇁m of x; if

such m can be taken to be n, then f is Lipschitz.

2.1. Lipschitz and Wadge games

Fix a non-empty set Z and a set C ⊆ ZN. The game1 G(C) is played by two

players I and II who alternatively play elements a0,b0,a1,b1,a2,b2, .. . of Z:

I a0 a1 a2 . ..

II b0 b1 . ..
(1)

The game is organized in rounds or innings – in the nth round I moves first and plays

an, and then II plays bn – and since there are infinitely many rounds, the game is

said to be infinite. The sequence 〈a0,b0,a1,b1,. ..〉 is called a play of the game, and

1. The game G(C) is often called the Gale-Stewart game, after [4] where some fundamental

results about these games where proved.
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player I wins if and only if the play of the game is in C. Either player is aware of

the opponent’s previous moves, and for this reason this is called a perfect information

game. A strategy is a procedure telling a player what to do in every possible situation –

this terminology might be a little misleading, since in usual games a strategy is a set

of euristic principles to be used when the best move is hard to compute. What will

be called a strategy here is better known as tree of analysis in real life games. There

are several equivalent ways to define a strategy: in this paper a strategy for I is any

function σ : Z<N→ Z telling I what to play at round n when applied to the string

〈b0,. . .,bn−1〉 of moves played by his opponent before round n. Similarly, a strategy

for II is any function τ :Z<N\{〈〉}→Z, suggesting II’s move for every possible finite

non-empty string2 of I’s moves. If σ and τ are strategies for I and II, respectively,

then σ and τ can be pitted against each other so that a new element

σ∗τ
def
= 〈a0,b0,a1,b1,. . .〉

of ZN is constructed as follows:

a0=σ(〈〉),

an+1=σ(〈b0, .. . ,bn〉),

bn= τ(〈a0, .. .,an〉).

Any element 〈x0,x1,x2,. . .〉 of Z
N can be construed as a strategy σ for I by letting:

σ(s)=xlength(s)

or a strategy τ for II:

τ(s)=xlength(s)−1 .

In other words, these two strategies play the given sequence irrespectively of what the

opponent is playing. By identifying elements of ZN with strategies, the expressions

σ∗〈b0,b1,. . .〉 and 〈a0,a1, .. .〉∗τ

are well-defined: in the first case it is the play resulting when σ, a strategy for I,

is pitted against the sequence of II’s moves 〈b0,b1, . ..〉, in the second case it is the

play resulting when τ , a strategy for II, is pitted against the sequence of I’s moves

〈a0,a1, .. .〉. A strategy σ for I is winning in the game G(C) if

∀x∈ZN (σ∗x∈C) .

Similarly, a strategy τ for II is winning in G(C) if

∀x∈ZN (x∗τ /∈C).

Remark. Although the notions of game, strategy, rounds, etc. are extremely useful

to describe certain mathematical constructions, some readers might wonder whether

they are formalizable within the language of set theory. In particular: What kind of

2. The empty string, denoted by 〈〉, is really the empty-set.
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set-theoretic object is the game G(C)? It turns out that we could dispense from using

the notion of game, but not from that of strategy. For any non-empty set Z let:

SIZ = {σ |σ :Z
<N→Z},

SIIZ = {τ | τ :Z
<N \{〈〉}→Z}.

For any σ ∈SIZ , τ ∈S
II

Z , and x∈Z
N let σ ∗τ , σ ∗x and x∗τ be defined as above. For

any C ⊆ZN let:
WSIZ(C)= {σ ∈S

I

Z | ∀x∈Z
N (σ∗x∈C)},

WSIIZ (C)= {τ ∈S
II

Z | ∀x∈Z
N (x∗τ /∈C)}.

Therefore saying that player I (or II) has a winning strategy in the game G(C),

simply means that WSIZ(C) 6= ∅ (resp. WS
II

Z (C) 6= ∅).

If τ is a strategy for II, 〈a0,a1,. . .〉 ∈ Z
N is the sequence of I’s moves, and

〈b0,b1, .. .〉 is the sequence of II’s answers according to τ , then a Lipschitz map is

obtained:

τ̂ :Z<N→Z<N 〈a0, .. . ,an〉 7→ 〈b0, .. . ,bn〉.

The Lipschitz function fτ̂ :Z
N→ZN induced by τ̂ can be written as fτ̂ (x)= (x∗τ)II

where for any y ∈ZN the sequence yII ∈Z
N is the sequence:

yII(n)= y(2n+1).

Conversely, any function fϕ :Z
N→ZN with ϕ :Z<N→Z<N Lipschitz, gives rise to a

strategy for II in the game on Z

τ(s)=ϕ(s)(length(s)−1),

such that fτ̂ = f . Similarly, any strategy σ for I yields a map

σ̂ :Z<N→Z<N 〈b0,. . .,bn〉 7→ 〈a0,. .. ,an+1〉

where an=σ(〈b0, .. .,bn〉). Equivalently fσ̂(x)= (σ∗x)I where

yI(n)= y(2n)

for all y ∈ ZN. In fact the function σ̂ is more than just Lipschitz, since the string

〈b0, .. . ,bn〉 is enough to produce the string 〈a0, .. .,an,an+1〉. This is equivalent to

saying that the induced map f :ZN→ZN satisfies

d(f(x),f(y))≤ 12d(x,y).

An f :ZN→ZN satisfying such property is called a contraction, and any contraction

is induced by a strategy for I in the game on Z. William Wadge in [1] introduced

two games, now dubbed the Lipschitz and Wadge games, which are quite relevant for

reducibility.

Let A,B ⊆ZN. The Lipschitz game GL(A,B) is the perfect information game

on Z in which I and II take turns and play as in (1) and player II wins just in case

〈a0,a1, . ..〉 ∈A ⇔ 〈b0,b1,. ..〉 ∈B.

The Lipschitz game is just a particular instance of the games described before: in fact

GL(A,B) is just G(AI4BII) where

AI= {x∈Z
N |xI ∈A}, and

BII= {x∈Z
N |xII ∈B}.

By definition of GL(A,B), II has a winning strategy if and only if A≤LB, and I has

a winning strategy if and only if there is a contraction g such that ¬B = g−1(A) –
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hence, in particular, ¬B ≤L A. Therefore Lipschitz reducibility can be characterised

in terms of the existence of strategies for games on Z.

A similar game-theoretic characterization can be given for continuous reducibil-

ity too. TheWadge game GW(A,B) where A,B⊆Z
N is similar to the Lipschitz game,

but II has the option of passing at any round, with the stipulation that II must play

infinitely often, otherwise he loses. If 〈a0,a1, .. .〉 and 〈b0,b1,. . .〉 are the elements of

ZN played by I and II, then II’s winning condition is as in the Lipschitz game. For-

mally GW(A,B) is a game on Z ∪{p}, where p is an element not in Z: I’s moves

are restricted to Z while II cannot play a sequence that is eventually equal to p, so

GW(A,B) is just the game G(C) where C ⊆ (Z∪{p})
N is the set of all x∈ (Z∪{p})N

such that xI ∈Z
N and either

(i) ∃n∀m≥n xII(m)= p, or else

(ii) if y ∈ZN is the sequence obtained from xII after erasing all p’s, then xI ∈A⇔

y /∈B.

Although the Wadge game is really a game on Z∪{p} it is more convenient to think of

it as a game on Z with player II having the option of passing (the move p) at any stage.

Thus a strategy τ for II need not to move at every round, but we require that x∗τ be

infinite, for any x∈ZN. Therefore τ̂ :Z<N→Z<N the map on strings induced by τ is

continuous, hence the function fτ̂ :Z
N→ZN is continuous. Conversely, any continuous

f :ZN→ZN is of the form fτ̂ , for some strategy τ for II in the Wadge game. Therefore

A≤W B just in case II has a winning strategy in GW(A,B). Conversely, if σ is a

winning strategy for I in GW(A,B), then σ is also winning in GL(A,B), hence ¬B is

reducible to A via a contraction. Notice that I having a winning strategy in GW(A,B)

is a much stronger condition than ¬B being reducible to A via a contraction, since I

is required to play at every round, while II can take arbitrarily long naps.

2.2. Determinacy

Given C ⊆ZN it is not possible that both players have winning strategies σ and

τ in G(C) since otherwise σ∗τ would be a play simultaneously inside and outside of

C. The set C (or the game G(C)) is said to be determined if one of the players has a

winning strategy in G(C). If C is a non-empty family of subsets of ZN, then ADZ(C)

is the assertion:

∀C ∈C (G(C) is determined).

When Z =N, the subscript is dropped and we write AD(C). The assertion ADZ(P (Z
N))

is called the axiom of determinacy for games on Z, and is usually denoted by ADZ .

If Z is a singleton, then ADZ is trivially true, and if there is an injective map from Z

to W , then ADW ⇒ADZ . If Z has two elements then ADZ is equivalent to AD, and

it contradicts the axiom of choice.

Gale and Stewart [4] proved in ZFC that ADZ(C) holds for any Z, when C

is the collection of all closed subsets of ZN. The axiom of choice is needed for this

result: in fact AC is equivalent (over the base theory ZF) to statement that for any

non-empty Z, all closed subsets of ZN are determined. D.A. Martin in [5] extended

the result of Gale and Stewart when C is the collection of all Borel subsets of ZN.

Martin’s result is optimal, since the determinacy of all analytic3 subsets of 2N is not

3. A set A⊆ZN is analytic if it is the projection of a closed subset of ZN×N
N
.
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provable in ZFC alone, as it implies [6] a certain large cardinal hypothesis known as 0#.

Assuming the existence of large cardinals, Woodin in unpublished work showed that

the theory ZF+DC(R)+ADR is consistent, and hence the theory ZF+DC(R)+AD is

also consistent. On the other hand ADω1 is well-known to be inconsistent with ZF.

Assuming ADZ all games GL(A,B) with A,B⊆Z
N are determined and there-

fore:

∀A,B ∈P (ZN)(A≤LB ∨ ¬B≤LA).

The statement above is called the semi-linear ordering principle for Lipschitz func-

tions, SLOL for short. Since Lipschitz functions are particular kind of continuous

functions, the pre-order ≤L could be replaced with ≤W in the formula above, and the

resulting statement is denoted by SLOW. These semi-linear ordering principles assert

that, up to the identification of any degree with its dual, the relations ≤L and ≤W
are total orders. More generally, given a topological space X and a set of functions

F ⊆XX containing the identity and closed under composition, it is possible to define

the semi-linear ordering principle SLOF :

∀A,B ∈P (X)(A≤F B ∨ ¬B≤F A) .

We now focus on the case when the space is N
N or, more generally, ZN with Z

countable. Then the following implications hold:

It has been conjectured that SLOW⇒AD, at least if V=L(R). Moreover, in [7, 8] it

is shown that if all subsets of NN have the property of Baire, then:

ADW⇔ADL⇔SLOL⇔SLOW .

The assumption of these principles yield a very regular picture of Lipschitz and Wadge

hierarchies. However all these principles, just like AD, are inconsistent with the full

axiom of choice, justifying the restriction to a weaker basic theory, like ZF+DC(R).

To see this, recall that a subset of a topological space is perfect if it is closed

and it has no isolated points. The axiom of choice implies that in an uncountable

Polish (i.e., separable and completely metrizable) space there are Bernstein sets,

i.e. sets which do not contain, nor are disjoint from any non-empty perfect subsets

(see [9], Example 8.24). On the other hand the following holds.

Proposition 1. [Wadge] Assume SLOW. Then all uncountable subsets of NN contain

a non-empty perfect set.

2.3. The structure of Lipschitz degrees on the Baire space

We will investigate how Lipschitz degrees on the Baire and Cantor spaces look

like, under suitable determinacy assumptions, starting here with the Baire space. By

the discussion above, we will be allowed to show existence of Lipschitz or continuous

reductions either directly or by use of game theoretic arguments.
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Lemma 1. Let A,B⊆N
N. If A≤LB and s,t∈N

<N are sequences of the same length,

then s_A≤L t
_B.

Proof. By hypothesis, II has a winning strategy in GL(A,B). Then player II wins

GL(s
_A,t_B) as follows. As long as I enumerates s, player II enumerates t; if at

some round n < length(s) player I deviates from s, then II’s reply deviates from t.

If the two players have produced s,t respectively with their first length(s) moves, II

makes use from this move on of the winning strategy he has in GL(A,B).

For Z a non-empty set, A⊆ZN and s∈Z<N, define

Absc= {x∈Z
N | s_x∈A}.

Lemma 2. For all A,B⊆N
N and s,t∈N

<N:

a) A≤L s
_A;

b) length(s)≤ length(t)∧A≤LB ⇒ s
_A≤L t

_B

c) Absc≤LA;

d) if A is self dual, then s_A is self dual.

Proof.

a) To win GL(A,s
_A), player II produces s, then copies all moves I is being

playing since the beginning.

b) To win GL(s
_A,t_B), player II first builds the sequence t (unless I deviates

from s, in which case II plays anything else), then makes use of his winning strategy

in GL(A,B).

c) To win GL(Absc,A), player II first produces s, then copies all moves I is being

playing since the beginning.

d) To win GL(s
_A,¬(s_A)), player II plays s as long as I plays s (deviating from

s as soon as I does) and then making use of his winning strategy in GL(A,¬A).

Lemma 3. Suppose A≤L ¬A and let n∈N. Then:

a) A<L n
_A;

b) Assume ADL. Then [n_A],L is the immediate successor of [A]L.

Proof.

a) Let τ be a winning strategy for II in GL(A,¬A). Then the strategy σ dfined by

σ(〈〉)=n and σ(s)= τ(s), if length(s) 6=0, is a winning strategy for I in GL(n
_A,A).

Therefore II does not have a winning strategy in GL(n
_A,A), hence n_A 6≤L A; by

part (a) of Lemma 2, A<L n
_A.

b) Suppose B <L n
_A. Then n_A 6≤L B and since n

_A is self-dual, it follows

n_A 6≤L ¬B. Thus II does not have a winning strategy in GL(n
_A,¬B) hence by

ADL I has a winning strategy σ for such game. Thus σ ⇁(N
N \ {〈〉}) is a winning

strategy for II in GL(B,A). The uniqueness of [n
_A]L as immediate successor of [A]L

follows because [n_A],L is self-dual and by the semi-linear ordering principle.

Proposition 2.

a) If A≤L ¬A, then ∀n (Abnc<LA).

b) (ADL) If ∀n (Abnc<LA), then A≤L ¬A.

tq309s-g/344 27IX2005 BOP s.c., http://www.bop.com.pl



The Use of Complexity Hierarchies in Descriptive Set Theory and Automata Theory 345

Proof.

a) By part (c) of Lemma 2, Abnc ≤L A. If Abnc ≡L A, then Abnc is Lipschitz

self-dual and so Abnc <L n
_Abnc ≤L A, the second inequality holding as A 6= N

N:

a contradiction.

b) Since A 6≤L Abnc, let σn be a winning strategy for I in GL(A,Abnc). Then

τ(n_s) = σn(s) defines a strategy for II We claim that it is winning for the game

GL(A,¬A) since

n_a∈A⇔ a∈Abnc⇔ ((n
_a)∗τ)II=(σn ∗a)I ∈¬A.

For A,B,An⊆N
N, define

A⊕B=
⋃

n∈N

((2n_A)∪((2n+1)_B)),

⊕

n∈N
An=

⋃

n∈N

n_An.

Lemma 4. Let A,A′,B,B′,An,A
′
n⊆N

N.

a) A≤LA⊕B, B≤LA⊕B, and Ai≤L
⊕

n∈N
An for all i.

b) A≤LA
′∧B≤LB

′ ⇒ A⊕B≤LA
′⊕B′.

c) ∀n∈N (An≤LA
′
n) ⇒

⊕

n∈N
An≤L

⊕

n∈N
A′n.

Proof.

a) To winGL(A,A⊕B), player II begins with 0 and then copies I’s moves; similarly

II wins GL(B,A⊕B) (respectively, GL(Ai,
⊕

n∈N
An)) by playing 1 (respectively, i)

and then copying I’s moves.

b) If τ and τ ′ are winning strategies for II inGL(A,A
′) andGL(B,B

′), respectively,

then II wins GL(A⊕B,A
′⊕B′) by copying I’s first move a0 and then employing τ or

τ ′ according to whether a0 is even or odd.

c) Similarly as above, if τn is a winning strategy for II in GL(An,A
′
n), a winning

strategy τ for II in GL(
⊕

n∈N
An,
⊕

n∈N
A′n) is defined by letting τ(n) = n and

τ(n_s)= τn(s).

By Lemma 4, the operations ⊕,
⊕

extend to Lipschitz degrees:

[A]L⊕ [B]L= [A⊕B]L,
⊕

n∈N
[An]L= [

⊕

n∈N
An]L.

Note also that ¬(A⊕B)=¬A⊕¬B,¬
⊕

n∈N
An=

⊕

n∈N
¬An.

Lemma 5.

a) A⊕¬A is Lipschitz self-dual.

b) (ADL) There is no B such that A<LB<LA⊕¬A.

c) (ADL) If A is non-self-dual, then [A⊕¬A]L=sup([A]L,[¬A]L).
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Proof.

a) The Lipschitz function g :NN→N
N

g(2n_x)= 1_x

g((2n+1)_x)= 0_x

witnesses A⊕¬A≤L ¬A⊕A=¬(A⊕¬A).

b) Suppose B<LA⊕¬A, in order to show B≤LA∨B≤L ¬A, which is enough to

conclude both in the case A is self-dual and when it is not. Since there is no winning

strategy for II in GL(A⊕¬A,B), let σ be a winning strategy for I in this game. Then

σ ⇁N
<N \{〈〉} is a winning strategy for II in GL(B,¬A) or in GL(B,A) according to

whether σ(〈〉) is even or odd.

c) Since A is not self-dual, by Lemma 4(a) and part (a) above we have that

A<LA⊕¬A and ¬A<LA⊕¬A.

Lemma 6. Let An⊆N
N be such that ∀n ∃m>n (An<LAm).

a) (SLOL)
⊕

n∈N
An is Lipschitz self-dual.

b) (ADL) [
⊕

n∈N
An]L=supi∈N[Ai]L.

c) (ADL) If Bn are any subsets of N
N such that ∀n ∃m (An ≤L Bm), then

⊕

n∈N
An≤L

⊕

n∈N
Bn.

Proof. Let j(n) be the least m>n such that An<LAm.

a) By SLOL the inequalities An<L ¬Aj(n) also hold: let τn be a winning strategy

for II in GL(An,¬Aj(n)). Then τ(n)= j(n), τ(n
_s)= τn(s) defines a winning strategy

for II in GL(
⊕

n∈N
An,¬

⊕

n∈N
An).

b) Let B ⊆ N
N be such that ∀n (An ≤L B). If

⊕

n∈N
An 6≤L B, then I has

a winning strategy σ in GL(
⊕

n∈N
An,B). Let n= σ(〈〉). Then B ≤L ¬An <L Aj(n),

a contradiction.

c) By Lemma 4(a) and part (b) above.

Proposition 3. (ADL) A limit Lipschitz degree is self-dual if and only if it is of

countable cofinality.

Proof. If the sets An witness that [A]L is of countable cofinality, then Lemma 6

implies that [
⊕

n∈N
An]L= [A]L is self-dual.

Conversely, suppose [A]L is self-dual. By Proposition 2, ∀n (Abnc <L A). Let

B0=Ab0c

Bn+1=

{

Abn+1c if Bn<LAbn+1c,
0_(Bn⊕¬Bn) otherwise.

By induction it follows that Abnc ≤L Bn <L Bn+1 <L A, so
⊕

n∈N
Bn is Lipschitz

self-dual and

A=
⊕

n∈N

Abnc≤L
⊕

n∈N

Bn≤LA

by Lemma 6 and part (c) of Lemma 4. Thus the degrees [Bn]L witness that A is of

countable cofinality.

Under ADL one gets a first bit of the picture of Lipschitz degrees on the Baire

space. Suppose [A]L is self-dual. By Lemma 3, [0
_A]L is the immediate successor of
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[A]L and it is self-dual. Therefore it is possible to define a successor operator L on

self-dual Lipschitz degrees: L([A]L) = [0
_A]L. Using Lemma 6, the operation can be

iterated through the countable ordinals by letting:

L0([A]L)= [A]L,

Lα+1([A]L)=L(L
α([A]L)),

Lλ([A]L)=
[

⊕

n∈N
An
]

L
,

where An ∈L
αn([A]L) for a sequence αn increasing and cofinal in the limit countable

ordinal λ. This operation is well defined at limit steps by part (c) of Lemma 6. Thus

following any self-dual Lipschitz degree there is an ω1 sequence of self-dual Lipschitz

degrees.

Assuming AD, one can recover a complete picture of the Lipschitz hierarchy

using the following theorem of Martin (building on partial results of L. Monk). For

a proof, see [2] (Theorem 2.2).

Theorem 1. (AD) The relation <L is well founded on P (NN).

In view of this result, one can define the Lipschitz rank ‖A‖L of a set A⊆N
N as

the rank of A in the well founded relation <L; for technical reasons non-zero ordinals

are used, so starting with ‖∅‖L= ‖N
N‖L=1.

Summarising the results of this section, under AD the complete picture of the

Lipschitz hierarchy for the Baire space can be described as follows. The preorder ≤L
on Lipschitz degrees of N

N is well founded and its anti-chains have size at most 2.

The hierarchy begins with a pair of non-self-dual degrees [∅]L, [N
N]L and each pair of

non-self-dual degrees is followed by an ω1-sequence of self-dual degrees. At limit levels

of countable cofinality there is a self-dual degree, while at limit levels of uncountable

cofinality there is a pair of non-self-dual degrees.

2.4. Lipschitz hierarchy on Cantor spaces

The analysis of the previous section can be adapted for the study of Lipschitz

degrees of the Cantor space kN. The notion of infinite sum
⊕

n∈N
An does not make

sense any longer, but the definition of sum A⊕B can be adapted to this case, by

setting A⊕B=(0_A)∪(1_B). By the analogous of part (c) of Lemma 5 and part (a)

of Lemma 3, above any pair of non-self-dual degrees there is an ω-sequence of self-dual

degrees; however no self-dual degree [A]L is limit, since [A]L = [
⋃

n<k(n
_Abnc)]L =

supn<k[Abnc]L. Since the Martin-Monk Theorem holds also for k
N, the structure of

Lipschitz degrees in Cantor spaces, under AD, is determined as follows. The preorder

≤L on Lipschitz degrees of k
N is well founded and its anti-chains have size at most 2.

The hierarchy begins with a pair of non-self-dual degrees [∅]L, [k
N]L and each pair of

non-self-dual degrees is followed by an ω-sequence of self-dual degrees. At limit levels

there are pairs of non-self-dual degrees.

2.5. The Wadge hierarchy

Our aim is now to study the hierarchy of Wadge degrees on the Baire space and

the Cantor space. The first observation is that every Lipschitz function is continuous,

in other words A≤L B⇒A≤W B; so Lipschitz hierarchy is a refinement of Wadge
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hierarchy and a Lipschitz self-dual set is also Wadge self-dual. In fact, the following

holds.

Lemma 7. Let A,An⊆N
N.

a) A 6=N
N ⇒ ∀n (n_A≡W A).

b) ∀n (An≤W A) ⇒
⊕

n∈N
An≤W A.

Proof.

a) The inequality A≤W n
_A follows from A≤L n

_A.

Let y ∈¬A. Define f :NN→N
N by letting:

f(m_x)=

{

x if m=n,
y if m 6=n.

Then f−1(A)=n_A.

b) Let fn :N
N→N

N be such that f−1n (A) =An. If f :N
N→N

N,f(n_x) = fn(x),

then f−1(A)=
⊕

n∈N
An.

Therefore, by induction on α<ω1, it follows that L
α([A]L)⊆ [A]W. So, under

ADL, every ω1-sequence of consecutive self-dual Lipschitz degrees is contained in

a single self-dual Wadge degree. The following theorem of Steel and Van Wesep

[2] (Theorem 3.1) implies that any self-dual Wadge degree is the union of the Lipschitz

degrees contained in it.

Theorem 2. Assume AD. Then A≤W ¬A ⇒ A≤L ¬A.

Corollary 1. (AD) Let A⊆N
N.

a) A is Lipschitz non-self-dual if and only if it is Wadge non-self-dual. In this case

[A]W= [A]L and

{B ∈P (NN) |B≤W A}= {B ∈P (NN) |B≤LA}.

b) Every self-dual Wadge degree [A]W is the union of an ω1-sequence of consecutive

Lipschitz self-dual degrees and

{B ∈P (NN) |B≤LA}⊂{B ∈P (NN) |B≤W A}.

c) Every self-dual Wadge degree has a non-self-dual pair of immediate successor

degrees.

d) Every non-self-dual pair of Wadge degrees has a self-dual degree as immediate

successor.

e) A limit Wadge degree is self-dual if and only if it has countable cofinality.

Assuming AD, Theorem 1 (together with the observation that well foundedness

of <L implies the well foundedness of <W) and Corollary 1 give a complete picture

of the Wadge hierarchy on N
N.

Analogous results – again assuming AD – hold for Cantor space as well: every

self-dual Wadge degree is the union of an ω-sequence of consecutive self-dual Lipschitz

degrees, non-self-dual Wadge degrees coincide with the corresponding non-self-dual

Lipschitz degrees, and all limit Wadge degrees are non-self-dual.

tq309s-g/348 27IX2005 BOP s.c., http://www.bop.com.pl



The Use of Complexity Hierarchies in Descriptive Set Theory and Automata Theory 349

Remark. The use of the axiom of determinacy in the above results is local, in the

following sense. If A is a class of sets that is an initial segment with respect to

≤W and determinacy is assumed for sets in A, then the structure of Lipschitz and

Wadge degrees restricted to A is as described above. In particular, since Borel sets are

detemined by Martin’s theorem, the results on ≤L, ≤W on Borel sets hold without

additional assumptions.

2.6. Lipschitz and Wadge hierarchies in other spaces

Some of the results of the previous sections generalise to spaces of the form [T ]

where T is a pruned tree on N. For example, assuming AD, the Lipschitz and Wadge

hierarchies on [T ] are well founded and antichains have size at most 2. However, the

structure of these hierarchies is wide open in general spaces. The following remark

points out that, under AC, the failure of continuum hypothesis yields arbitrarily big

antichains.

Theorem 3. Assume AC. For every cardinal κ, with ℵ0≤κ≤ 2
ℵ0 , there is Aκ⊆ [0,1]

such that whenever κ 6=κ′ the sets Aκ, Aκ′ are Wadge incomparable.

Proof. Let A2ℵ0 be any Bernstein set in [0,1] and for ℵ0 ≤ κ< 2
ℵ0 let Aκ be a set

of cardinality κ such that card(Aκ∩ [a,b]) = κ for any subinterval [a,b]⊆ [0,1]. (One

way to get such Aκ is to fix an enumeration In (n∈N) of open subintervals of [0,1]

with rational end points, choose sets Bn⊆ In of size κ, and set Aκ=
⋃

nBn.) Suppose

g : [0,1]→ [0,1] be a continuous function witnessing Aκ= g
−1(Aκ′). Since g cannot be

constant, let [a,b]⊆ [0,1] be its range. As card(Aκ′ ∩ [a,b]) = κ
′, it follows κ′ ≤ κ. If

κ′ < κ, there are y ∈Aκ′ ∩ [a,b] and a cardinal λ > κ
′ such that card(g−1({y})) = λ.

Being g−1({y}) closed, it follows that λ= 2ℵ0 , so g−1({y})⊆Aκ contradicts either

κ < 2ℵ0 or the fact that A2ℵ0 does not contain perfect non-empty subsets of [0,1],

since the closed set g−1({y}) does contain some.

3. Borel reducibility for finitary relations

So far we have looked at Lipschitz and continuous reducibilities, but a similar

analysis can be carried out for the the notion of Borel reducibility. In order to define

the notion in the proper setting, recall that a standard Borel space is a set X endowed

with a σ-algebra which is the family of Borel subsets of X for some carefully chosen

Polish topology; for this reason, the sets in such σ-algebra are called Borel sets. If X

is standard Borel A,B⊆X, set

A≤BB ⇔ ∃f ∈B
(

A= f−1(B)
)

where B is the collection of all Borel functions from X to X. Any two uncountable

standard Borel spaces are Borel-isomorphic [9] (Theorem 15.6), so the notion of Borel

reducibility ≤B does not depend on the underlying space. The pre-order ≤B and

the associated equivalence classes [A]B, called the Borel-Wadge degrees, have been

investigated in [10]. In that paper it is shown that, assuming AD, the structure of

the Borel-Wadge degrees is analogous to the structure of the Wadge hierarchy on N
N:

the relation <B is well-founded, self-dual and non-self-dual pairs of degrees alternate,

with self-dual degrees at limit levels of countable cofinality and non-self-dual pairs at

limit levels of uncountable cofinality.
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We are now going to focus on an important development: the theory of

Borel reducibility for n-ary relations. This can be thought as the n-dimensional

generalization of the reducibility relation exposed in the preceding paragraph. Let

X, X ′ be standard Borel spaces and let R, R′ be n-ary relations on X and X ′,

respectively. Then R is Borel reducible to R′, in symbols

R≤n
B
R′,

if and only if there is a Borel function g :X→X ′ such that, for all x1, . .. ,xn ∈X,

R(x1, .. .,xn)⇔R
′(g(x1), . .. ,g(xn)).

This notion is really of interest only when X and X ′ are uncountable, and since two

uncountable such spaces are Borel isomorphic, all relations can be thought as living on

the same space X. Thus the relation ≤n
B
is a preorder on the class of n-ary relations

on X, and if no confusion arises, we will drop the superscipt and simply write ≤B.

To see that it can be studied within the framework of the relations ≤F , consider the

family of all functions f :Xn→Xn that are of the form f = g× . ..×g for some Borel

g :X→X. Then R≤BR
′ if and only if R≤F R

′ as subsets of Xn. In the last decade

much work has been done on the study of ≤B, especially for some classes of binary

relations. This section will briefly survey some results in this field, to see another

application of the notion of reduction. We will concentrate on two kinds of relations:

essentially countable Borel equivalence relations and analytic preorders (a subset of

a standard Borel space is analytic if it is the Borel image of a Borel set, while it is

coanalytic if its complement is analytic). It will turn out that the structure of ≤B on

binary relations is much more complicated than the almost well order of ≤L or ≤W
on subsets (unary relations) of NN.

3.1. Smooth equivalence relations

An equivalence relation E on a standard Borel space X is called smooth if

E ≤B=X , E ≤B =X , where =X is equality on X. This means that there is a Borel

function g :X→X such that:

∀x,x′ ∈X (xEx′⇔ g(x)= g(x′)).

Note that such an E is Borel as a subset of X2; moreover, if E is smooth equivalence

relation on X and F is any binary relation on X with F ≤B E, then F is a smooth

equivalence relation as well. The function witnessing smoothness assigns to each

equivalence class of a smooth equivalence relation an element of a standard Borel

space (equivalently: a real number). So a smooth equivalence relation E is also called

concretely classifiable, since the elements are classified by a concrete object which

distinguishes the equivalence classes, and moreover this is done in a Borel way.

The cardinality of the quotient space X/E can be finite, countably infinite or the

continuum. A fundamental result on Borel reducibility of equivalence relations is the

following result, known as the Silver dichotomy:

Theorem 4. [Silver ] If E is a coanalytic equivalence relation on an uncountable

standard Borel space, then either

• E has countably many classes or else

• =R≤BE.
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Therefore two smooth equivalence relations E and F are always comparable

with respect to ≤B and they are ranked according to the cardinality of their quotient

spaces:

E≤B F ⇔ card(X/E)≤ card(X/F ).

So, up to ≡B, there are countably many smooth equivalence relations, which can be

listed as follows:

1<B 2<B . . . <B n<B . .. <B N<B R. (2)

Examples.

1. For n a positive natural number, let M(n×n,C) be the space of all n×n

complex matrices. The equivalence relation of similarity onM(n×n,C) is a smooth

equivalence relation: such matrices are classified by their Jordan normal form.

2. Isomorphism for Bernoulli measure preserving automorphisms on [0,1] is

smooth by [11], since these are classified by their entropy, a real number.

3. If U is the Urysohn space, the isometry relation on K(U) (the space of

compact subsets of U) is smooth (see [12]). The situation is very different for isometry

on all of F(U) (the space of closed subsets of U). The position of the latter equivalence

relation in the ≤B hierarchy has been computed precisely in [13].

Smoothness is perhaps the most desirable situation when dealing with an

equivalence relation, in the sense that in this case one usually has a very good

understanding of the equivalence. However this turns out to be a rather uncommon

situation in mathematics.

3.2. Countable Borel equivalence relations

A countable Borel equivalence relation E on a standard Borel space X is an

equivalence relation that is Borel as a subset of X2 and such that all equivalence

classes are countable. If F is a Borel equivalence relation, then F is essentially

countable if, for some countable Borel equivalence relation E, the inequality F ≤BE

holds. So essentially countable Borel equivalence relations form an initial segment

with respect to ≤B. Smooth equivalence relations provide the easiest examples of

essentially countable Borel equivalence relations. Other examples of countable Borel

equivalence relations are orbit equivalences induced by Borel actions of countable

groups on standard Borel spaces. In fact, this is the only actual case by the following

theorem of [14].

Theorem 5. If E is a countable Borel equivalence relation on a standard Borel space

X, then there are a countable group G and a Borel action G×X→X inducing E.

A very interesting fact concerning Borel equivalence relations is the Glimm-

Effros dichotomy which, in the following general form, is due to [15].

Theorem 6. There is a non-smooth countable Borel equivalence relation E0 such

that, for any Borel equivalence relation E, either E is smooth or E0≤BE.

So, for Borel equivalence relations, the chain an be continued as:

1<B 2<B .. . <B n<B . .. <B N<B R<BE0 (3)

and this chain contains all Borel equivalence relations (up to ≡B) that are Borel

reducible to E0.
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A universal countable Borel equivalence relation is a countable Borel equiv-

alence relation E∞ such that, for all countable Borel equivalence relations E, the

inequality E≤BE∞ holds.

Theorem 7. [16] There is a universal countable Borel equivalence relation.

Examples.

1. [16] The universal equivalence relation usually denoted by E∞ is defined as

the orbit equivalence relation induced by the free group F2 on two generators on its

power set P (2F2) by translation: (g,A) 7→ gA
def
= {ga | a∈A}.

2. [17] For n ≥ 2 consider the equivalence relation on the Cantor space nN

defined by letting x∼=nr y just in case there is a recursive permutation ϕ such that

x◦ϕ= y. So this equivalence relation is induced by a right action on nN by the group

of recursive permutations. For n≥ 5, ∼=nr is a universal countable Borel equivalence

relation. The case 2≤n≤ 4 is still open.

3. [17] If G is a countable group containing a copy of F2, then conjugacy

equivalence relation on subgroups of G is a universal countable Borel equivalence

relation.

4. [18] The equivalence relations of recursive isomorphism on countable trees,

groups, Boolean algebras, fields, total orderings are all universal countable Borel

equivalence relations.

The structure of ≤B is linear on countable Borel equivalence relations that are

Borel reducible to E0, as depicted in relation (3). However the general structure is

very different as shown by the following theorem of [19].

Theorem 8. There is a map A 7→EA assigning to each Borel subset A⊆R a count-

able Borel equivalence relation EA such that, for all Borel A,B⊆R,

A⊆B ⇔ EA≤BEB .

3.3. Analytic equivalence relations and preorders

Analytic equivalence relations and analytic preorders also form initial segments

under ≤B. The general study of ≤B on them has revealed a very rich structure.

In particular, by results of [20], there are ≤B-universal elements both for analytic

equivalence relations and for analytic preorders; moreover, if P is a universal analytic

preorder, then the associated equivalence relation is a universal analytic equivalence

relation.

Various examples of universal analytic preorders are given in [20–23]. A com-

mon procedure to show a given analytic preorder is universal is to Borel reduce to it

another analytic preorder already known to be universal. To illustrate this technique

in a simple case, we give an example arising in the form of a preorder ≤F . Recall

that, by [20], the relation of embeddability for combinatorial trees on N is a universal

analytic preorder.

Theorem 9. There is a closed monoid F ⊆N
N containing all constant functions such

that ≤F is a universal analytic preorder.
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Proof. The result will be shown for the set N
2. So, let F ⊆ (N2)N

2

be the space of

all functions that are constants or are the Cartesian product g×g for some injection

g :N→N. As constant functions form a closed set and the same is true for Cartesian

products of an injection times itself and since identity on N
2 is in F , which moreover is

closed under composition, it turns out that F is a closed monoid of functions, so ≤F is

indeed an analytic preorder. Since combinatorial trees on N are a family of subsets of

N
2 it will be enough to observe that on them embeddability and ≤F coincide. Let G,H

be combinatorial trees on N. Suppose there is an embedding g :N→N from G into H.

Then g×g ∈F witnesses G≤F H. Conversely, let ϕ ∈F be such that ϕ
−1(H) =G.

Since ∅ 6=G 6=N
2, the function ϕ is not a constant and must be of the form g×g for

some injection g :N→N, which is an embedding of G into H. So the identity function

witnesses that embeddability for combinatorial trees on N Borel reduces to ≤F .

4. Interplay with automata theory

4.1. Automata on infinite strings

In theoretical computer science there are various notions of automata reading

infinite words. Each of these automata accepts a set of infinite strings from a given

alphabet. The problem arises of which are the sets of strings that are accepted by

some automaton of a given kind. This question and its relations with what has been

discussed above will be illustrated by sketching the case of Büchi automata, studied by

K. Wagner in [24] and of deterministic pushdown automata, investigated by J. Duparc

in [25]. It is worth mentioning here that further work is being done on hierarchies of

sets accepted by automata. See, for instance, [26, 27]. A more detailed survey on these

and related topics is [28].

Let Z be a finite non-empty set, called the alphabet. A Büchi automaton over

Z is a quadruple:

B=(Q,q0,∆,F ),

where:

• Q is a finite non-empty set, whose elements are called states;

• q0 ∈Q is the initial state;

• ∆⊆Q×B×Q is the transition relation;

• F ⊆Q is the set of final states.

Let x∈ZN. Then x is accepted by B if there exists s∈QN such that:

- s(0)= q0,

- ∀i∈N (s(i),x(i),s(i+1))∈∆,

- ∃∞i∈N s(i)∈F .

The set of elements of ZN that are accepted by the automaton B is the set accepted by

B and is still denoted by B, identifying it with the accepting automaton. By [29], sets

accepted by Büchi automata are exactly the ω-regular sets (for a definition, see [30]).

A deterministic pushdown automaton D= (Γ,Q,δ,⊥,q0,F) in the alphabet Z

consists of:

• a finite non-empty set Γ, called the pushdown alphabet ;

• a finite set of states Q;
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• a transition function

δ : Ω→Q×Γ<N

where Ω⊆Q×(Z∪{ε})×Γ, and ε is a new symbol (a dummy character);

• a bottom symbol ⊥∈Γ;

• a set F ⊆P (Q) of accepting conditions.

The transition function must satisfy the following conditions:

(1) for all q ∈Q and g ∈Γ, either

(q,ε,g) /∈Ω and ∀a∈Z (q,a,g)∈Ω

or

(q,ε,g)∈Ω and ∀a∈Z (q,a,g) /∈Ω;

(2) for all q ∈Q and a∈Z∪{ε}, if (q,a,⊥)∈Ω then

∃q′ ∈Q ∃γ ∈Γ<N (δ(q,a,⊥)= (q′,⊥_γ)).

If δ(q,a,g)= (q′,γ′), write a : (q,γ_g)`D (q
′,γ_γ′).

Let x ∈ ZN. Reading x character by character, the automaton D will change

configuration using auxiliary strings in the alphabet Γ. At each step, D checks its

current state q and the last symbol g of the auxiliary string. If δ(q,ε,g) = (q′,γ) is

defined, then D goes to state q′, replace the last letter g in the auxiliary string with

the string γ and does not procede in the reading of x. If δ(q,ε,g) is not defined, then D

reads the first unread entry a of x; since, by condition (1), δ(q,a,g)= (q′,γ) is defined,

the automaton passes to state q′ and replaces the last character of the auxiliary string

with γ. Note that by condition (2) the symbol ⊥ in the auxiliary string can never be

erased.

To describe this more formally, x determines unique x′ ∈ (Z ∪{ε})N, p ∈QN,

ρ∈ (Γ<N)N such that:

- x′(0)=x(0), p(0)= q0, ρ(0)=⊥,

- x′(i) : (p(i),ρ(i))`D (p(i+1),ρ(i+1)),

- if x̃ is obtained by erasing all ε values of x′, then x̃⊆x.

The sequence x is accepted by D if x̃=x (this means that, though it can make ε-moves

infinitely often, the automaton actually reads x entirely) and {q ∈Q | ∃∞i∈N p(i)=

q}∈F .

Wagner’s and Duparc’s works allow to locate along the Wadge hierarchy of

ZN the levels of sets recognized by these automata. Since Z is finite, each self-dual

Wadge degree is the successor of a pair of non-self dual degrees, thus we can

restrict to non-self-dual levels. Denote by W the Wadge hierachy on ZN restricted

to non-self-dual degrees. Let dW(A) be the rank of A in W, again starting with

dW(∅)= dW(Z
N)= 1. It is then possible to define a family of operations on sets in W

(see [28]):
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• an addition operation (A,A′) 7→A+A′ such that:

dW(A+A
′)= dW(A)+dW(A

′);

• for each 1≤α≤ω1 a multiplication operation A 7→Aα such that:

dW(Aα)= dW(A) ·α.

Let BA⊆W be the class of (sets in W accepted by some) Büchi automata.

Similarly, let DPDA ⊆ W be the class of (sets in W accepted by) deterministic

pushdown automata. Denoting by [BA] the downward closure in W of BA under

≤W, the relations

BA⊆DPDA⊆ [BA]⊆∆03(Z
N)

hold.

Theorem 10. [Wagner, Duparc]

a) Up to complementation and Wadge equivalence, the class BA is the closure of

{∅} under addition and multiplication by ω1; its lentgh is ω
ω.

b) Up to complementation and Wadge equivalence, the class DPDA is the closure

of {∅} under sum, multiplication by ω and by ω1; its length is ω
ω2 .

c) The class [BA] is the initial segment of W of length ωω1 .

4.2. The conciliatory hierarchy

The Lipschitz and Wadge hierarchies were defined in terms of existence of func-

tions and, for product spaces, they admitted equivalent game theoretic characterisa-

tions. We end this paper by definining the conciliatory hierarchy, whose definition is

in terms of games. Introduction and more details are in [28]. The Wadge game is not

symmetric, since player II is allowed to pass, while player I is not. The conciliatory

game is defined so to permit both players to skip moves.

Let Z be a countable set and let A,B⊆Z≤N. In the conciliatory game Gc(A,B)

each player is allowed, at each of his moves, to either play an element of Z or to pass

(say, playing an element p /∈ Z). Note that the sequences x and y of elements of Z

played by I and II, respectively, may now be finite, since a player is allowed to pass

as long as he likes. Player I wins if x∈A⇔ y /∈A, otherwise II wins. The concept of

winning strategies for the two players in this game are defined in the natural way.

Define A≤cB if and only if there is a winning strategy for II in Gc(A,B). Then

≤c is a preorder on P (Z≤N), with ≡c the associated equivalence relation. Denote by

C this hierarchy of sets.

Note that if A⊆Z≤N, a winning strategy for I in Gc(A,¬A) is established by

passing at the start of the game and then copying II’s moves. Consequently A 6≤c ¬A.

So C does not have self-dual sets.

The following result (see [28]) relates the conciliatory hierarchy with our earlier

discussion.

Theorem 11.

a) The hierarchy W restricted to [BA] and the hierarchy C restricted to [BA] are

isomorphic.

b) The hierarchy W restricted to Borel sets and the hierarchy C restricted to Borel

sets are isomorphic.
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