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GAME AND MANY-VALUED LOGIC

CLAUDIO MARINI AND FRANCO MONTAGNA

Dipartimento di Scienze Matematiche ed Informatiche,
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Abstract: In this paper we discuss some generalizations of Rényi-Ulam game with lies: some of

them are simply probabilistic variants of it, some others differ from it by the presence of more than

one number to guess. In the last part of the paper, we also discuss the relationship between such

variants and many-valued logic. This paper is just a survey of known results, but in its last part it

also contains some plans for future research.
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1. Introduction

In 1976 Ulam raised the following problem:

Someone thinks of a number between one and one million (which is just less

than 220). Another person is allowed to ask up to twenty questions, to each of which

the first person is supposed to answer only yes or no. Obviously the number can be

guessed by asking first: Is the number in the first half-million? and then again reduce

the reservoir of numbers in the next question by one-half, and so on. Finally the

number is obtained in less than log1000000. Now suppose one were allowed to lie

once or twice, then how many questions would one need to get the right answer? One

clearly needs more than n questions for guessing one of the 2n objects because one

does not know when the lie was told. This problem is not solved in general.

Stanisław Ulam, “Adventures of a Mathematician”

This problem, also investigated by Rényi in [1], is known as Rényi-Ulam game.

In the last years, mathematicians have studied it in deep, cf. [2–7]. The problem has

two versions, the adaptive one, where Questioner waits for Responder’s answer before

formulating the next question, and the non adaptive one, where Questioner has to do

all questions in advance. The non adaptive version is just the error-correcting coding

theory, cf. for instance [8]. This problem has a great number of variants. For instance,

one may investigate what happens if Responder can lie only if the answer is YES

(respectively if the answer is NO). Alternatively, one may investigate the partially
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adaptive game where Questioner must ask a group of non-adaptive questions since

the beginning, and then another group of questions after Responder answers to the

first group of questions. These problems have been investigated in [9, 10].

Other variants of Rényi-Ulam game with lies arise if we either assume that

Responder chooses at random whether to lie or not, or if we assume that there are

several numbers to guess, and not just one. The first idea (probabilistic Rényi-Ulam

game) was developed by Pelc in [5], and will be reviewed in Section 2. Here the problem

is to develop a strategy in order to guess the number with probability ≥ q (q being

a real in (0,1) given by the problem) with a small number of YES-NO questions

assuming that Responder lies with fixed probability 0< p < 12 . As we will see, the

problem has also a continuous variant.

The second idea (i.e., many numbers to guess) incorporates the Group Testing

problem (cf. [11]) and the Guessing Secrets game (cf. [12]). In both cases we have

a finite large search space Ω and a subset S of it (the defective set or the secret

set), and Questioner has to guess the elements of S (or to know as much as possible

about S) by means of questions of the form: Is your number in X?, where X ⊆Ω.

The difference between the two games is the following: in Group Testing, Responder

has to answer YES if at least one defective is in X, whereas in the Guessing Secret

game, Responder can choose one secret (not necessarily the same for all questions) and

answer truthfully on the ground of it. A common probabilistic variant of both games

is the Probabilistic Guessing Secrets. In this game, given a question of the form: Is

your number in X?, Responder chooses at random (with uniform distribution) one of

the secrets, and answers truthfully on the ground of it. This game has been introduced

in [12], and will be discussed in Section 3.

Game theory is strictly related to logic. For example, proving a formula can be

regarded as a game between two players, the prover, who tries to prove the formula,

and the opponent, who tries to attack the prover’s attempts. However, in this case the

games are ad hoc, in the sense that they are not interesting in themselves, their interest

is based on the fact that they constitute a good semantics for proofs. Rényi-Ulam game

with lies is an exception: it is an interesting game with several applications, and at

the same time it constitutes a very natural semantics for Łukasiewicz logic, cf. [13] or

[14], Section 5. This suggests the following problem: for any of the games listed above,

try to find a logic of which the game is a semantics. In other words, for G being any

of the above mentioned games, try to solve the equation:

Ulam game with lies

Łukasiewicz logic
=
G

x
.

For the moment, we have no satisfactory solution. In Section 4, we sketch an

attempt by Hájek and others to treat probability in the context of many-valued

logic, transforming probabilistic computations into derivations in propositional many

valued logic. In principle, this makes it possible to treat probability, and probabilistic

games in particular, by logical means. This fact has a considerable theoretical interest.

However, this is not our desideratum: so far, no efficient decision algorithm is known

for Hájek’s probabilistic logic, therefore, prima facie using logic instead of probability

seems a complication rather than a simplification. Moreover, finding a logic which is

suitable for a treatment of a game is something different from proving that the game
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constitutes a semantics for that logic. Still, it is possible that Hájek’s approach will

prove useful in order to find logical counterparts for all probabilistic games presented

in this paper. An important goal for future research would be to find other examples

of pairs interesting logic-interesting game such that the game constitutes a semantics

for the logic. In the last section we present some ideas which may be helpful in order

to reach this goal.

2. Probabilistic variants of Rényi-Ulam game

In this section we review the work by Rivest (cf. [2]) and Pelc (cf. [5]) concerning

some probabilistic variants of Rényi-Ulam game with lies. In these games, Responder

can lie with probability p with 0< p < 1, and Questioner has to guess the number

with probability ≥ q, with 0<q< 1. The parameter q is called the reliability. In more

details, we consider the following games:

(i) The continuous game Gp,q([0,1],ε) (a continuous and probabilistic generaliza-

tion of Rényi-Ulam game). Responder thinks of a number x ∈ [0,1] unknown

to Questioner, who has to find, with probability ≥ q, a set A⊂ [0,1] such that

‖A ‖<ε (where ‖A ‖ denotes the measure of A), and x∈A. He can ask questions

of the form x<a? (a∈ [0,1]). As we said, Responder can lie with probability p.

The parameter ε is called the accuracy. We will mainly consider the case where

ε= 1n , n a positive integer.

(ii) The discrete bounded game Gp,q{1, . .. ,n} (a more direct probabilistic general-

ization of Ulam game). Responder thinks of an integer x∈ {1,. .. ,n} unknown

to Questioner, who has to find it with probability ≥ q stating queries of the

form x < a? with a ∈ {1,. .. ,n}. (Note that since the unknown number is an

integer, the problem does not change if we allow Questioner to ask questions of

the form x<a? with a∈ [1,n]).

In order to deal with these games, it is useful to consider first some probability-

free versions of them. In these games, a positive integer M and a real number p

with 0< p< 1 are given. The assumption that Responder can lie with probability p

is replaced by the following assumption: for an initial series of m≥M answers, the

number of errors cannot exceed pm. Moreover, Questioner has to guess the number

(or, in the continuous game, some kind of approximation of it) correctly, and not

only with probability q. The other rules remain as in the probabilistic games. In more

detail:

(i′) The continuous game G∗p,M ([0,1],ε) is similar to the game Gp,q([0,1],ε), with

the differences just mentioned. Once again, we will mainly consider the case

ε= 1n , n a positive integer.

(ii′) The discrete bounded game G∗p,M{1, .. .,n} is similar to Gp,q{1,. . .,n}, with the

differences just mentioned.

Lemma 1. Questioner can win each of the games G∗p,M ([0,1],
1
n ), G

∗

p,M{1, .. .,n}, for

all n and M if and only if p 6= 12 .

Proof. If p= 12 , then let k be the unknown number, and letm 6= k be another number

(in the continuous game we take m so that the distance between k and m is greater

than 2ε). Then Responder can refer half of his answers to m and the other half to k.
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On the ground of Responder’s answers, Questioner cannot know which one among m

and k is the right number, i.e. he cannot win the game. If p> 12 , then we can consider

the opposite of Responder’s answers, thus we can reduce the problem to the case

where p < 12 . In this case, there is a rather easy greedy guessing strategy (the idea

is: repeat each question many times, until the majority of answers to that specific

question exceeds pK, where K >M is the total number of questions). We will see

that there is a better strategy whose cost is O(logn) (for the game G∗p,M{1,. . .,n} we

need p< 13 ). The proof of this fact, due to Pelc, is presented below.

We start from the continuous game G∗p,M ([0,1],ε). In the sequel, given two

positive integers Q and E, ε(Q,E) denotes the smallest number ε such that with Q

questions of the form x<a? and at most E wrong answers, Questioner can guess, in

the worst case, a set A such that ‖A ‖< ε and x∈A. Moreover, Qcon(n,E) denotes

the minimum number of questions necessary to guess a set A such that ‖A ‖< 1n and

x∈A when Responder is allowed to lie E times at most. Finally,
((

n
m

))

denotes the

number of subsets of {1, . .. ,n} of cardinality ≤m, that is:
((

n
m

))

=
∑m
i=0

(

n
i

)

.

Theorem 1. For any two positive integers Q and E, one has: ε(Q,E)≤
(

(

Q
E

)

)

·2−Q.

Proof. Following [5], we introduce the concept of state of knowledge of Questioner

afterQ−q questions and after the corresponding answers. The idea is the following: for

e≤E we define the set Aeq of all elements of [0,1] which are coherent with Responder’s

answers under the assumption that exactly e of them are wrong. A state of knowledge

with q questions remaining (hence after Q−q questions and after the corresponding

answers) is the E+1-tuple Aq =(A
0
q, .. .,A

E
q ). If q=Q, that is, if no question has been

asked, then there must be 0 lies, so for e > 0 one has AeQ = ∅. Moreover, every x is

coherent with the assumption that there are no lies, since there is no question. Thus

A0Q= [0,1]. In other words, AQ= ([0,1],∅,. . .,∅). Now assume that Aq = (A
0
q, . .. ,A

E
q ),

and that the next question is: x<a?. Let T = {x∈ [0,1] :x<a}, and let F = [0,1]\T .

If the answer is YES, then Aq−1 = (
YA0q−1,. . .,

Y AEq−1) with
YA0q−1 = Aq ∩T , and

YAe+1q−1 = (A
e+1
q ∩T )∪ (A

e
q∩F ). Similarly if the answer is NO, then Aq−1 =

NAq−1 =

(NA0q−1,. . .,
NAEq−1) with

NA0q−1=Aq∩F , and
NAe+1q−1=(A

e+1
q ∩F )∪(A

e
q∩T ). Clearly

we always have x∈
⋃E
e=0A

e
q.

Now we define the weight w(q,Aq) of a state Aq when there are q questions

remaining by:

w(q,Aq)=
E
∑

e=0

((

q

E−e

))

·‖Aeq‖,

where ‖Aeq‖ denotes the measure of A
e
q. (This definition is due to Berlekamp [15]).

The following lemma can be proved by checking, using the identity:
((

n+1

m+1

))

=

((

n

m+1

))

+

((

n

m

))

.

Lemma 2. The weight function is additive, in the sense that w(q− 1, YAq−1)+

w(q−1,NAq−1)=w(q,Aq).

We continue the proof of Theorem 1. Note that w(0,A0)=
∑E
e=0

(

(

0
E−e

)

)

‖Ae0‖=
∑E
e=0‖A

e
0‖, because if i > 0, then

(

0
i

)

= 0. By this observation and by Lemma 2,
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the worst case occurs if Responder always chooses the answer which makes the

weight bigger, i.e. if Responder answers YES if w(q− 1,Y Aq−1) > w(q− 1,
NAq−1)

and answers NO otherwise. Moreover, the best strategy for Questioner is to ask

a question such that w(q−1, YAq−1) = w(q−1,
NAq−1) (in this way, by Lemma 2,

w(q− 1,Aq−1) =
w(q,Aq)
2 ). Now consider w(q− 1, YAq−1) and w(q− 1,

NAq−1) as

a functions Y w(a,q) and Nw(a,q) of the parameter a occurring in the question: x<a?.

Clearly for fixed q, Y w(a,q) and Nw(a,q) are continuous, Y w(0,q)< Nw(0,q), and
Nw(1,q) < Y w(1,q). By the intermediate value property, there is an aq such that
Y w(aq) =

Nw(aq). If Questioner, when there are q questions left, asks x< aq?, then

w(q−1, YAq−1)=w(q−1,
NAq−1)=

w(q,Aq)
2 . Thus after Q questions we have:

w(0,A0)=w(Q,AQ) ·2
−Q=

((

Q

E

))

·2−Q.

Let A=
⋃

e=EA
e
0. Then x ∈A, and ε≤ ‖A ‖ ≤

∑E
e=0‖A

e
0‖=w(0,A0) =

(

(

Q
E

)

)

·2−Q.

This completes the proof.

From Theorem 1, we obtain:

Corollary 1. Let Q be the minimum number such that
(

(

Q
E

)

)

≤ 1
n · 2

Q. Then

Qcon(n,E)≤Q.

Proof. If
(

(

Q
E

)

)

≤ 1n ·2
Q, then by Theorem 1, 1n ≥

(

(

Q
E

)

)

·2−Q ≥ ε(Q,E), and the

claim follows from the definition of ε(Q,E).

We now consider the analogous problem for the discrete case. Now the search

space is {1, .. .,n}, but replacing k by kn we obtain an isomorphic problem in which

all elements in the search space are in [0,1]. Thus we can apply the strategy for the

continuous case. If E and Q are as in Corollary 1, with Q questions we are able to

produce a set A with ‖A ‖< 1n such that x∈A. In general, this may be not sufficient

to guess the number. E.g., A might be the union of very small disks D1,. . .,Dn such

that for i=1, . .. ,n, in ∈Di and
∑n
i=1‖Di‖≤

1
n . However, if A is connected, then since

‖A ‖< 1n , A cannot contain more than one element in {
1
n ,
2
n , .. . ,1}, and we can guess

the number. Hence it is sufficient to prove:

Theorem 2. Let Q, E, etc. be as in Corollary 1, with ε = 1n . Then with Q+E

questions we can obtain a state of knowledge such that the union A of its elements is

connected. Since ‖A ‖< 1n , Q+E questions are sufficient to guess the number.

Corollary 2. If
(

(

Q
E

)

)

≤ 1n ·2
Q, then Q+E≥Qdisc(n,E(n)).

In order to solve the problems G∗p,M ([0,1],
1
n ), G

∗

p,M{1,. . .,n}, we have to take into

account that the number E of errors is not fixed, in fact it may depend on the number

of questions. The main idea in the proof is to show a O(logn) function E(n) such that

for sufficiently large n, both Qcon(n,E(n)) and (Qdisc(n,E(n)) do not exceed
E(n)
p .

If we are able to do this, then while asking Q=Qcon(n,E(n)) (Q=Qdisc(n,E(n)),

respectively) questions, only p ·Q ≤ E(n) errors can appear. Then if we apply the

strategies used in Theorem 1 and 2, respectively, with E=E(n), from the definition
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of Q=Qcon(n,E(n)) (Q=Qdisc(n,E(n)), respectively), we obtain that
E(n)
p questions

(hence O(logn) questions) are sufficient to win both games.

We start from a numerical lemma, whose proof is left to the reader.

Lemma 3. Let E(n) be an arbitrary function such that limn→∞E(n)=+∞ and let

a > 2. Then there exist positive constants c1,c2 and a constant k > 1 such that for

sufficiently large n

c2 ·
1

E(n)
kE(n)≤

2aE(n)
(

(

aE(n)
E(n)

)

) ≤ c1E(n) ·k
E(n).

We are ready to prove the desired result about the games G∗p,M ([0,1],
1
n ) and

G∗p,M{1,. . .,n}.

Theorem 3.

(A) If p< 12 , Questioner can win the game G
∗

p,M ([0,1],
1
n ) for any M and n in time

O(logn).

(B) If p< 13 , Questioner can win the game G
∗

p,M{1, .. . ,n} for any M and n in time

O(logn).

Proof. (A) As said before, it is sufficient to find an O(logn) function E(n) such

that for sufficiently large n, the number Q(n) of questions necessary to win the game

G∗p,M ([0,1],
1
n ) satisfies:

(?) p ·Qcon(n,E(n))≤E(n).

Let E(n)= (2/ logk)(logn), where k is as in Lemma 3. For large n and a> 2 we have

(by Lemma 3):

2aE(n)
(

(

aE(n)
E(n)

)

) ≥ c2
logk

2logn
k
2logn
logk =

c2 logk

2
·
n2

logn
≥n.

Putting a=2/p we have a> 2, hence the above inequality gives:

2E(n)/p≥n

((

E(n)/p

E(n)

))

.

Now let Q=E(n)/p. Then 2Q ≥ n
(

(

Q
E(n)

)

)

, and, by Theorem 1, we obtain Qcon(n,

E(n)) ≤ Q, therefore Qcon(n,E(n)) ≤ E(n)/p. Thus E(n) satisfies our require-

ments.

Proof. (B) Once again, it is enough to show an O(logn) function E(n) such that for

sufficiently large n and p< 13 :

(??) p ·Qdisc(n,E(n))≤E(n).

Putting a=(1/p)−1, and E(n)= (2/logk)(logn), we have a> 2. Then arguing as in

the proof of (A), we obtain that for large n, 2aE(n)≤n·
(

(

aE(n)
E(n)

)

)

. Now let Q′= aE(n),

and let Q = E(n)/p. Then 2Q
′

≤ n ·
(

(

Q′

E(n)

)

)

. Moreover Q′ = (E(n)/p)−E(n) =

Q−E(n), therefore by Corollary 2, Q≥Qcon(n,E(n))+E(n)≥Qdisc(N,E(n)). Since

Q=E(n)/p, we conclude that Qdisc(n,E(n))≤E(n)/p, and (??) is proved.
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Remark. In [16] the authors, deal with some variants of G∗p,M{1, .. .,n}. They

consider three versions:

(A) Questioner presents his questions one at a time and Responder must answer

them in such a way that at no point has he lied to more than a fraction p of

them; namely, every initial segment of a of his answers must contain no more

than pa lies.

(B) Questioner presents his questions one at a time, but Responder is required to

make sure that at most pq of his q answers are lies.

(C) Responder must submit all his questions simultaneously to Responder, and he

is permitted to look them over before choosing a set of at most pq of them

to lie to.

Compared with the game G∗p,M{1, .. . ,n}, the version (A) introduces one more

restriction for Responder (hence it is more favorable to Questioner). Moreover, the

rules of version (B) are less restrictive for Responder, and the version (C) is some kind

of non-adaptive variant of the game. Thus versions (B) and (C) are more favorable

to Responder.

The authors prove the following:

Theorem 4.

(A) Questioner wins with Θ(logn) questions if p< 12 but Responder wins if p≥
1
2 .

(B) Questioner wins with Θ(logn) questions if p< 13 but Responder wins if p≥
1
3 .

(C) Questioner wins with Θ(logn) questions if p< 14 , and Responder wins if p>
1
4 .

Moreover, Quiestioner wins when p= 14 , but Θ(n) questions are required.

Theorem 3 has been used by Pelc [5] in order to prove the following:

Theorem 5.

(A) If p< 12 , Questioner can win the game Gp,q([0,1],
1
n ) for any q < 1 and for any

n in time O(logn).

(B) If p< 13 , Questioner can win the game Gp,q{1, .. . ,n} for any q < 1 and for any

n in time O(logn).

Proof. Let Sk be the number of errors in a series of k answers. Since each time

Responder can lie with fixed probability p, Sk is a random variable with a binomial

distribution, that is, P (Sk = i)=
(

k
i

)

pi(1−p)k−i. By Chebyshev’s inequality (cf. [17]),

for any ε> 0 we have:

P

(
∣

∣

∣

∣

Sk
k
−p

∣

∣

∣

∣

≥ ε

)

≤
p(1−p)

kε2
.

Let us consider first the continuous game Gp,q([0,1],
1
n ). Let ε = (

1
2 −p)/2, and let

p= p+ε. Then p< 12 and |
Sk
k −p|<ε implies Sk ≤ pk which gives:

P (Sk ≤ pk)≥P

(∣

∣

∣

∣

Sk
k
−p

∣

∣

∣

∣

>ε

)

≥ 1−
16p(1−p)

k(1−2p)2
=1−

c

k

for c =
16p(1−p)

(1−2p)2
. Thus for k ≥ c

1−q , the probability of less than kp errors over k

questions is greater than q. Now let M = c
1−q , and let f(n) be an O(logn) function
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such that Questioner can win the game G∗p,M ([0,1],
1
n ) with f(n) questions. Without

loss of generality, we can assume that f(n)≥M , therefore with probability ≥ q, over

f(n) questions at most pf(n) can receive a wrong answer. If this happens, then by

Theorem 3, Questioner can win the game G∗p,M ([0,1],
1
n ) with f(n) questions, hence,

using the same strategy, with probability ≥ q, he wins the game Gp,q([0,1],
1
n ).

The case of the game Gp,q{1, .. .,n} is treated similarly: of course in this

case we take ε = ( 13 − p)/2, and we reduce the game to G
∗

p,M{1, .. .,n} instead of

G∗p,M ([0,1],
1
n ). The rest of the argument is quite parallel to that used in the case of

Gp,q([0,1],
1
n ).

Remark. If 13 ≤ p <
1
2 , then Questioner has a winning greedy strategy even for the

game Gp,q{1, . .. ,n}, but its cost is O(logn
2). The greedy strategy is the following: in

order to guess the number, we must know all of its bits. These bits are m≤ logn+1.

Now for each bit Questioner asks if it is 0, and he repeats each question until he

knows the answer with reliability at least q1/m. Thus Questioner knows all m bits

with reliability at least (q1/m)m = q, which means that he wins the games. Now

we estimate the number of repetitions for each question. Let this number equal to

k = f(m). Let ε > 0 be such that p+ε < 12 , and let p= p+ε. It is enough to assure

that:

P (Sk ≤ pk)≥ q
1/m for some p<

1

2
,

because the majority answer can be taken with sufficient reliability. Using Chebyshev’s

inequality with c= p(1−p)ε2 , it is sufficient to satisfy:

(•)

(

1−
c

f(m)

)m

≥ q

for sufficiently large m. Since for any constants c,r

lim
x→∞

(

1−
c

rx

)x

=
1

ec/r
,

it follows that for sufficiently large fixed r we have limx→∞(1−c/(rx))
x > q. Hence

taking f(m) = rm for this constant r we can satisfy (•). Thus it suffices to repeat

every question rm≤ r(logn+1) times. Since Questioner needs the correct answer to

m≤ logn+1 questions and each one is repeated rm≤ r(logn+1) times, the above

greedy searching algorithm can be carried out in time O(log2n).

3. The Guessing Secrets game

As said in the introduction, there are variants of Rényi-Ulam game in which

Questioner has to guess more than one number. One of these games is Group Testing.

This game is suggested by a concrete problem: suppose that we have to find the

defectives in a population of N individuals using blood testing. Then instead of testing

every person individually, we can test the blood of, say, 100 people all together: if

the test is positive, then we spoil one test, but if it is negative, we save 99 tests.

The mathematical formalization of the game is the following: a large set Ω (to be

though of as the population), known to Questioner and to Responder, is given. Then

Questioner must guess a small subset S of Ω (the set of defectives), known only to

Responder, on the ground of a number of questions of the form X ∩S 6= ∅? (to be
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thought of as: is there any defective in X? ), where X ⊆Ω. Responder must answer

truthfully to each question. We do not treat this game here. For more information,

the reader may consult [11].

Now we introduce another variant of Rényi-Ulam game, the Guessing Secret game.

The game is as follows:

• a large set Ω of cardinality N , and a subset S of it of cardinality n�N , are

given. Whilst Ω is known to both players, S is known only to Responder. (S is

called the secrets set and its elements are called the secrets);

• Questioner may ask questions of the form: Is your number in X?, where X ⊆Ω;

• Responder has to answer truthfully, but he can refer to any of the elements of S.

Thus e.g. if S = {3,8} and the question is: Is your number less than 12?, then the

answer must be YES, but if the question is: Is your number an even number?, then

the answer may be YES on behalf of 8 and NO on behalf of 3. The difference between

Group Testing and Guessing Secrets is that in the first case Responder must answer

YES ifX∩S 6= ∅ and NO otherwise, whereas in the second case Responder must answer

YES if S⊆X, NO if S∩X = ∅, but if both X∩S and (Ω\X)∩S are non-empty, then

the answer may be indifferently YES or NO.

Responder has many adversary strategies which forbid Questioner to guess all

of the secrets. Here are two of them:

(1) Responder may always answer on behalf of the same secret. In this way,

Questioner has no information about the other secrets;

(2) Let k ∈Ω\S (we call such k the intruder). Then according to the rules of the

game, Responder can answer YES to the question: Is your number in X? iff

either X contains at least two secrets or X contains k and at least one secret.

Note that if Responder answers YES according to this strategy, then X must

contain at least one secret, so the answer YES is legal, on behalf of that secret.

Moreover, if Responder answers NO according to the this strategy, then at least

one secret is not in X, and Responder may answer NO on behalf of that secret.

With this strategy, Questioner can not distinguish the intruder k from the true

secrets: if any one of the secrets is replaced by k, Responder’s answers remain

the same. So he cannot guess any of the secrets.

For n=2, the whole situation can be presented in terms of graph theory (cf. [12]): take

Ω as the set of nodes, and the possible pairs of secrets as edges of the graph. At the

beginning, all pairs are possible, so the situation is represented by the complete graph

on N elements. If the question: Is your number in X? receives answer YES, then all

edges joining two nodes both not in X can be dropped (they cannot constitute the

secret set, otherwise the answer would have been NO). If the above question receives

answer NO, then we may drop the edges joining nodes both in X. The best we may

obtain is an intersecting graph, that is one such that any two edges have a node

in common. Indeed, if {a,b} and {c,d} are two edges such that a,b,c,d are pairwise

distinct, then by the question: Is your number in {a,b}?, we can exclude either {a,b}

(if the answer is NO) or {c,d} (if the answer is YES). On the other hand, if a subgraph

G of the complete graph on N nodes is intersecting, then either there is a node which
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is common to all edges of G, or G is the complete graph over three elements. In the

first case, let a be the node common to all edges. If Responder always answers on

behalf of a (according to the adversary strategy (1)), then Questioner cannot learn

more about the secrets, i.e., he cannot simplify G. Similarly, if G is the complete

graph with 3 nodes, then two of them, say a and b are the secrets, and the third one,

say k, is not. Then if Responder plays the strategy (2) with intruder k, Questioner

learn more about the secrets, i.e., he cannot simplify G.

An interesting variant of the Guessing Secrets game is Probabilistic Guessing

Secrets. The only difference with the previous game is that each time Responder

chooses his secret at random with uniform distribution, and answers on behalf of that

secret. In [18], the authors develop a guessing algorithm, and compute the mean value

and the variance of the number of questions necessary to learn all of the secrets (with

probability 1, this occurs after finitely many questions).

We first describe a procedure for guessing one of the secrets. After such a secret

(call it s) has been guessed, we leave it out of Ω (formally, we ask questions concerning

sets X such that s /∈X) and we iterate the procedure until we guess all of the secrets.

Algorithm for guessing one of the secrets

At the beginning our search space Σ is Ω.

Questioner divides Σ in two parts ΣL and ΣR of the same cardinality, and asks:

QL Is your number in ΣL?

QR Is your number in ΣR?

He repeats the questions until he gets answer YES.

Then Questioner updates the search space: if question QL receives answer YES,

then Σ=ΣL. If question QR receives answer YES, then Σ=ΣR.

Questioner repeats the procedure until Σ consists of one element only, call it s.

Then this element is a secret.

After a new secret s has been guessed, Questioner repeats the procedure starting from

Σ=Ω\{s}. More generally, after guessing h secrets s1,. .. ,sh, Questioner restarts the

procedure from Σ=Ω\{s1,. . .,sh} until he guesses all of the secrets.

The number of questions needed to learn all of the secrets using the above

algorithm is a random variable which depends on the secret chosen in each answer.

For instance, if none of ΣL and ΣR contains all of the secrets, Responder may answer

NO all the times, in which case the algorithm never ends. However, this occurs with

probability 0. A superficial analysis of the algorithm is the following:

• the expected time of the number of questions needed for a YES answer is ≤ 2n,

where n is the number of secrets;

• after dlog(N)e YES answers (where N is the cardinality of Ω) one more

secret has been guessed. So the expected time needed to guess one secret is

≤ 2n · log2(N);

• finally, the expected time needed to guess all of the secrets is bounded by

2n2 · log2(N).
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The paper [18] contains a more careful analysis of the algorithm. There, the

following is shown:

Theorem 6. Suppose that n � N . Then the number of questions necessary to

learn all the secrets is a Gaussian random variable whose expected value is given

by 1
loge(2)

n2 log2(N).

To conclude this section, we outline some possible lines of research about the

Guessing Secrets game. The truly ingenious work by Rivest [2] and by Pelc [5] suggests

the possibility of a similar approach for the Probabilistic Guessing Secrets problem.

For example, it would be interesting to find a variant of the problem for the continuum,

as in the case of probabilistic Ulam’s game. Moreover, the analysis of Pelc and Rivest

allows the authors to conclude that their algorithm is optimal. We would like to prove

a similar result for the Probabilistic Guessing Secrets. Our guess is that one cannot

improve the bound O(n2 logN). This problem looks very difficult, but we think that it

should be possible to export to the case of Probabilistic Guessing Secrets many ideas

(like the weight function, the non-probabilistic variants, etc.) used for the probabilistic

Ulam game.

4. The Ulam game with lies and Łukasiewicz logic

Many-valued logics have been introduced in order to treat vagueness, but they

can be used in the treatment of uncertainty in general. The main properties of

many-valued logics are:

• many-valued logics are based on their semantics;

• truth values are not just 0 and 1, but more generally elements in [0,1];

• connectives are truth-functional, that is, the truth value of a compound formula

is uniquely determined by the truth value of its components;

• the basic connectives are conjunction & and implication →. Moreover, if ? is

the interpretation of conjunction, then implication is interpreted as the residual

of ?, namely by x⇒ y=sup{z : z ?x≤ y};

• the interpretation ? of & should be a commutative, associative, weakly increas-

ing and continuous binary operation on [0,1] such that x?1 = x for every x.

Such an operation is called a continuous t-norm.

The language of many-valued logic has propositional variables, parentheses, the

propositional constant ⊥ (falsum), and the binary connectives & and →. Given

a continuous t-norm ? and a map e from propositional variables into [0,1], we extend

e to a map (still denoted by e by abuse of language and called evaluation based on ?)

defined inductively on all formulas as follows:

e(⊥)= 0;

e(A&B)= e(A)?e(B);

e(A→B)= e(A)⇒ e(B)= sup{x :x?e(A)≤ e(B)}.

Given a continuous t-norm ?, its logic L? is the set of formulas A such that e(A)= 1

for every evaluation e based on ?. The main continuous t-norms are:
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• the Łukasiewicz t-norm ?L, defined by x?L y=max{x+y−1,0};

• the Gödel t-norm ?G, defined by x?G y=min{x,y};

• the product t-norm ?π, defined by x?π y=x ·y (ordinary product).

The corresponding logics L?L , L?G and L?π are called Łukasiewicz logic, Gödel logic

and product logic, respectively. As observed in [19], Gödel logic was investigated by

Gödel in order to prove that intuitionistic logic is not a finitely-valued logic. However,

this logic was discussed even earlier by Dummett, cf. [20].

All these logics have an Hilbert-style finite axiomatization (cf. [19]). Let ⇒L,

⇒G and ⇒π be the interpretations of → in Łukasiewicz logic, in Gödel logic and in

product logic respectively. Then:

x⇒L y=min{1−x+y,1}; x⇒G y=

{

1 if x≤ y,
y otherwise;

x⇒π y=

{

1 if x≤ y,
y

x otherwise.

Negation is defined in terms of implication by ¬A = A→⊥. It is easily seen that

the interpretations ∼L, ∼G and ∼π of ¬ in Łukasiewicz logic, in Gödel logic and in

product logic are respectively:

∼x=1−x; ∼G x=∼π x=

{

1 if x=0,
0 otherwise.

Moreover,⇒L can be defined in terms of ?L and ∼L by x⇒L y=∼L (x?L∼L y). Thus

in Łukasiewicz logic one can take conjunction and negation as basic connectives.

A fundamental property of Rényi-Ulam game with lies, discovered by Mundici

(cf. [13]), is that it constitutes a semantics for Łukasiewicz logic. In order to explain

why it is so, let us start from the Ulam game without lies. Let X = {1, . .. ,n} be the

search space. In absence of questions, any of 1,. . .,n might be the unknown number,

so each of 1, . .. ,n has possibility degree 1 (there is no reason to exclude it). Now

consider a question qZ of the form: is the unknown number in Z?, with Z ⊆ X.

If the answer aZ is YES, then all elements in X \Z are excluded (i.e., they get

possibility degree 0), whereas the possibility degree of the elements of Z remains 1.

The situation is the opposite if the answer is NO. The function which expresses, for

every x ∈X, its possibility degree based on the question qZ and the answer aZ is

called state of knowledge corresponding to qZ and aZ and is denoted by K
aZ
qZ (x). Now

consider a finite number of questions q1 = qZ1 ,. .. ,qn = qZn and the corresponding

answers a1, .. . ,a n, with ai ∈ {YES,NO}. After these questions and answers, we

can exclude all numbers which are excluded by at least one answer. Thus letting

Ki(x) = K
ai
qi (x), the possibility degree of x is 0 if at least one of the Ki(x) is 0,

and it is 1 otherwise. Now let Q be the sequence (q1,. . .,qn) of questions, and A be

the sequence (a1,. .. ,an) of the corresponding answers. The state of knowledge K
A
Q

corresponding to the sequences Q and A, i.e. the function which expresses, for every

x∈X, the possibility degree of x after the questions Q and the corresponding answers

A is given by KAQ(x) =min{K
ai
qi (x) : i=1, .. . ,n}. More generally, given two states of

knowledge KAQ(x) and K
A′

Q′ (x), we can consider their conjunction, i.e., the state of

knowledge we obtain by taking as sequence of questions the juxtaposition Q◦Q′ of the

sequences Q and Q′ and as sequence of answers the juxtaposition A◦A′ of A and A′.

Clearly on the ground of Q ◦Q′ and of A ◦A′ we can exclude both the numbers
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which are excluded by Q and A and the numbers which are excluded by Q′ and

A′. Thus K
A◦A′

Q◦Q′
(x)=min{KAQ(x),K

A′

Q′ (x)}. In other words, the conjunction of states

of knowledge is interpreted as the minimum, as in classical logic. This suggests the

possibility of analyzing the whole game inside classical logic. As a matter of fact, the

analysis of the states of knowledge, which can be treated inside classical logic, gives us

a complete description of the situation: in particular, after a sequence Q of questions

and the corresponding sequence A of answers, we can guess the number iff KAQ(x)= 0

for all the elements of X except from one. It is possible to carry this analogy further,

showing that not only the Ulam game without lies can be treated inside classical

logic, but conversely it constitutes a semantics for such logic. We do not present the

argument now, because it can be regarded as an instance of the relationship between

the Ulam game with lies and Łukasiewicz logic, which is treated here below.

Now let us turn to the Ulam game with lies. Suppose that Responder can

lie k times at most. As in the previous case, we want to represent the possibility

degree of every x∈X after a sequence of questions and the corresponding sequence

of answers. Once again, the function expressing for every x its possibility degree will

be called state of knowledge. At the beginning, every x∈X has possibility degree 1.

Now consider a question qZ of the form: is the unknown number in Z?. If the answer

is YES, then of course the possibility degree of the elements of Z remains 1, but we

cannot exclude the elements of X \Z, because the answer might be wrong. However,

the answer still gives us some information: if the answer is wrong, then Responder

spent one of his k lies, and in the sequel he may lie k−1 times at most. Thus we

cannot exclude the elements of X \Z, but at the same time we have to differentiate

them from the elements of Z. The idea is to give to such elements an intermediate

possibility value. The choice of this value is suggested by the following observation: if

we ask k+1 times: is the unknown number in Z? and we get k+1 YES answers, then

we may completely exclude the elements of X \Z (because the assumption that the

unknown number is in X \Z would imply k+1 lies). Summing-up, at the beginning

the possibility degree of any x∈X \Z is 1, and after k+1 questions: is the unknown

number in Z? and k+1 YES answers, such value is 0. Thus after one question: is

the unknown number in Z? and one YES answer, it is natural to give the elements

of X \Z value 1− 1
k+1 =

k
k+1 . Needless to say, if the answer to the previous question

was NO, then the natural choice is to give the elements of X \Z the value 1 and to

the elements of Z the value n
n+1 . In order to simplify our treatment, let us say that

x∈X is violated by the question q: is the unknown number in Z? and by the answer

a∈{YES,NO} if either x∈Z and a=NO, or x∈X \Z and the answer is YES. Let us

denote the set of elements which are violated by q and a by V aq . Then our state of

knowledge after the question q and the answer a can be represented by the function

Kaq defined by:

Kaq (x)=

{

k
k+1 if x∈V

a
q ,

1 otherwise.
We now consider the situation after a sequence Q of n questions q1,. . .,qn and the

sequence A of the corresponding answers a1, .. .,an. Let for every x∈X, v
A
Q(x) denote

the number of questions-answers which violate x. Then clearly we can exclude the

elements x with vAQ(x)> k, because the assumption that x is the unknown number
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would imply more than k lies. Moreover, it is natural to give to every x with vAQ(x)= 0

possibility degree 1. In other words, the possibility degree of x decreases from 1 to

0 when vAQ(x) increases from 0 to k+1. Thus it is natural to define the possibility

degree of x as max{1−
vAQ(x)

k+1 ,0}. The whole situation is represented by the state of

knowledge KAQ , i.e. the function which associates to every x∈X its possibility degree.

According to the observations just made we have KAQ(x)=max{1−
vAQ(x)

k+1 ,0}.

As in the case of Ulam game without lies, we now consider the conjunction of

two states KAQ and K
Q′

A′ , that is, the state K
A◦A′

Q◦Q′
. One moment’s reflection shows that

for all x∈X, v
A◦A′

Q◦Q′
(x)= vAQ(x)+v

A′

Q′(x), therefore by an easy computation we get:

K
A◦A′

Q◦Q′
(x)=max{1−

vAQ(x)+v
A′

Q′(x)

k
,0}=max{KAQ(x)+K

Q′

A′ (x)−1,0}.

This shows that in this case the conjunction of two states of knowledge is not

represented by classical conjunction, but instead by Łukasiewicz conjunction. Thus

the right logic in which the Ulam game with lies can be analyzed is Łukasiewicz logic.

More precisely, if the number k of lies is known, then the right logic is Łukasiewicz

logic with truth values {0, 1k+1 , .. . ,
k
k+1 ,1}, otherwise it is full Łukasiewicz logic.

It can be proved that not only we can represent the Ulam game with lies

inside Łukasiewicz logic, but viceversa we can represent Łukasiewicz logic by means

of Rényi-Ulam game with lies, associating to every sentence a state of knowledge. To

do this, we first introduce the impossible state in which every element has possibility

degree 0. Whilst the constantly one state (also called the initial state) corresponds to

absence of knowledge, the impossible state correspond to an inconsistent knowledge.

We can introduce an order between states, defining K ≤K ′ iff for every x∈X,

K(x)≤K ′(x). Thus K ≤K ′ if K contains more information than K ′. With respect to

this order, the complement KAQ of a stateK
A
Q is defined to be the maximal stateK such

that the conjunction of K and KAQ is the impossible state. In terms of information,

KAQ represents the minimal information which is incompatible with the information

represented by KAQ .

Now let us express all formulas of Łukasiewicz logic in terms of negation and

&, (thus writing ¬(A &¬B) for A→B). Define a n-k-evaluation to be a function ekn
mapping formulas of Łukasiewicz logic into states of knowledge in the Ulam game

with search space X of cardinality n and k lies such that, ekn(⊥) is the impossible

state, and for any two formulas A and B, ekn(A&B) is the conjunction of the states

ekn(A) and e
k
n(B), and e

k
n(¬A) is the complement of e

k
n(A). Then we have:

Theorem 7. (cf. [13]) For every formula A, one has: A is a theorem of Łukasiewicz

logic iff for any two positive integers n and k and for every n-k-evaluation ekn, e
k
n(A)

is the initial state, i.e., the constantly one function.

On the light of this beautiful result, one may ask if some other game can be

analyzed inside many-valued logic. More than this, one would like to associate to each

game a many-valued logic of which the game constitutes a complete semantics. Even

if our attempts have been unsuccessful, in the next sections we will describe some

steps in this direction.
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5. Many-valued logic and probability

In this section we will discuss Hájek’s proposal to treat probability inside

many-valued logic [19, 21]. It will turn-out that Hájek ideas allow for a logical

treatment of probabilistic games.

In principle, many-valued logic and probability logic are very different: the first

one is the logic of vagueness, whereas the second one is the logic of uncertainty. For

instance, a sentence like: there is much traffic in the highway, is vague, and its truth

can be measured by an intermediate number, even if we know exactly how many

cars are there. So such a sentence belongs to many-valued logic. To the contrary, the

sentence: the democratic party will win the next elections in USA, is uncertain, but

it will become true or false after the elections. The intermediate values are needed

to measure the degree of belief, and not the degree of truth. Nevertheless, it is

possible to treat probability by means of many-valued logic, using a modality P ,

to be interpreted as it is probable that. In this context, the probability of A becomes

the truth value of the sentence P (A): it is probable that A. In [19], Hájek introduces

a system called FP (RPL) in order to treat simple probability. Then in [22] the authors

introduce an extension FP (ŁΠ 12 ) of FP (RPL), in which it is possible also to treat

conditional probability (there, the authors assume that the conditioning event has

positive probability, but it is possible to extend the system in order to avoid this

restriction, cf. [21]).

The language of FP (ŁΠ 12 ) contains propositional variables, Łukasiewicz con-

junction &L, Łukasiewicz implication →L, product conjunction &π, product implica-

tion →π, the constants ⊥ and
1
2 , and the modal operator P . Formulas split in two

classes, the Boolean formulas, i.e, formulas without occurrence of the operator P and

of 12 , and modal formulas which are built from
1
2 , and formulas of the form P (A), A

a modal formula, closing under the connectives &L, →L, &π and →π. An evaluation

e of Boolean formulas maps propositional variables into subsets of a ground set X.

Then e can be extended to an evaluation (which we still call e, by abuse of language)

over all Boolean formulas as follows:

e(⊥)= ∅;

e(A&LB)= e(A&πB)= e(A)∩e(B);

e(A→LB)= e(A→π B)= (X \e(A))∪e(B).

When dealing with Boolean formulas, the connectives &L and &π, as well as →L and

→π, are interpreted in the same way (classical conjunction and classical implication

respectively), so in this context we will simply write & and→. We will see in a moment

that the interpretations of &L and &π, as well as the interpretations of →L and →π
differ when dealing with modal formulas.

In order to extend e to modal formulas, we need a measure µ on the powerset

of X. Then e is extended as follows:

e( 12 )=
1
2 ;

If A is any Boolean formula, then e(P (A))=µ(e(A));

e(C&LD)= e(C)?L e(D);

e(C&πD)= e(C)?π e(D);
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e(C→LD)= e(C)⇒L e(D);

e(C→πD)= e(C)⇒π e(D).

Note that if C is a modal formula, then e(C) is a real number, whereas if A is a Boolean

formula, then e(A) is a subset of X. To avoid this asymmetry, let us define, for every

evaluation e, a function ve(x,A) (x∈X, A a formula) as follows:

If A is a Boolean formula, then ve(x,A) = 1 if x ∈ e(A), and ve(x,A) = 0

otherwise.

If A is a modal formula, then ve(x,A)= e(A).

In this way, the truth value of a formula is always a real number in [0,1],

therefore we can also define the truth value of mixed formulas like A&LB were A is

Boolean and B is modal.

Definition 1. The logic FP (ŁΠ 12 ) is defined to be the set of formulas A such that

for every choice of X, µ and e, and for every x∈X, one has ve(x,A)= 1.

It is important to observe that FP (ŁΠ12 ) has a Hilbert-style axiomatization

(cf. [22]). Thus in principle it is possible to reason about probability inside a sys-

tem of propositional logic. Another important remark is the following: the condi-

tional probability of A given B (A and B Boolean formulas) can be expressed as

P (A |B)
def
= P (B)→π P (A&B). Indeed, for every evaluation e such that e(P (B)) 6=0,

one has:

e(P (B)→π P (A&B))= e(P (B))⇒π e(P (A&B))=
e(P (A&B))

e(P (B))
.

If we interpret the probability of any event C as e(P (C)), then e(P (A&B))e(P (B)) is precisely

the conditional probability of A given B.

6. Towards a logical interpretation of the probabilistic

variants of Rényi-Ulam game

In order to deal with the probabilistic games described above inside many-

valued logic, one may add to FP (ŁΠ 12 ) some propositional constants, representing

the data of the game (like e.g. questions-answers) and the axioms governing their

probabilities. For instance, in the case of probabilistic Ulam game, we need:

• constants Li, whose meaning is the unknown number is less than i;

• constants Yik whose meaning is: The k
th question: “is the unknown number less

than i?” has been answered affirmatively.

Then we need axioms reflecting the rules of the game. First note that every

rational number r ∈ [0,1] can be represented as a sentence using 12 , ⊥, &L, →L, &π
and →π. That is, for every rational r∈ [0,1], there is a sentence r such that for every

evaluation e one has e(r)= r (cf. [23]). Thus, if the probability p of an error is a rational

number, then we can express the fact that Responder can lie with probability p by

the axioms:

Li→L (P (Yik)↔L ¬Lp), and

¬Li→L (P (Yik)↔L p)
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where ¬LC and C↔LD stand for C→L⊥ and (C→LD)&L(D→L C), respectively.

Of course, we need other axioms, for instance the axioms saying that for different

k1,. .. ,kh and for i≤n, the events Yik1 ,. .. ,Yikh are independent, or that the probability

of Li is
i−1
n , etc. However, it is not too hard to write down axioms which describe

the situation completely. Assuming that the confidence parameter q is a rational

number, then we can check if some sequence of answers Ai11,. ..Aihh, where Aijj
is either Yijj (which means that the question: is the unknown number less that ij?

has been answered affirmatively) or ¬LYijj (which means that the question is the

unknown number less that ij? has been answered negatively), is sufficient to detect

the unknown number with probability at least q. Indeed, let A be the conjunction

of all formulas Aijj . Then we can say that with probability at least q the unknown

number is m iff in our system we are able to derive the formula:

q→L P ((Lm+1&¬LLm) |A),

where as usual P (C |D) is an abbreviation for P (D)→π P (C&D).

As we said in the introduction, the possibility of translating the learning

algorithm inside a logical system has some theoretical interest, but has no practical

use: the logical formalization is by far harder than the algorithm itself. More than

this, we can describe the algorithm inside a logic, but this does not give a semantics

for the logic itself.

7. Towards a duality between logics and games

The problem of establishing a duality between logics and games in such a way

that the game constitutes a semantics for the logic is a very interesting one. As far

as we know, logicians tried to associate to interesting logics some ad hoc (hence not

interesting in themselves) games, thus giving priority to logics. The link between

Łukasiewicz logic and Rényi-Ulam game with lies is an example where an interesting

logic is related to an interesting game. We would like to find other examples of

connections of this kind.

In this section we outline some general ideas in order to reach this goal. To any

of the games illustrated above, we can associate a collection of states of knowledge,

representing each the situation of the game after a sequence of questions-answers. The

set of states can be partially ordered lettingK ≤K ′ iff the stateK is more informative

than the state K ′. Moreover we can always define the conjunction of two states: if K

and K ′ correspond to a sequence Q (Q′, respectively) of questions and to a sequence

A (A′, respectively) of answers, then the conjunction of K and K ′ should be the state

representing the sequence Q◦Q′ of questions and the sequence A◦A′ of answers. This

gives an interpretation of conjunction &. The interpretation of implication should be

the following: K⇒K ′ is the greatest (i.e., the less informative) state S such that the

conjunction of S and K is ≤K ′ (i.e., more informative than K ′). Of course, we need

to prove that such a greatest state S always exists.

Now we have to look for the appropriate states of knowledge for each game.

For instance, in the case of the (non probabilistic) Guessing Secrets game with two

secrets, one may represent a state of knowledge as a subgraph of the complete graph

with N nodes (the edges of this graph are those which have not been excluded by the
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sequence of questions-answers). The intersection of two states of knowledge G1 and

G2 is the graph with N nodes whose edges are those common to G1 and G2. Finally,

the implication of two states of knowledge G1 and G2 is the graph with N nodes

whose edges are those of G2 plus those of the complement of G1. Unfortunately, the

underlying logic is classical logic. This might be expected, because the conjunction

of states is clearly an idempotent operation (i.e., the conjunction of a state K with

itself is K), like in classical logic.

The situation of probabilistic Ulam game is more interesting. Along the line

of the semantics of Rényi-Ulam game with lies, one is tempted to represent the

state of knowledge corresponding to a sequence Q of questions and a sequence A

of answers by the function K
A

Q
defined, for all x ∈ X, by K

A

Q
(x) = ph(1− p)n−h,

where n is the total number of questions, and h is the number of questions which

violate x. Note that a state of knowledge K allows us to compute for every x, the

probability that x is the unknown number given the sequence of questions and the

sequence of answers it represents. Indeed, let R(Q,A) denote the event the sequence

of Responder’s answers to the sequence of questions Q is A, and let for all x∈X, Nx
denote the event the unknown number is x. Then K

A

Q
(x) as defined above denotes the

conditional probability P (R(Q,A) |Nx). What we need for a complete representation

of the situation is the reverse probability, that is the function P (Nx |R(Q,A)), which

expresses, for every x ∈ X, the probability that the unknown number is x given

that the sequence of Responder answers to the sequence of questions Q is A. This

probability can be computed by the Bayes formula:

(�) P (Nx |R(Q,A))=
P (R(Q,A) |Nx) ·P (Nx)

P (R(Q,A))
.

Now P (Nx) =
1

n , where n is the cardinality of the search space X. As regards to

P (R(Q,A)), one has:

P (R(Q,A))=
∑

x∈X

P (Nx) ·P (R(Q,A) |Nx)=
∑

x∈X

1

n
·K

A

Q
(x).

Thus the states of knowledge defined in this way contain enough information about

Questioner’s knowledge.

With this definition, the conjunction of two states K and K ′ becomes their

product, i.e., the function K?K ′ defined for every x∈X, by K?K ′(x)=K(x)K ′(x).

This may suggest that the corresponding logic is product logic. However, the role of

product implication is not completely clear. For instance, if K(x) = p and K ′(x) =

1−p, then the product implication K ′(x)⇒πK(x) is equal to
p
1−p , a number which

in general is not a product of factors equal to p or to 1−p. Thus K ′(x)⇒π K(x) is

not a state of knowledge which may occur in the game.

Our plan for future research is to investigate a slight variant of probabilistic

Ulam-Rényi game in order to obtain an appropriate game semantics for product logic.
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