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Abstract: The modal µ-calculus is an extension of modal logic with two operators µ and ν, which

give the least and greatest fixpoints of monotone operators on powersets. This powerful logic is

widely used in computer science, in the area of verification of correctness of concurrent systems. In

this survey we review both the theoretical aspects of the modal µ-calculus and its applications to

computer science.
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1. Introduction

The subject of this survey is the modal µ-calculus, a formalism introduced by

Dexter Kozen in [1], which nowadays represents a very active research area in both

theoretical and practical computer science. The letter µ reminds that the µ-calculus

is a logic capable of expressing least and greatest solutions of fixpoint equations

X = f(X), where f is a monotone function mapping some powerset into itself. In

fact, the notation µX.f(X) is used for the least fixpoint of the function f , and the

notation νX.f(X) is used for the greatest fixpoint of f. As the name suggests, modal

µ-calculus is built on top of modal logic; for many other µ-calculi see [2].

Despite the intense research activity which has been done in the modal

µ-calculus in its two decades of life, not very much is known on the modal µ-calculus

as a mathematical object. This is true for example about the expressiveness of the

logic: it is not completely clear what we can say with a formula of modal µ-calculus,

although the beautiful Janin-Walukiewicz Theorem, see [3], sheds light on this issue.

Surely, the modal µ-calculus subsumes many traditional logics of programs, hence it

captures the most used correctness properties of computer systems. But what is there

besides the traditional logics of programs? This is an informal but interesting open

problem.

Another, more applicative issue is the model checking problem, namely whether

it is possible, and how, to check efficiently (that is, in polynomial time) whether

a finite structure satisfies a formula of modal µ-calculus. This is a formal problem

corresponding to the informal problem of deciding whether a computer system
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(assumed to have finitely many states) is correct with respect to its specifications.

Since the model checking problem is in the complexity class NP ∩ co−NP by [4],

there is an evident link with the famous problem P =?NP .

This survey has no claim of originality or exhaustivity, and is just an updated

collage of previous surveys, in particular [5–7].

The rest of the paper is organized as follows. In Section 2 we give some

applicative motivations. In Sections 3 and 4 we review the syntax and semantics

of the modal µ-calculus. In Section 5 give some examples of formulas. In Section 6

we recall some logics of programs which can be translated into the modal µ-calculus.

In Section 7 we develop some theoretical aspects. Finally in Section 8 we discuss the

model checking problem, which is the most interesting applicative aspect of the modal

µ-calculus.

2. The applicative context

The most important application area for the modal µ-calculus is the formal

specification and verification of computer systems. In fact the production of any

computer system, be it software or hardware, must start with the specification of

what the system to be produced is supposed to do.

However the production of computer systems, like all human activities, is

error-prone, so it may happen that the final product does not meet the initial

specification, and this may cause an incorrect behavior of the system. Another source

of problems is that the specification itself may be imprecise or incomplete, so that the

system may satisfy the specification but yet behave incorrectly.

So, in order to ensure a correct behavior of the system, one has to work in two

directions:

1. make the specifications precise and understandable;

2. make it feasible to verify whether a system meets a specification.

It is commonly accepted that these goals are easier to accomplish if one uses

formal methods. In the formal approach, a system is modeled by some mathematical

structure, and a specification is a list of mathematical properties which may be true

or false in the structure.

One widely used structure for modeling computer systems is represented by

transition systems, which we will discuss in a subsequent section. The most interesting

properties which one wants to verify depend on the kind of application. For example,

an operating system installed on a computer is supposed to provide a permanent

service to the user of the computer, so an interesting property could be:

The system never stops (unless the computer is switched off).

This is an example of a safety property. Intuitively, safety properties say that

something bad will never happen.

As another example, it may be that some resource, say a printer, is shared by

many users, and the program wich monitors may have to fulfill the requests of each

user to access the resource. If the resource is mutually exclusive, in general not all the

requests can be fulfilled immediately, as the resource may be already occupied when
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a request arrives; so the monitor must schedule the allocation of the resource in a way

that the following property holds:

Every request for the resource is eventually acknowledged.

This is an example of a liveness property. Intuitively, liveness properties say that

something good will eventually happen. Hence, in a sense, liveness is dual to safety.

Note that often, safety properties alone or liveness properties alone are trivial

to satisfy, and the problem is to satisfy properties of both kinds simultaneously.

As a third example, consider a message buffer. Usually it is assumed that the

buffer has a First In First Out behavior, namely the buffer preserves the order of the

messages; this can be expressed by the property:

If a message m enters the buffer before a message m′, then m exits the buffer

before m′.

Properties of this kind are called precedence properties. They express that things

happen in the right order. They can be viewed as generalizations of safety or liveness

properties.

Properties like in the examples above can be formalized either directly in

a temporal logic, or indirectly in the modal µ-calculus, via a translation of temporal

logic into the modal µ-calculus.

3. The syntax of the modal µ-calculus

3.1. The syntax of formulas

Fix a set Rel of relation symbols, a set At of atoms and a set V ar of variables.

The formulas of the modal µ-calculus over Rel, At and V ar are defined by the

following syntax:

φ ::= false | true | X | P | ¬P | φ∨φ | φ∧φ | 〈R〉φ | [R]φ | µX.φ | νX.φ,

where X ∈V ar, P ∈At and R∈Rel.

The operators ¬,∨,∧ are the usual boolean connectives. The operators [R] and

〈R〉 are the box and diamond operators of modal logic. The operators µ and ν give

the least and greatest fixpoint operators.

Note that negation is allowed only in front of atoms. In this way, the function

defined by any formula φ(X) containing a variable X is semantically monotone in X,

hence the least and greatest fixpoints of the function exist.

However, the negation of closed formulas can be defined by exchanging P with

¬P , ∧ with ∨, 〈R〉 with [R] and µ with ν.

3.2. Simultaneous fixpoints

There is a variant of the modal µ-calculus that admits simultaneous fixpoints of

several formulas. This does not increase the expressive power, but often allows more

modular and easier to read formalizations. The mechanism for building simultaneous

fixpoints is the following: given formulas φ1, . .. ,φk and variables X1,. . .,Xk,

S :=







X1=φ1
...
Xk =φk

is called a system, which can be used to build the formulas µXi.S and νXi.S.
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4. The semantics of the modal µ-calculus

4.1. Transition systems

Fix a set Rel of relation symbols, a set At of atoms and a set V ar of variables.

A transition system or Kripke structure for Rel, At and V ar is a structure K with

universe V (whose elements are called vertexes or states), binary relations ER⊆V ×V

for each R ∈Rel (whose elements are called edges or arcs or transitions), and sets

IP ⊆V for every P ∈At and IX ⊆V for every X ∈V ar.

4.2. Kripke semantics

The formulas of the modal µ-calculus are evaluated on transition systems at

a particular vertex. Given a sentence φ and a transition system K with vertex v, we

write K,v |=φ to denote that φ holds in K at vertex v. The set of vertexes v ∈V such

that K,v |= φ is denoted by ‖φ‖K. We omit the definition of ‖φ‖K for the obvious

cases. For the modal operators:

‖〈R〉φ‖K := {v : there is w such that (v,w)∈ER and w∈‖φ‖
K};

‖[R]φ‖K := {v : for all w, if (v,w)∈ER, then w∈‖φ‖
K}.

To understand the semantics of fixed point formulas, note that a formula φ(X)

with a variable X defines on every transition system K (with vertex set V , and with

interpretations for variables other than X occurring in φ) an operator φK : P (V )→

P (V ) assigning to every set X ⊆V the set φK(X) := ‖φ‖K,X = {v ∈V : (K,X),v |=φ}.

As X occurs only positively in φ, the operator φK is monotone for every K, and

therefore, by a well-known theorem due to Knaster and Tarski, has a least fixpoint,

lfp(φK), and a greatest fixpoint, gfp(φK). Now we put:

‖µX.φ‖K := lfp(φK), ‖νX.φ‖K := gfp(φK).

4.3. Simultaneous fixpoints

Given a system

S :=







X1=φ1
...
Xk =φk

of k equations and a Kripke structure K, we have an operator SK mapping a k-tuple

X =(X1, . .. ,Xk) of sets of vertexes to S
K
1 (X), .. . ,S

K
k (X) with

SKi (X)= ‖φi‖
(K,X).

As SK is monotone, there exist the least fixpoint lfp(S) = (Xµ1 , . .. ,X
µ
k ) and the

greatest fixpoint gfp(S)= (Xν1 , .. . ,X
ν
k ).

Now set ‖µXi.S‖
K :=Xµi and ‖νXi.S‖

K :=Xνi .

Simultaneous fixpoints can always be eliminated, in fact:

Proposition 1. (see [2]) Every formula of the modal µ-calculus with simultaneous

fixpoints can be translated into an equivalent formula without simultaneous fixpoints.

4.4. Approximants

Another way of defining the semantics of µ-calculus is via approximants. The

idea is to approximate least fixpoints from below and greatest fixpoints from above.

We present approximants as follows.
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Consider infinitary modal logic, which is defined by the syntax:

φ ::= true | false |X |P | ¬P |
∨

i∈I

φi |
∧

i∈I

φi | 〈R〉φ | [R]φ,

where I ranges over all possible sets of indexes, even infinite.

The semantics of infinitary modal logic can be defined on transition systems by

extending the semantics of modal logic in the obvious way.

Let α be an ordinal and let φ(X) be a formula of infinitary modal logic. The

approximant formulas µαX.φ(X) and ναX.φ(X) are formulas of infinitary modal logic

inductively defined by:

• µ0X.φ(X)= false;

• µα+1X.φ(X)=φ(µαX.φ(X));

• µλX.φ(X)=
∨

α<λµ
αX.φ(X) for λ limit ordinal;

• ν0X.φ(X)= true;

• να+1X.φ(X)=φ(ναX.φ(X));

• νλX.φ(X)=
∧

α<λν
αX.φ(X) for λ limit ordinal.

Now it results:

Theorem 1. (Knaster-Tarski)

• ‖µX.φ(X)‖K= ‖µ|K|
′

X.φ(X)‖K;

• ‖νX.φ(X)‖K= ‖ν|K|
′

X.φ(X)‖K,

where |K|′= |K| if K is finite, and |K|′= |K|+ otherwise.

4.5. Bisimulation

As a modal logic, the modal µ-calculus distinguishes between transition systems

only up to behavioral equivalence, captured by the notion of bisimulation.

A bisimulation between two transition systems K and K′ is a relation Z ⊆V ×V ′

between the domains of K and K′, respecting atoms and variables in the sense that

K,v |= P iff K′,v′ |= P for P ∈ At and (v,v′) ∈ Z, and similarly for variables, and

satisfying the following back and forth conditions.

Forth: for all (v,v′)∈Z, R∈Rel and every w such that (v,w)∈ER, there exists

a w′ such that (v′,w′)∈E′R and (w,w
′)∈Z.

Back : for all (v,v′) ∈ Z, R ∈ Rel and every w′ such that (v′,w′) ∈ E′R, there

exists a w such that (v,w)∈ER and (w,w
′)∈Z.

Two transition systems with a distinguished point, K,u and K′,u′, are called

bisimilar if there is a bisimulation Z between K and K′ such that (u,u′)∈Z.

5. Examples of formulas

First of all, a natural question is: what do we gain in adding fixpoints to modal

logic?. The answer is: we pass from “local” to “global” properties. In fact, informally

speaking, one can see that a formula of modal logic, say of length n, only can talk

about the points of a structure which have distance at most n from the current point;

instead, as we will see in this section, a formula of µ-calculus can talk about the entire

structure. Thus the gain in expressiveness is enormous.
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Another question could be: what is the difference between µ and ν?. The an-

swer is: µ corresponds to finite computations, and ν corresponds to infinite computa-

tions. This will be clarified by some examples.

We have seen that two kinds of desirable properties of systems are safety and

liveness. In terms of modal µ-calculus, it is not unreasonable to say that µ is liveness

and ν is safety. Consider first simple ν formulas. For example:

νZ.P ∧ [R]Z

is a relativized always formula: P is true along every R-path. Slightly more complex

is the weak until formula

νZ.Q∨(P ∧ [R]Z)

saying that on every R-path, P holds until Q holds (in particular, P holds forever if

Q never holds in the path). Both formulas can be understood directly via the fixpoint

construction, or via the idea of ν as infinite looping: for example the second formula

is true if either Q holds, or if P holds and wherever we go next the formula is true,

etc., and because the fixpoint is maximal, we can repeat forever.

In contrast, formulas beginning with µ require something to happen, and thus

are liveness properties. For example:

µZ.P ∨ [R]Z

says that on all infinite paths, P eventually holds; and

µZ.Q∨(P ∧ [R]Z)

is a strong until operator: on all paths, P holds until Q holds, and Q does eventually

hold. Again, these can be understood by regarding µ as a finite looping: in the second

case, we are no longer allowed to repeat the unfolding forever, so we must eventually

bottom out in the Q disjunct.

All these formulas can be translated into the temporal logic CTL. A formula

which goes beyond CTL is:

νX.P ∧ [R][R]X,

which says that P holds at every even position. This kind of cyclic properties is not

expressible in temporal logic, but it is expressible in PDL. But in order to exploit fully

the expressive power of the modal µ-calculus, we must mix fixpoints that depend on

one another. Consider the formula:

µY.νZ.(P ∧ [R]Y )∨(¬P ∧ [R]Z).

This formula looks horrible, but it has a simple meaning, which can be seen using

the slogans. µY ... is true iff νZ ... is true iff (P ∧ [R]Y )∨(¬P ∧ [R]Z), which is true if

either P holds and at the next vertexes we loop back to µY ..., or P fails and at the

next vertexes we loop back to νZ .... By the slogan that µ means finiteness, we can

only loop µY ... finitely many times on any path, hence P is true only finitely often

on any path.

It is also worth considering the negative of this, namely infinitely often, as it

illustrates the finite unfolding of µ within an outer ν. Consider the formula

νY.µZ.〈R〉Y ∨〈S〉Z.

Applying the slogans, we see that this is true if either we can do an R and loop to

Y , or do an S and loop to Z. We can only loop to Z finitely often, so we can only
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do finitely many consecutive Ss; but if we do an R and loop back out to Y , we then

re-enter the inner fixpoint, free to do another independent finitely many Ss.

We shall see in a later section that this so-called alternation of fixpoint operators

does indeed give ever more expressive power as the number of alternations increases.

It also appears to increase the complexity of model checking: all known algorithms

are exponential in the alternation, but whether this is necessarily the case is the main

remaining open problem about the modal µ-calculus. However, the practitioner who

is alarmed by the thought of even more complex formulas can take comfort in the

widely asserted proposition that one never actually needs more than two alternating

fixpoints, and even two is a bit unusual. In fact, many would go further and say that

in real life we are only interested in safety properties.

There are two main reasons why alternating formulas might appear. The first is

if one has a front end working in CTL∗ (or another complex logic) and is translating

into modal µ-calculus for the main engine. This is theoretically possible, by work of

Mads Dam [8], but the translation is sufficiently complex that it would be surprising

to find a tool doing this. The second is if one needs to express fairness properties.

In fact, both weak fairness (an event continuously enabled must happen) and strong

fairness (an event enabled infinitely often must happen) can be written in the modal

µ-calculus, and require mixing fixpoints. For example, to say that a relation R is

fairly treated means that there are no paths on which R is enabled infinitely often,

but occurs only finitely often; this can be written as:

νX.µY.νZ.[R]X∧(〈R〉true⇒ [−R]Y )∧ [−R]Z,

where [−R]φ means
∧

S 6=R[S]φ.

Of course, we may be in a situation where the system is inherently unfair – e.g.,

it is a normal interleaving of concurrent components – and in that case we can use

a similar idea to express properties such as: P eventually holds on all paths, provided

that R is fairly treated, which is left as an exercise to the reader. However, fairness

can also be handled by other means, such as defining the set of fair paths outside the

logic, and adapting algorithms to apply only to fair paths.

6. Some sublogics

6.1. LTL

Linear time temporal logic (LTL) has been the first temporal logic used in

verification, see [9]. This logic is obtained from propositional logic by adding the

operator O (next) and the operator U (until). The syntax of LTL is given by:

φ ::= P | ¬φ |φ∧φ |Oφ |φUφ,

where P denotes an atomic proposition.

The formulas of LTL are interpreted only on the “linear” Kripke structure

(ω,Succ), where ω is the set of all natural numbers, and Succ is the relation which

relates each n ∈ ω to its successor n+1. Intuitively, the natural numbers represent

instants of time. Oφ means that φ holds at the next time, and φUψ means that there

is a time where ψ is true, and before the first such time, φ always holds.

Two useful derived operators are Fφ = trueUφ and Gφ = ¬F¬φ. Thus, Fφ

means that φ is true sometimes, and Gφ means that φ is true always. Another
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derived operator is the before operator B, given by φBψ = ¬((¬φ)Uψ). That is, if

ψ ever occurs, then there is a φ occurring before (the formula is trivially true if ψ

never occurs). This operator is useful to express precedence properties.

The logic LTL can be translated into the modal µ-calculus via the translation

t defined by:

• t(P )=P ;

• t commutes with the booleans;

• t(Oφ)= 〈Succ〉t(φ);

• t(φUψ)=µX.t(ψ)∨(t(φ)∧〈Succ〉X).

6.2. CTL

Computation tree logic (CTL) is a branching time temporal logic, introduced

in [10]. Unlike LTL, in CTL the evolution of time is seen as nondeterministic, and

every instant of time has several successors, rather than exactly one as in LTL; so,

the entire structure of time is a tree. In CTL we are allowed to use, besides the LTL

operators O and U , also the path quantifiers E (for some path) and A (for all paths).

More precisely, the syntax of CTL is defined by:

φ ::= P | ¬φ |φ∧φ |QOφ |Q(φUφ),

where Q is a path quantifier, that is, E or A.

As usual, we will interpret the logic CTL only over structures which are total,

in the sense that every point has at least one successor. This implies that from every

point x of the structure there is some infinite path starting from x. Now, EOφ means

that there is an infinite path, starting from the current point, where φ holds the next

time, and this turns out to be equivalent to simply 〈R〉φ. Likewise, AOφ is equivalent

to [R]φ. Moreover, E(φUψ) means that there is an infinite path, starting from the

current point, where φUψ holds, and A(φUψ) means that for every infinite path

starting from the current point, φUψ holds.

Note that also in CTL we can use the derived operators F,G,B introduced in

LTL; in particular, EFφ will mean that φ is true sometimes, and AGφ will mean that

φ is true always (but, unlike the LTL case, this will be true of arbitrary total trees,

rather than just linear structures).

We can translate CTL into the modal µ-calculus as follows:

• t(EOφ)= 〈R〉t(φ);

• t(AOφ)= [R]t(φ);

• t(E(φUψ))=µX.t(ψ)∨(t(φ)∧〈R〉X);

• t(A(φUψ))=µX.t(ψ)∨(t(φ)∧ [R]X).

6.3. CTL*

We have seen that CTL introduces linear time operators and path quantifiers.

However, not all combinations of these operators are allowed in CTL. If we allow any

such combination, we get the stronger logic CTL∗, see [11]. Often the syntax of CTL∗
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is presented by talking about state formulas and path formulas. Here instead, we

present the following, equivalent but simpler (in our opinion) syntax:

φ ::= P | ¬φ |φ∧φ |Eλ(φ1,. . .,φn),

where λ(P1, .. .,Pn) is a formula of LTL. (We extend from CTL to CTL
∗ the proviso

that the models should be total).

Clearly, to translate CTL∗ into the modal µ-calculus, it is enough to translate

formulas of the form Eλ(P1, .. .,Pn). A way to do this is to express Eλ(P1, . .. ,Pn) in

monadic second order logic, observe that the formula is invariant under bisimulation,

and use the Janin-Walukiewicz theorem to conclude that the formula is expressible in

the modal µ-calculus. More direct translations have been given, see [8]; however, any

such translation must be exponentially complicated, because the modal µ-calculus

is decidable in exponential time, whereas CTL∗ is decidable in no less than double

exponential time.

6.4. PDL

Propositional Dynamic Logic (PDL, see [12]) is another, widely used logic for

programs, which can be seen as a generalization of Hoare logic. The idea is to view

a program as a relation between its inputs and its outputs, hence for every program we

will have a modality; so, for example, a partial correctness assertion about a program p

will have the form P → [p]Q, whereas a total correctness will have the form P →〈p〉Q.

The logic PDL allows us to express correctness assertions and quite a lot more.

In principle, one can consider programs of any programming language; here we

consider only programs built from regular expressions, that is:

p ::= a | p;p | p∪p | p∗,

where a denotes an atomic program, p;p denotes concatenation, p∪p denotes nonde-

terministic choice, and p∗ denotes finite iteration.

The syntax of PDL formulas now is:

φ ::= P | ¬φ |φ∧φ | 〈p〉φ.

We can translate PDL into the modal µ-calculus as follows:

• t(〈a〉φ)= 〈a〉t(φ);

• t(〈p;p′〉φ)= t(〈p〉t(〈p′〉φ));

• t(〈p∪p′〉φ)= t(〈p〉φ)∨ t(〈p′〉φ);

• t(〈p∗〉φ)=µX.t(φ)∨ t(〈p〉X).

7. Some theory

7.1. Fixpoint regeneration and the fundamental semantic theorem

Assume a structure K and a formula φ. Suppose that we annotate the vertexes

with sets of subformulas, such that the sets are locally consistent : that is, v is

annotated with P iff v models P , and similarly for ¬P ; v is annotated with

a conjunction iff it is annotated with both conjuncts; v is annotated with a disjunction

iff it is annotated with at least one disjunct; if v is annotated with [R]ψ (respectively,

〈R〉ψ), then every (respectively, at least one) R-successor is annotated with ψ; if v is
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annotated with a fixpoint or fixpoint variable, it is annotated with the body of the

fixpoint. We write v@ψ if the vertex v is annotated with ψ.

We call such an annotated structure a quasi-model.

A choice function f is a function which, for every disjunctive formula ψ1∨ψ2
and every vertex v annotated with ψ1∨ψ2, chooses one disjunct f(v,ψ1∨ψ2); and

for every subformula 〈R〉ψ, and every vertex v annotated with 〈R〉ψ, chooses one

R-successor w= f(v,〈R〉ψ) annotated with ψ.

A pre-model is a quasi-model equipped with a choice function.

Given a pre-model with choice function f , the dependencies of a vertex v that

satisfies a formula ψ are defined thus: v@ψ1∧ψ2 >v@ψi for i=1,2; v@[R]ψ >w@ψ

for every pair (v,w) ∈ ER; v@ψ1 ∨ψ2 > v@f(v,ψ1 ∨ψ2); v@〈R〉ψ > f(v,〈R〉ψ)@ψ;

v@µZ.ψ > v@ψ, and similarly for ν; v@Z > s@ψ, where Z is bound by µZ.ψ or

νZ.ψ. A trail is a maximal chain of dependencies.

If every trail has the property that the highest (i.e., with the outermost binding

fixpoint) variable occurring infinitely often is a ν-variable, the pre-model is said to

be well-founded. Equivalently: in any trail, a µ-variable can only occur finitely often

unless a higher variable is encountered.

The fundamental theorem on the semantics of the modal µ-calculus can now

be stated:

Theorem 2. A well-founded pre-model is a model: in a well-founded pre-model, if v

is annotated with ψ, then indeed v |=ψ.

The theorem in this form is due to [13], from which the term “well-founded

pre-model” is taken. Stirling and Walker [14] present a tableau system for model-

checking on finite structures, and the soundness theorem for this is essentially a finite

version of the fundamental theorem with a more relaxed notion of choice; the later

infinite-state version of [15, 16] is the fundamental theorem, again with a slight

relaxation on choice.

A converse is also true:

Theorem 3. If in some structure v |=φ, then there is a locally consistent annotation

of the structure and a choice function which make the structure a well-founded

pre-model.

The fundamental theorem, in its various guises, is the precise statement of the

slogan that “µ means finiteness”. To explain why it is true, we need to make a finer

analysis of approximants.

Assume a structure K and a formula φ. Let Y1, . .. ,Yn be the µ-variables of φ, in

an order compatible with formula inclusion: that is, if µYj .ψj is a subformula of µYi.ψi,

then i≤ j. If Yi is some inner fixpoint, then its denotation depends on the meaning of

the fixpoints enclosing it: for example, in the formula µY1.〈R〉µY2.(P ∨Y1)∨〈S〉Y2, to

calculate the inner fixpoint µY2 we need to know the denotation of Y1. We may ask:

what is the least approximant of Y1 that could be plugged in to make the formula

true? Having fixed that, we can then ask what approximant of Y2 is required. The

idea is the notion of signature. A signature is a sequence σ = α1, .. . ,αn of ordinals,

such that the ith least fixpoint will be interpreted by its αith approximant (calculated

relative to the outer approximants).
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The definition and use of signatures inevitably involves some slightly irritat-

ing book-keeping, and they appear in several forms in the literature. In [13], the

Fischer-Ladner closure of φ was used, rather than the set of subformulas. The sig-

natures were defined by syntactically unfolding fixpoints, rather than by semantic

approximants. In [14] and following work, a notion of constant was used, which allows

some of the book-keeping to be moved into the logic. Although all the notions and

proofs using them are interconvertible, the constant variant is perhaps easier to follow.

Add to the language a countable set of constants U,V,... Constants will be

defined to stand for maximal fixpoints or approximations of minimal fixpoints.

Specifically, given a formula φ, let Y1, .. . ,Yn be the µ-variables as above, let Z1, .. . ,Zm
be the ν-variables, let σ = α1, . .. ,αn be a signature, and let U1, . .. ,Un,V1,. .. ,Vm be

constants, which will be associated with the corresponding variables. They are given

semantics thus: if Yi is bound by µYi.ψi, then ‖Ui‖σ is ‖µ
αiYi.ψ

′
i‖σ, where ψ

′
i is

obtained from ψi by substituting the corresponding constants for the free fixpoint

variables of µYi.ψi. If Zi is bound by νZi.ψi, its semantics is ‖νZi.ψ
′
i‖σ. Given an

arbitrary subformula ψ of φ, we say a vertex v satisfies ψ with signature σ, written

v |=σ ψ, if v ∈‖ψ
′‖σ, where ψ′ is ψ with its free fixpoint variables substituted by the

corresponding constants.

Order signatures lexicographically. Now, given a pre-model for φ, extend the

annotations so that each subformula at v is accompanied by a signature – write

v@ψ[σ]. Such an extended annotation is said to be locally consistent if the signature is

unchanged or decreases by passing through boolean, modal or ν-variable dependencies,

and when passing through v@Yi it strictly decreases in the ith component and is

unchanged in the 1, .. . ,(i− 1)th components. It can now be shown, by a slightly

delicate but not too difficult induction, that if v@ψ[σ], then v |=σ ψ. Furthermore,

given a well-founded pre-model, one can construct a locally consistent signature

annotation – essentially, the Yi component of σ in v@ψ[σ] is the maximum number

(in the transfinite sense) of Yi occurrences without meeting a higher variable in trails

from v@ψ, and so on; the well-foundedness of the pre-model guarantees that this is

well-founded. This gives the fundamental theorem. (A little care is required to get

the details of this argument correct, as will be seen from an inspection of the proofs

in [13–15].)

The converse is quite easy: given a model, annotate the vertexes by the

subformulas they satisfy; for v@ψ assign the least σ such that v |=σ ψ; and choose

a choice function that always chooses the successor with least signature. It is easy to

show that this is a well-founded pre-model and signature assignment.

7.2. The finite model property and decidability

The notion of well-founded pre-model was introduced by Streett and Emerson

in order to establish the following theorem.

Theorem 4. The modal µ-calculus is decidable; that is, it is decidable whether

a formula has some model.

As a corollary of this proof, they obtain the small model property:

Theorem 5. If a modal µ-calculus formula has a model, then it has a finite model,

of size exponential in the size of the formula.
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These results were obtained by appealing to automata theory. First of all, one

can easily show that if a formula has a model, it has a model that is a tree (by

unraveling) and has bounded branching degree (by cutting off all the branches that

are not actually required by some diamond subformula, so that no more branches

are left than the number of diamonds of the formula). We can now construct

an automaton that accepts such bounded-branching tree models, by combining

a finite-state automaton to check the local consistency (i.e., to check that the putative

model is a pre-model), and a Rabin automaton (see Subsection 7.6) to check that the

pre-model is well-founded. Thus the formula is satisfiable if this product automaton

accepts some tree. Now established automata theory tells us that: (a) this question is

decidable, (b) if such an automaton accepts some tree, it accepts a regular tree, that

is, one that is the unraveling of a finite system; this gives the results.

One can, however, obtain a small model property, and thence decidability, by

a more direct argument on models. Take a pruned tree model as above, and equip it

with an annotation and choice function to make it a well-founded pre-model. Consider

an outermost maximal fixpoint νZ.ψ, say. Look at the first occurrence of a vertex v

labelled by Z; let F be the set of formulas annotating v. Now, if there is a vertex w

below v that is also annotated by F , prune the tree at w, and identify w with v. Repeat

for all Z labelled vertexes with repetitions below them. On the remaining infinite

branches of the tree, Z does not occur infinitely often; and by the well-foundedness

of the pre-model, no immediately inferior least fixpoint occurs infinitely often either;

so we still have a well-founded pre-model. Now repeat the procedure with the next

maximal fixpoint in, and so on. When all fixpoints have been processed, the result

is a finite graph that is still a well-founded pre-model. The repetition detection is

reminiscent of the classical filtration technique for PDL. Unfortunately, filtration

is not sound for minimal fixpoints, so we have this less constructive procedure. It

generates, naively, a model of triply exponential size; but it is intuitively easy, and of

course the existence of even a triply exponential model is enough to give decidability.

One can improve the complexity somewhat by being less simple-minded, but to obtain

the exponential upper bound of [13], which is in fact also the lower bound, one needs

the more sophisticated techniques of automata or games (for more on automata and

games, see the Subsections 7.6 and 7.7).

A different model for obtaining the small model property proceeds via a normal

form result for the modal µ-calculus. A formula is an automaton normal form, anf, if

it belongs to the following sublogic:

• P , ¬P and Z are anfs;

• if φ1 and φ2 are anfs, so is φ1∨φ2;

• if φ is an anf, then so are µZ.φ and νZ.φ;

• If each Γi is a finite set of anfs, Ri 6=Rj when i 6= j, and Σ is a finite set of

atoms and their negations, then:

Σ∧CoverR1Γ1∧ .. .∧CoverRnΓn

is an anf, where we introduce the notation:

CoverRΓ= (
∧

φ∈Γ

〈R〉φ)∧([R]
∨

φ∈Γ

φ).
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The term Cover suggests that the formulas belonging to Γ “cover” the

R-successors of the current point in a nontrivial way.

Walukiewicz in [17] (see also [18]) proves that every (closed) modal µ-calculus

formula is equivalent to an anf formula. Walukiewicz calls anfs “disjunctive formulas”.

However they are very close to characteristic automata (and in fact games). The proof

of the normal form result uses automata. What is interesting is that an anf formula

is satisfiable iff, by replacing all minimal fixpoints µX.φ(X) with φ(false) and all

maximal fixpoints νX.φ(X) with φ(true), we get a satisfiable formula. Note that the

resulting formula is a modal µ-calculus formula without fixpoints, for which proof of

the finite model property is easy.

7.3. Axiomatization

A related problem to decidability is the question of providing an axiomatization

of the theory of the modal µ-calculus. In his original paper, Kozen presents the

following axiomatization of the equational theory, where φ≤ψ means φ∨ψ=ψ (that

is, φ implies ψ), taking 〈R〉 and µ as primitives and defining [R] and ν by duality:

1. axioms for boolean algebras;

2. 〈R〉φ∨〈R〉ψ= 〈R〉(φ∨ψ);

3. 〈R〉φ∧ [R]ψ≤〈R〉(φ∧ψ);

4. 〈R〉false= false;

5. φ(µX.φ(X))≤µX.φ(X);

6. if φ(ψ)≤ψ then µX.φ(X)≤ψ.

Axiom 5 is the axiom of fixed point induction, in dual form; rule 6 says that

µ is indeed the least pre-fixed point. Note that for monotonic functions, the least

fixpoint and the least pre-fixed point coincide. (An equivalent presentation of the

axiom system is as an extension of minimal multi-modal logic K, with the additional

axiom φ(µX.φ(X))⇒ µX.φ(X) and the additional inference rule: if φ(ψ)⇒ ψ then

µX.φ(X)⇒ψ.)

However, despite the naturalness of this axiomatization, Kozen was unable to

show that it was complete. He was, however, able to show completeness for a restricted

language, the language of aconjunctive formulas, in which (roughly) fixpoint variables

are not allowed to occur in both branches of a conjunction.

Completeness for the full language remained open for more than a decade,

until it was finally solved by Walukiewicz in [17], who established that Kozen’s

axiomatization is indeed complete. The proof is very involved and utilises the

automata normal forms described above (which generalize the aconjunctive fragment).

It is reasonably straightforward to show using tableaux that if an anf formula φ is

consistent (that is, if φ⇒ false is not derivable in the system) then it has a model.

Much harder to prove is that every (closed) formula is provably equivalent within the

axiom system to an anf formula. Walukiewicz uses automata and games to show this.

More information can also be found in the notes [19].

It must be said that in Walukiewicz’s proof, the transitivity of the implication

is implicitly assumed. This is a form of cut, so we are left with the problem of finding

a cut-free proof system for the modal µ-calculus. Such systems exist for modal logic,
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but are not available (to the author’s knowledge) even for much weaker logics than

the modal µ-calculus, like PDL.

7.4. Alternation depth

We now look at the definition of (fixpoint) alternation depth. The idea is to

count alternations of minimal and maximal fixpoint operators, but to do so in a way

that only counts real dependency. The paradigm is always eventually versus infinitely

often: the always eventually formula

νY.(µZ.P ∨〈R〉Z)∧〈R〉Y

is, using brute-force model checking, really no worse to compute than two disjoint

fixpoints, since the inner fixpoint can be computed once and for all, rather than

separately on each outer approximant; on the other hand, the infinitely often formula

νY.µZ.(P ∨〈R〉Z)∧〈R〉Y

really does need the full double induction on approximants.

The definition of Emerson and Lei takes care of this by observing that the

eventually subformula is a closed subformula, and giving a definition that ignores

closed subformulas when counting alternations. The stronger notion of Niwiński,

which also has the advantage of being robust under translation to modal equation

systems, also observes that, for example, µX.νY.[R]Y ∧µZ.[R](X ∨Z) although it

looks like a µ/ν/µ formula, is morally a µ/ν formula, since the inner fixpoint does

not refer to the middle fixpoint.

It is possible to give algorithms that compute the alternation depth of a formula,

and this is how the notion was presented by Emerson and Lei in [20]. However, for our

purposes it is easier to start from a definition of classes of formulas, formalizing the

idea of a µ/ν/µ formula, etc.; such a definition is analogous to the usual definition of

quantifier alternation for predicate logic, an analogy which will be exploited later. This

is how Niwiński [21] presents the notion of alternation, and we follow his presentation.

A formula φ is said to be in the classes ΣNµ0 and Π
Nµ
0 iff it contains no fixpoint

operators. To form the class ΣNµn+1 (Π
Nµ
n+1, respectively), take Σ

Nµ
n ∪Π

Nµ
n and close

under the following rules:

1. if φ,φ2 ∈ Σ
Nµ
n+1 (Π

Nµ
n+1, respectively), then φ1∨φ2, φ1∧φ2, 〈R〉φ1, [R]φ1 ∈

ΣNµn+1 (Π
Nµ
n+1, respectively);

2. if φ ∈ ΣNµn+1 (Π
Nµ
n+1, respectively), then µZ.φ ∈ Σ

Nµ
n+1 (νZ.φ ∈Π

Nµ
n+1, respec-

tively);

3. if φ(Z),ψ ∈ ΣNµn+1 (Π
Nµ
n+1, respectively), then φ(ψ) ∈ Σ

Nµ
n+1 (Π

Nµ
n+1, respec-

tively), provided that no free variable of ψ is captured by a fixpoint operator

in φ.

If we omit the last clause, we get the definition of simple-minded alternation

ΣSµn , that just counts syntactic alternation; if we modify the last clause to read:

provided that ψ is a closed formula, then we obtain the Emerson-Lei notion ΣELµn .

(We write just Σµn when the distinction is not important, or when we are making

a statement that applies to all versions.)
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To get the symmetrical notion of alternation depth of φ, we can define it to

be the last n such that φ∈Σµn+1∩Π
µ
n+1, and we denote it by ad(φ). To make these

definitions clear, consider the following examples:

• The always eventually formula is ΠSµ2 , but not Σ
Sµ
2 , and so its simple alternation

depth is 2. However, in the Emerson-Lei notion, it is also ΣELµ2 , since νY.W ∧

〈R〉Y is ΠELµ1 and so ΣELµ2 , and by substituting the closed ΣELµ2 (and in fact

ΣELµ1 ) formula µZ.P ∨〈R〉Z for W we get always eventually in ΣELµ2 ; hence

the Emerson-Lei (and Niwiński) alternation depth is 1.

• The infinitely often formula is Σµ2 but not Π
µ
2 , in all three definitions, and so

has alternation depth 2.

• The formula µX.νY.[R]Y ∧ µZ.[R](X ∨Z) is ΣSµ3 , but not Π
Sµ
3 ; it is also

ΣELµ3 but not ΠELµ3 , since there are no closed subformulas to bring the

substitution clause into play. However, in the Niwiński definition, it is actually

ΣNµ2 : νY.[R]Y ∧W is Π
Nµ
1 and so ΣNµ2 ; we can substitute the Σ

Nµ
1 formula

µZ.[R](X∨Z) for W without variable capture, and so νY.[R]Y ∧µZ.[R](X∨Z)

is ΣNµ2 ; and now we can add the outer fixpoint, still remaining in Σ
Nµ
2 .

Alternation depth plays an important role in model checking. A natural

question is whether the hierarchy of properties definable by Σµn formulas is actually

a strict hierarchy, or whether it collapses at some point such that no further alternation

is needed. This problem remained open for a while; by 1990, it was known that

ΣNµ2 6=Π
Nµ
2 (see [22]). No further advance was made until 1996, when the strictness

of the hierarchy was established by Bradfield (see [23]).

Theorem 6. For every n, there is a formula φ∈Σµn which is not equivalent to any

Πµn formula.

Bradfield established this for ΣNµn , which implies the result for the other two

notions. At the same time, [24] independently established a slightly weaker hierarchy

theorem for ΣELµn .

The proof of [24] is technically complex, and the underlying stratagem is not

easy. Bradfield’s proof appears technically complex, but most of the complexity is

really just routine recursion-theoretic coding; the underlying stratagem is quite simple,

and in some ways surprising. If one takes first-order arithmetic, one can add fixpoint

operators to it, and one can then define a fixpoint alternation hierarchy in arithmetic.

A standard coding and diagonalization argument shows that this hierarchy is strict,

see [25]. The trick now is to transfer this hierarchy to the modal µ-calculus. Simply

by writing down the semantics, it is clear that if one takes a recursively presented

transition system and codes it into the integers, then for a modal formula φ ∈ Σµn,

its denotation ‖φ‖ is describable by an arithmetic Σµn formula. However, it is also

possible, given any arithmetic fixpoint formula χ, to build a transition system and

a modal formula φ, of the same alternation depth as χ, such that ‖φ‖ is characterized

by χ. If we take χ to be a strict Σµn arithmetic formula, then no Π
µ
n arithmetic

formula is equivalent to it, and therefore no Πµn modal formula is equivalent to φ. The

transition system that is constructed is infinite, but by the finite model property, the

hierarchy transfers down to the class of finite models.
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Both proof techniques construct explicit examples of hard formulas. Bradfield’s

examples are:

Theorem 7. The Σµn formula

µXn.νXn−1 .. .θX1.[c]X1∨〈R1〉X1∨ . ..∨〈Rn〉Xn,

where θ=µ if n is odd and θ= ν otherwise, is not equivalent to any Πµn formula.

A later, very elegant proof of the strictness of the hierarchy is given by Arnold

in [26]. The idea is to consider certain formulas Wn, describing winning positions for

the first player of a parity game, and to reduce each formula of class Σµn to Wn via

a contraction in the complete metric space of binary trees. Since all contractions in

a complete metric space have a fixpoint, a diagonal argument shows that Wn cannot

be of class Πµn.

7.5. Monadic logic

Recall that monadic second order logic is first order logic plus quantifiers on

sets. The definition of the semantics implies that the modal µ-calculus is included

into monadic second order logic: in fact, a point x belongs to µY.φ(Y ) iff x belongs

to all sets E such that E = φ(E), and x belongs to νY.φ(Y ) iff x belongs to some

set E such that E = φ(E). Moreover, the formulas of modal µ-calculus are invariant

under bisimulation, as can be seen, for example, by translating modal µ-calculus into

infinitary modal logic as we did in a previous section.

There is a nice converse to these remarks, due to Janin and Walukiewicz, that is:

Theorem 8. On arbitrary graphs, every formula of monadic second order logic

invariant under bisimulation is equivalent to a formula of modal µ-calculus.

One may ask whether there is an analogous theorem for the levels Σn of monadic

second order logic and the corresponding levels ΣNµn of the modal µ-calculus. The

answer is given in [27–29]: the correspondence holds for n=0,1,2 (n=0 is a classical

modal logic result of Van Benthem, see [30]) but fails for n≥ 3, because the formula

Wn is in Σ3, but is not in Σ
Nµ
n−1.

An interesting open problem is whether the theorem above, or its nth versions,

hold over finite graphs. So far we know only that the modal case (n = 0) is true,

see [31].

Another challenging question is whether, over arbitrary graphs, the modal

µ-calculus is included in Σ3. This is known to be true over several subclasses of

graphs, for instance over trees and over graphs of finite fixed degree, see [27].

7.6. Automata

The history of automata-theoretic approaches to verification and associated

fields has involved ever more invention of new types of automata, as it becomes

apparent that some particular restriction is technically inconvenient and can be lifted

without harm. In order to explain the main results, we shall need to introduce several

of these varieties; let us start at the beginning.

A deterministic automaton on finite words is the usual deterministic finite state

machine, accepting finite words over its input alphabet; a run of such an automaton
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is a path through the machine matching the input, and it accepts if the final state is

accepting. A nondeterministic automaton on finite words is the usual notion, namely

that the transition function may specify more than one successor state for a given

state and input letter; a run of such an automaton requires choosing one successor as

each nondeterministic choice, and the automaton accepts its input if some run accepts

that input.

There are now several orthogonal generalizations of this idea. Firstly, we may

allow infinite words as well as finite words. In this case, we must specify acceptance

conditions which determine when an infinite run is successful. There are many of

these; the most important are as follows. A Büchi acceptance condition specifies a set

G of states, such that we infinitely often meet a G-state on the run (mnemonic: a green

light must flash infinitely often). A Rabin acceptance condition specifies k sets Ri and

k sets Gi, and requires that for some i, we see Gi infinitely often, and don’t see Ri
infinitely often (mnemonic: k sets of lights; there must be one set where we see green

often and don’t see red often). In a Mostowski or parity acceptance condition, each

state of the automaton is assigned an integer rank, and the highest rank occurring

infinitely often must be even (there is no general agreement on highest/lowest or

even/odd in this definition).

In the next dimension, we may feed the automata trees rather than words. To

start with, assume that the branching degree is fixed at n. The automaton transition

function now specifies n successors, and notionally the automaton splits into n copies

as it passes to the successors, so a run is a tree matching the input tree. The run

is successful if all paths through the run satisfy the acceptance condition, which is

specified as above. In the case of a nondeterministic tree automaton, the transition

is chosen nondeterministically, but each transition specifies n successors. We can

generalize this to automata on trees whose branching degree varies according to

the label, or to trees whose branching degree is freely variable (so called amorphous

automata).

Finally, we can complicate the success condition as follows: instead of saying

just that every path through the run accepts, we can say that the subrun rooted

at a vertex v is accepted if some boolean combination, depending on the state,

f({Ti}i∈I) holds, where Ti is the statement that the subrun rooted at v’s ith child is

accepted, and that the run is accepted if the subrun starting at the root is accepted,

provided the global acceptance condition is met. The global acceptance condition is

most easily formulated game-theoretically, but one can think of it in µ-calculus terms

as being: there must exist a choice function which for each vertex selects a satifying

assignment for f({Ti}i∈I), and thus selects some children; then every path through the

selected vertexes must meet the Rabin etc. acceptance condition. These are alternating

automata. Warning: this alternation is that between ∃ and ∀, nothing to do with

fixpoint alternation!

If the boolean combination is just conjunction, f({Ti}i∈I) =
∧

i∈I Ti, we get

a normal tree automaton; if it is disjunction, we get a tree automaton that accepts if

some path accepts, rather than if all paths accept, giving a form of nondeterminism.

It is probably not much of a surprise that:
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Theorem 9. Modal µ-calculus formulas are equivalent to alternating amorphous

parity automata (on trees).

The equivalence is simple: a diamond modality corresponds to a vertex whose

boolean success combination is disjunction, a box modality to one whose success

combination is conjunction; and if one assigns ranks to the fixpoint operators that are

consistent with subformula inclusion, with even ranks for maximal fixpoints and odd

for minimal, the parity condition asserts that the obviously induced tree pre-model is

well-founded.

A rather more surprising fact is:

Theorem 10. Ordinary Rabin automata are equivalent to alternating parity au-

tomata (on trees).

It is obvious that a Rabin automaton can be turned into an alternating parity

automaton. However, the reverse construction is not easy. It is quite easy to turn

a parity condition into a Rabin condition, but it is harder to remove the alternation,

and a large size blowup is required. In terms of modal µ-calculus formulas this is

precisely the transformation into automaton normal form, anf, mentioned earlier,

which has no ∀/∃ alternation. As a corollary, we have:

Theorem 11. Rabin automata are equivalent to modal µ-calculus formulas (on trees).

The theory of automata on infinite objects is highly developed. Wolfgang

Thomas [32] provides a survey of the entire area, and Niwiński’s [33] is a fundamental

study of automata and fixpoint logics, including much useful background material.

Here we shall just mention a few more of the immediate connections with the modal

µ-calculus:

• In Rabin’s original paper [34], one of the hardest lemmas was proving that Rabin

automata are closed under complementation. Given the above, it is now obvious,

since the modal µ-calculus is closed under complementation by definition.

• Rabin automata have the nice property that if they accept some tree, they

accept some regular tree: that is, the tree unraveling of a finite system. This

gives the finite model property of the modal µ-calculus, as we have seen.

• The emptiness problem for Rabin automata is decidable. Hence one can

model-check by forming the product of the system with the Rabin automaton,

and checking for emptiness, as we have also seen.

We have mentioned mostly Rabin automata. Büchi automata on trees are

strictly less expressive than Rabin automata. However, on words, parity, Rabin and

Büchi automata are equivalent, and one has:

Theorem 12. Rabin/Büchi/parity automata on infinite words are equivalent to

modal µ-calculus.

7.7. Parity games

Games have played an important role in many areas of mathematics, but

especially in logic. The so-called Ehrenfeucht-Fräıssé games characterize first-order

logic, and extensions and restrictions of them characterize various extensions and
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restrictions of first-order logic. In a similar manner, we can define games for the

modal µ-calculus. Technically, such games are fairly trivial reformulations of automata

or tableaux; but they have good explanatory power, and, more surprisingly, provide

useful approaches to model checking. Owing to the extensive use of games in finite

model theory, game formulations of modal µ-calculus problems assist in exploring the

close relationships with finite model theory.

A parity game is played by two players, whom we call I and II. An arena for

the game is a graph, in which each vertex is labeled I or II, and also labelled with an

integer rank from 1 to k, where k is called the index of the game. A play of the game

consists of a sequence of moves in which the appropriate player chooses a successor

of the current vertex; II wins if the play ends in I getting stuck, or if the play is

infinite and the highest rank occurring infinitely often is even. It may be convenient

to designate certain vertexes as immediate wins of I or II, for example to deal with

atoms in the modal µ-calculus.

A strategy for one player is a function which given a partial play from which

the player is due to move, gives the next move. A winning strategy is one which if

followed guarantees a win. A strategy is history-free (or memoryless) if it depends

only on the current position in the game. In parity games, it is always the case that

one player has a winning strategy, and even a memoryless winning strategy; so, on

finite graphs, the winner can be explicitly computed.

It turns out that modal µ-calculus model checking can be viewed as a parity

game in a natural way, so that a structure satisfies a formula iff player I wins

the associated game. This gives a reduction from model checking to parity games.

A converse reduction can be obtained by using the formulas Wn mentioned earlier.

So, it turns out that the two problems are tightly related: they are linear time,

many-one reducible to each other. In particular, if one of them is in P , then both

are in P .

8. Model checking

What turned out to be one of the more useful techniques for automated

reasoning about reactive systems began with the advent of efficient model checking,

see [10] (cf. [35–37]). The basic idea is that the global state transition graph of a finite

state reactive system defines a Kripke structure in the sense of modal or temporal

logic (cf. [9]), and we can give an efficient algorithm for checking if the state graph

defines a model of a given specification expressed in an appropriate modal or temporal

logic, which most often is contained in the modal µ-calculus. While earlier work in

the protocol community had addressed the problem of analysis of simple reachability

properties, model checking provided an expressive, uniform specification language in

the form of modal or temporal logic along with a single, efficient verification algorithm

which automatically handled a wide variety of correctness properties.

8.1. Taxonomy of model checking approaches

It is possible to give a rough taxonomy of model checking methods according

to certain criteria:
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• Explicit state representation versus symbolic state representation. In the explicit

state approach the Kripke structure is represented extensionally using conven-

tional data structures such that adjacency matrices and linked lists, so that

each state and transition is enumerated explicitly. In contrast, in the symbolic

approach, boolean expressions denote large Kripke structures implicitly. Typi-

cally, the data structure involved is that of Binary Decision Diagrams (BDDs),

which can, in many applications, although not always, manipulate boolean ex-

pressions denoting large sets of states efficiently.

The distinction between explicit state and symbolic representations is to a large

extent an implementation issue, rather than a conceptual one. The original

model checking method was based on an algorithm for fixpoint computation

and it was implemented using explicit state representation. The subsequent

symbolic model checking method uses the same fixpoint computation algorithm,

but now represents sets of states implicitly. However, the succintness of BDD

data structures underlying the implementation can make a significant practical

difference.

• Global calculation versus local search. In the global approach, we are given

a structure K and a formula φ. The algorithm calculates ‖φ‖K, the set of all

vertexes where φ is true. This necessarily entails examining the entire structure.

Global algorithms typically proceed by induction on the formula structure,

calculating ‖ψ‖K for the various subformulas ψ of φ. The algorithm can be

presented in recursive form; as the recursion unwinds, the values of the shortest

formula are calculated first, then the next shortest, etc.

In contrast, in the local approach, we are given a specific vertex v0 in K along

with φ. We wish to determine whether v0 ∈ ‖φ‖
K. The computation proceeds

by performing a search of K starting at v0. The potential advantage is that,

many times in practice, only a portion of K may need to be examined to settle

the question. In the worst case, however, it may still be necessary to examine

all of K (see [38]).

• Monolithic structures versus incremental algorithms. To some extent this is also

more of an implementation issue than a conceptual one. Again, however, it can

have significant practical consequences. In the monolithic approach, the entire

structure K is built and represented at one time in computer memory. While

conceptually simple and consistent with standard conventions for judging the

complexity of graph algorithms, in practice this may be highly undesirable

because the entire graph of K may not fit in computer memory at once. In

contrast, the incremental approach (also referred to as the on-the-fly or on-line

approach) entails building and storing only small portions of the graph of K at

any one time (see [39]).

8.2. Complexity of explicit state model checking

There is a naive, recursive algorithm for evaluation of a formula φ of the modal

µ-calculus on a finite structure K. The idea is that, to compute the semantics of

a fixpoint µX.f(X) or νX.f(X), we initialize the set variable X to false or true

respectively, and while X is different from the semantics of f(X), we replace X with
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the semantics of f(X). By Theorem 1, the while loop terminates in at most |K| steps,

and upon termination, the value of X coincides with the semantics of the fixpoint.

The naive algorithm can be so implemented to have time complexity (|K| |φ|)O(ad(φ)),

so it is exponential in general, but polynomial if restricted to formulas with fixed

alternation depth. Since all practical correctness properties seem to be of alternation

depth 1 or 2, we have a low order polynomial time algorithm. Clever variants of the

naive algorithm exist, which achieve polynomial space complexity, namely O(|K| |φ|),

but they still have time complexity no better than (|K| |φ|)O(ad(φ)).

What is the problem with this complexity? Lichtenstein and Pnueli [40] advance

the following argument: in practice, it is typically the structure size, rather than the

formula size, that is the dominant factor in the complexity, because structures are

usually extremely large, while specifications are often rather short. Hence, it is highly

desirable to have an algorithm whose complexity grows linearly in the structure size,

while even exponential growth in the specification size may be tolerable.

In particular, for alternation depth 1, we can get algorithms of time O(|K| |φ|).

So, a natural question is:

Problem 1. Is there a model checking algorithm for alternation depth 2 which runs

in time linear in the structure size?

In terms of complexity classes, by [41] we have that the model checking for

the modal µ-calculus is in NP (thus also in co−NP by complementation.) A recent,

better upper bound is UP , see [42], where UP is the set of decision problems solvable

in polynomial time on a non-deterministic Turing machine where there exists a unique

accepting path if the string is accepted (thus, UP lies between P and NP). The proof

uses the reduction of the problem of model checking to the problem of determining

the winner in parity games. But the problem remains:

Problem 2. Is there a polynomial model checking algorithm for the entire modal

µ-calculus?

8.3. State explosion

We emphasize that the above discussion focuses on extensional model checking,

where it is assumed that the structure K including all of its vertexes and edges are

explicitly represented, using data structures such as adjacency lists or adjacency

matrices. An obvious limitation then is the combinatorial state explosion problem.

Given a reactive system composed on n sequential processes running in parallel, its

global state graph will be essentially the product of the individual local process state

graphs. The number of global states thus grows exponentially in n. For particular

systems it may happen that the final global state graph is of a tractable size, say

a few hundred thousand states plus transitions. A number of practical systems can be

modeled at a useful level of abstraction by state graphs of this size, and extensional

model checking can be a helpful tool.

On the other hand, it can quickly become infeasible to represent the global

state graph for large n. Even a banking network with 100 automatic teller machines

each having just 10 local states, could yield a global state graph of astronomical size

amounting to about 10100 states.
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Plainly, for such astronomical size systems it is out of the question to perform

model checking over them, even using algorithms that run in time and space linear

in the size of the state space. Various approaches to ameliorating state explosion are

currently under investigations. One approach is to use abstraction. The basic idea is to

replace a large, detailed system K by a small, less detailed system K′ where inessential

information has been suppressed. If an appropriate correspondence between the large

and small systems can be established, then correctness of the small system may be

used to ensure correctness of the large system.

For instance, suppose there is a homomorphism h :K−→K′ such that v and

h(v) agree on the atomic propositions of a linear time formula φ, and such that if (v,w)

is a transition in K then (h(v),h(w)) is a transition in K′. We may then conclude that

if there is a path satisfying ¬φ in K, then there is an image path satisfying ¬φ in K′.

Hence, if in the small system K′ we have h(v0) |=Aφ, then in the large system we

have K,v0 |=Aφ as well.

Another approach is to represent transition relations and sets of states symbol-

ically, as described below.

8.4. Symbolic approaches

A noteworthy advance has been the introduction of symbolic model checking

techniques (see [43–46]) which are – in practice – often able to succintly represent

and model check over state graphs of size 10100 states and even considerably larger.

The basic algorithms used for symbolic model checking are the same as those used for

extensional model checking, and are based on iterative calculation of (a representation

of) the set of states where each basic modality holds, using fixpoint computation

justified by the Theorem 1. The key distinction is that the state graph of the Kripke

structure and sets of states where formulas are true in it are represented in terms of

a boolean characteristic function which is in turn represented by an (ordered) Binary

Decision Diagram (BDD) (cf. [47]). These BDDs can in practice be extremely succinct.

BDD-based model checkers have been remarkably effective and useful for debugging

and verification of hardware circuits. For reasons not well understood, BDDs are often

able to exploit the regularity that is readily apparent even to the human eye in many

hardware designs. Because software typically lacks this regularity, BDD-based model

checking seems much less helpful for software verification. We refer the reader to [43]

for an extended account of the utility of BDDs in hardware verification.

It should be emphasized, however, that BDD based model checking methods,

are, in worst case, still intractably inefficient. On the one hand, for some structures K

of astronomical size there are small BDDs representing them, and this is exploited in

applications as noted above. But for other structures K, sometimes those derived

from applications such as software, the BDD representation is intractably large.

Plainly, a counting argument shows that most structures do not have a small BDD

representation. In any event, checking simple graph reachability in a structure K, i.e.

K,v0 |=EFQ , where Q is an atom and K is represented by a BDD, is PSPACE-complete

(cf. [47, 48]). The disparity between theoretical, worst case results for symbolic model

checking and its surprisingly good performance in practice, has so far militated against

the development of an associated complexity theory for this application.
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8.5. Debugging versus verification

Model checkers are a type of decision procedure and provide yes/no answers.

It turns out that, in practice, model checkers are often used for debugging as well as

verification. In industrial environments it seems that the capacity of a model checker

to function as a debugger is perhaps better appreciated than their utility as a tool for

verifying correctness.

Consider the empirical fact that most designs are initially wrong and must go

through a sequence of corrections/refinements before a truly correct design is finally

achieved. Suppose one aspect of correctness that we wish to check is that if a system

is started in a fixed “good” vertex v0, then it remains forever in “good” vertexes; that

is, in CTL terms, v0 verifies AGgood . It seems quite likely that this invariance may in

fact not hold of the initial faulty design, due to conceptually minor but tricky errors

in the fine details. Thus, during many iterations of the design process, we have in fact

that a “non-good” vertex is reachable from v0, that is, K,v0 |=EF¬good.

It would be desirable to circumvent the global strategy of examining all of K

to calculate the set ‖EF¬good‖K and then checking whether v0 is a member of that

set. If there does exist a “non-good” vertex reachable from v0, once it is detected

it is no longer necessary to continue the search examining K. This is the heuristic

motivating local model checking algorithms. Many of them involve searching from

the start vertex v0 looking for confirming or refuting vertexes or cycles; once found,

the algorithm can terminate often prematurely having determined that the formula

must be true or must be false at v0 on the basis of the portion of K examined during

the limited search.

Of course, it may be that all vertexes must be examined before finding

a refutation to AGgood . Certainly, once a truly correct design is achieved, all vertexes

reachable from v0 must be examined. But in many practical cases, a refutation may

be found quickly after limited search.

We note in passing that some symbolic model checkers have been adapted to

provide some sort of counter example facility for debugging.
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