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Università di Camerino,

via Madonna delle Carceri 9, 62032 Camerino, Italy

{stefano.leonesi, carlo.toffalori}@unicam.it
(Received 25 May 2005)

Abstract: The early connections between Mathematical Logic and Computer Science date back

to the thirties and to the birth itself of modern Theoretical Computer Science, and concern

computability. This survey wishes to emphasize how alive and fruitful this relationship has been

since then, and still is.
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1. Logic and Computation

It is undeniable that Mathematical Logic and Computer Science closely inter-

acted in the past and are still closely interacting. Indeed it is generally agreed that

the birth itself of the modern Theoretical Computer Science directly springs from

Mathematical Logic. Several contributions to [1], most notably [2] and [3] discuss

and investigate this topic in full detail; in particular, Beeson’s paper [2] explicitly,

and perhaps provocatively claims that Logic is Computation and, conversely, Com-

putation is Logic. Actually we have to say that we do not feel so absolute. Anyway

nobody can deny that there do exist strong historical roots supporting this point of

view and in any case the relationship between Mathematical Logic and Computer

Science. Perhaps it is worth summarizing them once again. In some sense the affair

began in the early thirties, when several logicians, and among them Gödel, Kleene,

Church, Turing, were interested in singling out a precise abstract mathematical defi-

nition of what a computation formally is, and consequently of what is computable and

who is entitled to compute. Some deep motivations originated this scientific curiosity.

In fact in 1931 the celebrated Gödel Incompleteness Theorems had underlined the hu-

man impossibility of proving deductively all the statements true in natural numbers,

and had emphasized in this way the problem of what Man, or Machine, can really

compute and solve. Besides that, the logical and the mathematical communities were

just facing at that time some problems whose solution looked very far from being

obtained, and had been conjectured impossible. This is the case, for instance, of the
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famous Hilbert Tenth Problem, but also of a crucial logical question, again proposed

by Hilbert, called in German Entscheidungsproblem (so Decision Problem) and lying

in finding a procedure recognizing the true statements in first order logic and distin-

guishing them from the false ones. The difficulties arising in answering these questions

did produce a sort of pessimistic feeling, tending to exclude any positive solution and,

after all, raising the general problem of realizing what can be effectively computed.

So the basic abstract question became, as said: What is computable? And what does

computing mean?

Several answers were proposed in those years and especially in 1936, by Gödel,

Kleene and Church (via the notion of recursive function), Church (λ-calculus), Turing

(Turing machines); all of them were proved equivalent to each other. But indeed

Turing’s model and Turing’s machine were the most convincing ones, and still are

the most popular ones. Accordingly, one can agree that intuitive computation just

corresponds to Turing computation, meaning that:

what is computable is exactly what a Turing machine can compute.

This is the (rough) content of the famous Church-Turing Thesis. By the way, it is also

worth emphasizing the fact that Turing machines provided a model ante litteram of

modern computers, but preceded almost ten years the first electronic computer, Von

Neumann’s ENIAC.

In conclusion there is no doubt that Mathematical Logic did contribute to

the birth of Computer Science, as the program itself of defining computations and

computers was firstly debated and in some sense solved in Mathematical Logic,

by logicians and in order to answer logical questions. Indeed, on the basis of

Church-Turing thesis, the Entscheidungsproblem and, some decades later, in 1970,

the Hilbert Tenth Problem itself at last received a surprising negative solution, saying

that no effective procedure can handle them because no Turing machine can do it.

Problems which were proved to be algorithmically unsolvable in this way

include several other notable examples, both from Logic and general Mathematics.

We would like to recall here, for instance, the decision problem of the theory of the

addition and multiplication of natural numbers (N,+, ·) – a result of Tarski closely
related to Gödel’s Incompleteness Theorems. Functions from N toN which cannot be

algorithmically computed (because no Turing machine can do it) are also known; let

us mention here as a nice and amusing example the Rado Σ function, growing so fast

to overcome asymptotically any Turing computable function, such as n 7→ 2n, n 7→ 22n ,
n 7→ 222

...
n

, and so on: [4] discusses in more detail the properties of Σ, which are also

described and updated in the websites www.drb.insel.de/∼heiner/BB/index.html and
grail.cba.csuohio.edu/∼somos/bb.html.

Key basic features of the Turing model include:

• discreteness,
• determinism.
In fact, Turing machines deal with discrete (indeed finite) inputs, like natural

numbers or more generally finite length words on finite alphabets, and run through

successive steps in a discrete time. Moreover, their computations may be infinitely

long, so diverge on some particular inputs; but, when a computation halts, its output is
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unique, indeed any step of any computation is uniquely determined by the instructions

of the machine.

These peculiarities of discreteness and determinism sound quite reasonable.

Even today computers are usually expected to deal in practice with finite strings

on finite alphabet and to run in a finite and discrete time. Even from a theoretical

point of view, this choice of referring to a discrete framework, so ultimately to natural

numbers, may boast of some strong and prestige support, like the famous opinion of

Kronecker according to which natural numbers are the only created by God and so

there is no reason to imagine and involve real or complex numbers, or continuous

settings.

But in the years after Turing, his model and Church-Turing Thesis had also

to meet with some reservations and criticism. Indeed one can reasonably claim that

Turing machine is a possible model of computation, but it is not the only one; in fact

it cannot fit some alternative approaches to computation, such as:

(i) natural computation, aiming at studying and approximating the behaviour of

a nervous system,

(ii) or nanocomputation, considering microscopical phenomena,

(iii) or also some aspects of the celebrated quantum computation.

In all these settings noise, uncertainty, errors, faults, damage may occur, which

suggests new mathematical models and in particular:

• continuity,
• undeterminacy

instead of discreteness and determinism.

Accordingly new horizons have been arising in computation theory, privileging

a continuous (rather than discrete) approach, so real (rather than integer) numbers,

and looking for analog (instead of digital), or also hybrid computers. By the way Logic

has been playing a crucial and critical role also in these alternative settings, accompa-

nying and helping their developments; for instance, we might mention here quantum

logics and their support to quantum mechanics, since the pioneer contribution of

Birkhoff and Von Neumann in 1936 [5].

These different approaches to computation have been debated on their turn,

and still are. Even today one may meet people claiming (just like Kronecker) that

real numbers do not exist, hence considering continuous models or analog computers

makes no sense in practice.

Anyway our aim in this paper is not to contribute to this discussion. We found

it right to mention shortly these alternative ways to computation, but we wish to

continue to refer to the Turing approach, so to Turing Machine and to Church-Turing

Thesis, as the most popular model (although not the only possible one). This is

the setting we will stay in, and where we want to outline and discuss some relevant

developments this model has been having since the early sixties, and new interests

and perspectives sprouting from its interior. Our purpose is also to emphasize that

Mathematical Logic always intervenes as the core of all this and still interacts in

a crucial way with the progress of Theoretical Computer Science, just as at the time

of Turing.
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We assume that our reader is neither familiar with Logic, nor with Computa-

tional Complexity Theory. So we will try to introduce our main topics without any

hurry and to keep our exposition as clear and simple as possible. In this perspective

we will frequently refer to primes. In fact, Number Theory and the fascinating world

of primes provide a wonderful tool for our purposes, as a matter classical but still

lively and rich of new and beautiful developments. A much wider treatment of Com-

putational Complexity can be found, for instance, in classical textbooks such as [6, 7]

or in the more recent [8]. [1] discusses in detail the relationship between Logic and

Computability.

2. Computable or Feasible? Gauss’ opinion

Let us start with a provocative question and ask:

Is “computability” the right notion?

As said, we are assuming the quite orthodox point of view of classical computability,

the one inspiring the model of Turing and leading to the Church-Turing Thesis. So

our question may sound quite strange and surprising.

Anyway, to illustrate what we mean, let us propose a simple example, actually

a twofold example: the problems Primes and Factoring among natural numbers.

Accordingly we are given an integer N ≥ 2 as an input, and we are asked:
1. (Primes) to decide whether N is prime or composite,

2. (Factoring) to decompose N into its prime factors.

So we are considering a couple of problems having little to do at least in principle

with Logic (don’t worry, Mathematical Logic will arrive and play its role soon), and yet

both classical and well-known to everybody in Mathematics, hence easy to understand.

Let us mention the opinion Gauss expressed in 1801, in Article 329 of his

Disquisitiones Arithmeticae, about these questions:

The problem of distinguishing prime numbers from composite numbers

and of resolving the latter into their prime factors is known to be one of

the most important and useful in Mathematics.

This opinion, although authoritative, may sound a little surprising. Indeed, the

two problems have an easy and well known procedure dating back to the ancient

Greeks and perhaps before, so more that two thousand years old. This algorithm

proceeds as follows. Take all the integers 1<d<N (actually d≤
√
N suffices) and try

to divide N by d.

• If some division is successful, then declare N composite, indeed you have got
also information about the factoring of N , through d and the quotient N

d
.

• Otherwise, if no division gives an exact quotient with remainder 0, then output
N prime.

As said, this algorithm is very simple and Gauss did know it very well. And yet

let us read Gauss again:

The dignity of the science itself seems to require that every possible means

be explored for the solution of a problem so elegant and celebrated.
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Why this urgency so many centuries after the Greeks? Let us hear once again

Gauss’ explanations:

The techniques that were previously known would require intolerable

labour even for the most untiring calculator.

In other words what Gauss was regretting is the lack of any easily practicable

primality or factoring algorithm at his time. For instance, the elementary procedure

of the Greeks may require up to
√
N divisions, but

√
N is an exponential function of

the length of N (which is approximately its logarithm) and everyone agrees that:

exponentially many attempts require too much labour.

Indeed what this example emphasizes is that (Turing) computable might not imply

feasible and practicable.

In fact, there do exist some cases of problems having some algorithmic solution,

but no feasible algorithmic solution. A famous example, this time coming from

Mathematical Logic, is provided by a result of Fischer and Rabin [9] concerning the

first order theory of the real addition (R,+). It is well-known that this theory has

a decision procedure, indeed Tarski showed in the late thirties that the first order

theory of the real addition and multiplication, that is of the real field (R,+, ·), is
decidable. But the theorem of Fischer and Rabin says that no fast algorithm can

handle it: there is a constant c> 0 such that, for every Turing machine deciding the

first order real addition, there is a positive integer n0 such that, for every integer

n≥n0, there exists a sentence φn on the real addition such that:
• φn has length ≤n,
• the machine requires at least 2cn steps before answering about the truth of φn
in (R,+)

(and an exponential time is to be supposed unfeasible, as said).

So we might ask:

Question 1. Is “feasible” – rather than “algorithmically computable” – the right

notion, i.e. the right way of intending “effectively computable”?

But, of course, one should preliminarily clarify:

Question 2. What does “feasible” mean?

Indeed we might have some intuitive idea about that, but we should fix it in a precise

way. Hence, let us first deal with Question 2. Of course, several quite natural criteria

of interpreting and measuring feasibility come to mind:

• the time a computation requires,
• the space/memory it needs,
• its cost (money),
• the energy it requires

as well as further, subtler criteria, like randomness or interactivity (we will illustrate

them in more detail later).

However the most natural option (but not the only one!) is time. Accordingly

feasible might mean fast under this perspective.
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A corresponding theory is easily sketched: For every Turing machine M , one

considers the complexity function of M , taking any positive integer n to the maximal

number of steps of convergent computations of M on inputs of length ≤ n (if any).
Unless excluding machines diverging almost everywhere (and consequently having no

practical interest), one can reasonably assume that these functions are defined for

every sufficiently large n, increasing and unbounded.

The complexity functions are then compared asymptotically using the O (big

o) preorder relation, defined as follows: for f and g complexity functions, f =O (g)

holds if and only if f asymptotically dominates g up to a constant positive factor c,

meaning that f(n)≤ c ·g(n) for every sufficiently large positive integer n.
By the way, let us introduce here a slight variation on this O notation, i.e. Õ:

f = Õ(g) ⇔ f =O(g ·(logO(1) g))
(where O(1) denotes a positive constant); note that, if f = Õ(g), then f is asymp-

totically bounded in the O-relation by some power of g. Also, observe that, in this

framework, it does not matter with respect to which basis > 1 logarithm is computed;

for, any two of these logarithmic functions are clearly O each other. Accordingly ‘log’

will mean from now on logarithm with respect to any fixed basis a> 1 (for instance,

with respect to a=2).

So let us assume that time is our referring parameter in measuring feasibility.

At this point we should agree what feasible, hence fast means in this framework.

There is a proposal about that, arising since the sixties, basically due to Edmonds

(1965 [10–12]), but also expressed in some preliminary form by Von Neumann

(1953 [13]), Rabin (1963 [14]) and Cobham (1964 [15]) and confirmed by Cook and

Karp in the early seventies. So let us call it Edmonds-Cook-Karp Thesis (a name

directly reminding Church-Turing Thesis). As a (rough) slogan, it might be stated as

follows:

fast = polynomial.

More precisely: the fastly solvable problems are exactly those that can be solved

by a Turing machine with complexity O(f(n)) for some polynomial f (with integer

coefficients and positive values). This class is usually denoted P (where P means

polynomial, of course).

This proposal is still largely debated. Indeed there are some puzzling questions

concerning it. For instance, everyone knows that polynomials may have arbitrarily

large (and even titanic) degree and leading coefficient. So assume to deal with

polynomials f(n) of the form:

n2
2
2
2
...

or

22
2
2
...

·n;
both are monomials, and the latter is even linear. But how fast an algorithm having

this complexity and so, basically, this running time is?

On the other hand, theoretically speaking, can we propose anything better

when considering the time criterion? For instance, for k a fixed positive integer,

why to accept, say, a running time nk and to exclude nk+1? Or why to allow k ·n
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and to forbid (k+1) ·n? Is there any natural evidence supporting these choices? It
seems no. So, in some sense, the Induction Principle itself comes to the assistance of

Edmonds-Cook-Karp Thesis.

In conclusion let us accept, at least momentarily, this thesis, just for laziness if

not for belief.

3. Satisfying Gauss’ expectations

The class P is not so crowded as one would like it to be. But it had a relevant new

entry in the latest times. Indeed the problem Primes (that of distinguishing prime

and composite numbers) was shown in P only in 2002. So the Gauss expectations and

dreams were at last satisfied. Three indian researchers (Agrawal, Kayal, Saxena) did

it. Their algorithm, named AKS after their initials, is founded on the following nice

characterization of primes:

Theorem 1. (Agrawal-Kayal-Saxena, 2002, [16, 17]) Let N be an integer ≥ 2. Let r
be a positive integer <N such that N has period > (log2N)

2 modulo r. Then N is

prime if and only if the following conditions hold:

(a) N is not a perfect power;

(b) N does not have any prime factor ≤ r;
(c) for every positive integer a≤√r · log2N the polynomials (x+a)N and xN +a
are congruent modulo 〈N,xr−1〉.

As said, this is a beautiful characterization of primality. In fact, all the

conditions (a), (b), (c) are easily understood; indeed (a) and (b) are trivial, and (c)

directly refers to the classical Fermat Little Theorem (we will deal again with it in the

next sections). The proof of the theorem is also simple, although ingenious; basically

it requires some combinatorics, elementary group theory and finite field theory. Which

is more relevant for our purposes is that, on its basis, one can eventually show:

Theorem 2. (Agrawal-Kayal-Saxena, 2002, [16, 17]) Primes is in P .

In fact Theorem 1 does suggest an algorithm checking primality determinis-

tically in at most polynomial running time. Indeed procedures recognizing perfect

powers, hence testing (a), even in (almost) linear time were known well before 2002

(see [18]). The conditions (b) and (c) clearly depend on r. But one sees that what

they require can be checked in time Õ(
√
r3 · log3N). So the point is to find r as small

as possible. As r≥ (log2N)2, the best running time we can expect is r= Õ(log6N).
Agrawal, Saxena and Kayal found in their proof r= Õ(log5N), which ensures a total

running time Õ(log10.5N). Subsequent further improvements gave r= Õ(log3N) and

then provided a lower running time Õ(log7.5N).

Quite recently Lenstra and Pomerance [19] at last reached the bound Õ(log6N)

via an approach still inspired by [16], but slightly different, and using some old Gauss

ideas about the problem of building regular polygons.

Needless to say, and due the definition of Õ, a running time bounded by some

power of logN with respect to Õ is also polynomially bounded by logN in O.
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4. A Millennium Problem and a Question of Logic

So Primes is in P . But what about Factoring? With respect to this point, let

us recall here the famous story of the mathematician Frank Cole. In a 1903 American

Mathematical Society meeting in San Francisco, he proposed to the audience the

following factorization:

267−1=147573952589676412927=193707721 ·761838257287.

Of course one may ask why this was so interesting and relevant. The answer is that

the number factored in this way is a Mersenne number, more precisely is the 67-th

element in the list of Mersenne numbers, and everybody knows the crucial role these

numbers have in searching new large primes. Indeed today an open source software

called GIMPS (Great Internet Mersenne Prime Search) is available on the web just

to find Mersenne primes or to factorize Mersenne composites; everyone wishing to

discover new primes, or to factorize big Mersenne numbers might experience it. In

particular factoring 267−1 is fast using GIMPS, but it was not in 1903; indeed, Cole
told that finding his decomposition required “three years of sundays” (as he was

looking for his result for three years, and devoted his week ends to his attempts).

So Cole’s factorization needed three years of labour and long efforts. Anyway,

it can be written in a single line, and you can check it in a few lines provided that

you know a right factor; in fact, what you have to do at that point is just a division.

What we aim at emphasizing with this example is that factoring may be fast to

check when one knows the right decomposition. In fact, given your composite input

N , you have simply to ask a witness d (a non-trivial divisor 6=1, N of N) and then to
check that d divides N exactly (i.e. with reminder 0). After that, you are confirmed

that N = d · N
d
and you may repeat your procedure with respect d and N

d
: if you know

that they are composite, you may ask new witnesses to confirm it and to proceed in

your decomposition.

This is what you are expected to do, just a sequence of divisions, and it is

known that the cost of a single division – its running time – is at least quadratic with

respect to the length of divisor and dividend; furthermore, it is easily seen that the

maximal number of divisions you should compute to accomplish the factoring of N

is O(logN), because the number of prime factors of N cannot exceed log2N . Also,

notice that the length of a proper divisor d of N is, of course, less or equal than the

one of N .

So factoring is fast to check, as said. However what we are looking for is a fast

algorithm to factor a given input N , and not simply to check its factorization when

done. But then we must realize that at the present time no fast factoring algorithm

is known. Several deep and sophisticated procedures have been proposed in the latest

years in this direction, involving ellyptic curves, sieve methods, continued fractions

and so on, but none of them works quickly (i.e., within a polynomial time with respect

to the length of N).

By the way, this gap between the worst expected running times in decomposing

a number N into its prime factors and in recovering N as the product of these

factors, so between factoring and multiplying, is the foundation of the celebrated RSA

public key cryptographic system. Also, we are forgetting here Peter Shor’s quantum
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algorithm [20], fastly handling, at least in principle, both primality and factoring.

In fact, as said, our perspective in these notes is the classical one and we are neglecting

new models of computation.

But let us come back to the difficulties we have observed about factoring. We

are led in this way to introduce another computational complexity class, called NP

and showing the same features as the elementary factoring procedure sketched a few

lines ago. In detail, a problem S is in NP when it admits a corresponding problem S′

in P such that, for every input N , N is in S if and only if one can find some witness

d such that the length of d is polynomially bounded by that of N and (N, d) satisfies

S′. Note that this is just what happens when S is the problem of factoring (in which

case S′ is divisibility).

Of course P ⊆NP (as, for S in P , we can take S′=S and d empty).
But there are other computational complexity classes arising quite naturally in

this setting and accompanying NP . For instance, come back to factoring and to the

procedure described before. Assume now that your input N is prime. Then no single

tentative divisor d can witness it in the way we have sketched. For, after realizing that

d cannot divide N , you have no definitive evidence that N is not composite, but you

have to check all the witnesses d before excluding N composite. Of course, we know

since Agrawal-Kayal-Saxena that Primes is in P . But what we wish to emphasize

here is that we cannot realize it fastly via the elementary algorithm, although the

same procedure can manage quickly the case when N is composite and confirm fastly

its decomposition into prime factors. In fact, in the composite case, invoking a unique

right witness is sufficient.

This leads, at least in principle, to a new class, called coNP and including all

the problems whose complement is in NP . Basically a problem S is in coNP when

there are a problem S′ in P and a polynomial pS such that, for every input N , N is

in S if and only if all the witnesses d having length polynomially bounded by that of

N via pS unanimously declare that (N, d) satisfies S
′.

The precise relationship between P and NP (and coNP , too) is still an open

problem, and is reputed quite difficult. Basically, what has to be understood here is

whether a problem whose solutions can be fastly checked is also fast to be solved

(when fast means polynomial).

P =NP is a fundamental question in Applied Mathematics and in Theoretical

Computer Science. In 2000 it was inserted in a list of seven Millennium Problems

where the Clay Institute collected what it reputed the most difficult and basic

questions in Mathematics today. P = NP is a 1 million dollars problem, as this is

the prize the Institute fixed for the solver of any question in the list. So you might

well consider to spend some sundays, and even “three years of sundays,” to look for

its answer.

But what is quite relevant for our purposes, and in general, too, is that P =NP

is a genuine question of Logic. In fact this is the content of a theorem of Cook and

Levin in the early seventies. Let us explain why in detail.

Consider Boolean propositional logic. You are given formulas, built for instance

as conjunctions of disjunctions of elementary propositional variables p0, p1,. .. and

negations. You want to know whether there is any truth assignment of these variables
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p0, p1,. . ., taking values 0 or 1 (meaning false and true, respectively), such that the

whole formula is consequently satisfied (i.e., declared true). This Satisfiability Problem

is a logical question. It is generally called SAT (for satisfiability, of course). Also,

several very elementary and simple procedures can handle it. For instance, just list

all the truth assignments for the variables involved in your formula and for each

of them deduce the truth value of the whole formula. But this procedure, and all

the procedures known so far, have the same deficiency as the elementary primality

and factoring algorithm of the ancient Greeks: they may sometimes require up to

exponentially many steps, so too many steps. For instance, if your formula contains

n propositional variables, you should be aware that the possible truth assignments

of these variables are 2n and you might be obliged to check 2n cases before having

your answer.

Hence what we expect here is a fastly running algorithm.

By the way, note that, if your formula is satisfiable and you know a right truth

assignment of the variables making it true, then you may confirm satisfiability very

fastly: Just take this right assignment (a single case among the 2n possible ones) as

a witness and compute the corresponding truth value 1 for your formula. This shows

that SAT is in NP , just as factoring.

Anyway, there is no evidence yet that SAT is in P . But the question is even

subtler. In fact SAT is an NP -complete problem, meaning that (roughly speaking)

P =NP holds if and only if SAT is in P . Of course, it is trivial that, if SAT is out

of P , then NP includes P properly. But what is surprising and amazing (and forms

the subject of the Cook-Levin theorem) is that the converse is also true. For, any

problem in NP can be translated by a suitable fast procedure to SAT , hence a quick

algorithm solving SAT might apply in this way to any problem in NP .

Consequently a fast positive solution of the logical question SAT would imply

P =NP at all. Then answering SAT quickly is a millennium problem and a 1 million

dollars question.

NP -complete problems include now a plenty of examples in Algebra, Graph

Theory, Combinatorics, Chemistry, Biology, and so on (see [21, 22] or explore the web-

site www.csc.liv.ac.uk/∼ped/teachadmin/COMP202/annotated.np-html). But SAT
was the first, and is the father of all of them. In fact, showing that a given S in NP is

NP -complete reduces to see that SAT can be deterministically and fastly translated

to S; indeed this is the main road to single out new NP -complete examples S. By

the way, one may wonder if factoring is one of them. This is still an open question.

Of course, should P coincide with NP , the NP -completeness notion would trivialize

and so our curiosity about factoring would make no sense. Also, it might be the case

that P 6=NP but Factoring is in P . But there is a general feeling and some evi-
dence that, assuming P 6=NP , Factoring should lie in NP−P but should not be
NP -complete. By the way, these problems (the ones that belong to NP−P but are
not NP -complete) are called NP -intermediate.

5. Witnesses again

P , NP and the time criterion does not exhaust the search of new computational

horizons about feasibility. Indeed, as said, P – the class of good computational
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problems according to the Edmonds-Cook-Karp Thesis – is not so crowded and rich of

examples as one would expect, although a lot of quite interesting problems, including

in particular the NP -complete ones, are just on its threshold. So new proposals and

new perspectives can be reasonable, and even welcome. For instance, randomness

might be involved towards a right definition of feasibility. To illustrate what we mean

here, let us refer again to Primes and introduce a primality procedure dating back

to the late seventies. This is the Miller-Rabin Probabilistic Algorithm [23, 24].

Its ingredients are quite simple. Basically they reduce to two elementary facts:

1. Fermat’s Little Theorem, already met before and saying that, if N is a prime,

then, for every a coprime to N , the congruence aN−1≡ 1(modN) holds;
2. the easy proposition that, for a prime N , the only square roots of 1 modulo N

are ±1.
On these grounds, the Miller-Rabin Test works as follows.

Take your input N ≥ 2. Can assume that N is odd (as 2 is the only even prime,
indeed “the oddest prime” according to a celebrated joke of Zassenhaus). Accordingly

N−1 is even and can be represented as 2s ·t with s> 0 and t odd. At this point appeal
to an integer witness a with 1<a <N .

• If a and N are not coprime, then you are done, as you have even got a divisor
6= 1, N of N (the greatest common divisor of a and N); accordingly answer
N COMPOSITE.

• Otherwise, if a and N are coprime, then check aN−1 ≡ 1(modN); if this
congruence fails, declare N COMPOSITE again.

• Assume now a and N coprime and aN−1≡ 1(modN). This means:

(a2
s−1
·t)2≡ a2s·t≡ aN−1≡ 1(modN).

Now compute a2
s−1
·t modulo N .

(a) If what you get is 6≡±1(modN), then use Fact 2 before and say N COM-
POSITE.

(b) If ≡−1(modN), then venture N PRIME.
(c) Similarly, if what you get is 1(modN) and s=1, then venture N PRIME.

(d) Finally, if you get 1(modN) but s > 1, then look at a2
s−1
·t modulo N

and repeat the previous procedure.

One sees that the total running time of these operations is O(log5N), which

can make a real difference and a real improvement even with respect to AKS. Indeed

the Miller-Rabin computations are very quick to be done even in practice.

However N COMPOSITE is a secure answer, but N PRIME is not. In fact, when

the algorithm declares N PRIME, it is not because it has a proof that N is really

prime, but because there is no evidence contradicting this conclusion, and nothing

against it arose during the procedure.

But Rabin showed that the probability error of this algorithm after 1 attempt

– so after appealing to a single witness a – is at most 14 , which implies that the same

probability error after invoking k different witnesses a decreases to ≤ 1
4k
.

Now let us quote an authoritative opinion of E. Borel, according to which:
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an event having probability 10−50 will never happen and, even if it

happens, it will never be observed.

Note that k = 100 attempts suffice to reduce the Miller-Rabin algorithm

probability error well below the Borel level 10−50. Also, 100 different tests do not

affect (both in theory and also in practice) the total running time O(log5N). In

conclusion the Miller-Rabin procedure is:

• not completely secure,
• but highly reliable,
• and, what is also relevant, really fast!
Moreover, nowadays it may be combined with a new Berrizbeitia-Bernstein

algorithm, 2005 [17, 18]:

• again inspired by AKS,
• having running time Õ(log4N),
• absolutely reliable when it answers N PRIME, sometimes fallacious when it
declares N COMPOSITE.

So the Berrizbeitia-Bernstein procedure is in some sense complementary to the

one of Miller-Rabin. Hence let them work in parallel on a given N and wait for their

quick answer. This combination is:

• almost infallible (indeed you would be very unlucky if the former algorithm
should output that your N is COMPOSITE and the latter should say that it is

not!),

• very highly reliable,
• much faster than AKS itself.
But let us come back to the purposes of this paper. What this example shows

it that new perspectives can be experienced and opened when searching a reasonable

notion of feasibility. For instance, why not to replace secure but slow answers by

sometimes fallacious but highly reliable and fast computations? Accordingly consider

the class of the problems which can be answered in at most polynomial time with

a probability error ≤ 10−50. This class is usually called BPP (meaning Bounded
Probabilistic Polynomial). BPP might be a strong candidate for the class of feasible

problems. Trivially BPP includes P (where the answers are absolutely reliable), but it

is not clear whether BPP =P or not. Also, the relationship between BPP and NP is

still to be clarified. Indeed there is a famous theorem of Sipser, Gacs and Lautemann

[25, 26] saying that these classes (BPP and NP) are not so far from each other, anyway

it is not currently known whether BPP includes NP , or conversely NP includes BPP .

Other computational classes based on this probabilistic approach were also

introduced. RP (meaning Random Polynomial) collects the problems having a fast

solution procedure which is sufficiently reliable, and indeed completely right in at least

one possible answer but may be wrong in the other (as the Miller-Rabin algorithm does

for Primes when checking compositeness: in fact, its answer N COMPOSITE is sure,

the opposite conclusion N PRIME is not). ZPP (Zero Error Probabilistic Polynomial)

is the class of problems having a fast solution procedure which is completely right in

all the answers it gives, but may sometimes be silent. Of course, in this case, it is the

silence probability that must be computed and minimized.
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Even in this probabilistic framework Logic is often just round the corner.

For instance, there is a theorem of Valiant and Vazirani [27] dealing with the

relationship between the classes RP and NP and indeed stating their equality

RP =NP provided that a logical problem has a positive answer. This key question is

called USAT (meaning Unique Satisfiability) and specializes the SAT problem, aiming

at singling out those propositional formulas having a unique truth assignment. The

Valiant-Vazirani Theorem says that, if USAT is in RP , then RP and NP coincide.

6. Interactions

Other criteria suggest further computational classes, and so additional can-

didatures for the right class of feasible problems. For instance, one might refer to

the memory resources an algorithm requires to develop its computations, so basi-

cally to the space these computations need. In this perspective one might form the

class of problems admitting a solution procedure excluding any error and requiring

a polynomial space to be accomplished. This is called PSPACE . Clearly it includes

P , as a Turing machine computation consisting of n steps cannot involve more than

n memory bits.

By the way, the primality elementary procedure of the ancient Greeks suffices

to show that Primes is in this class PSPACE . In fact, given an integer N ≥ 2, take
any tentative d and divide N by d; if this operation is successful, then stop and declare

N COMPOSITE; otherwise erase the space you have used in this division and employ

it again for another d′. The memory necessary to write any single d (and N) and to

test their division is polynomially bounded by the length of N . More generally, this

argument shows that NP ⊆PSPACE .
But there is a much more crucial example we would like to introduce here:

it comes from Mathematical Logic and it is called QSAT . It deals with quantified

propositional formulas, involving not only variables p0, p1, .. . and connectives such

as and, or and not, but also quantifiers ∀ and ∃. Indeed each variable occurring in
a formula is subjected to some quantifiers. We get in this way statements like:

∀p0∃p1 such that p0 or not p1,

or

∀p0∃p1 such that p0 and p1,
and so on. QSAT looks for an algorithm deciding whether any such formula is true

or not. The capital letter Q refers to quantifiers and SAT to satisfiability. Truth is

defined here in the obvious way: for instance, the former formula listed above is true

(because, whatever is your opinion about p0 you can find a truth assignment of p1
for which the corresponding truth value of “p0 or not p1” is 1), while the latter is not

(as, when p0 is reputed false, then no truth assignment of p1 can satisfy both p0 and

p1). It is a fact, although not immediate, that QSAT lies in PSPACE . Indeed, QSAT

is the core of PSPACE , in fact it is PSPACE -complete, meaning that any problem in

PSPACE can be deterministically reduced in at most polynomial time to QSAT : this

is the content of a theorem of Stockmeyer and Meyer in 1973 [28].

Another relevant class in this framework, and another possible candidate as

the class of feasible problem with respect to the memory criterion is LOGSPACE ,
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assembling the problems with a solution algorithm requiring logarithmic, so less than

polynomial, space; of course, we refer here to the memory necessary to develop and

accomplish the computation and we neglect the space used to write the input (as the

latter is obviously linear, and so more than logarithmic, with respect to the length of

the input). It is easily seen that LOGSPACE is contained in P , and one conjectures

that this inclusion is proper, so LOGSPACE and P do not coincide.

Another source of new computational classes springs from interactivity. Indeed

the models of computation we have described so far exclude any relationship between

who puts a question and who tries to answer, i.e. between Man and the Machine.

Man proposes an input and then waits for Machine’s output (if any). But we might

also admit that Man intervenes during a computation, reads its partial results and

accordingly makes his question more precise.

To fix abstractly this setting, we might introduce two characters (as Babai and

Moran did in their paper [29]):

• M = the prover = Merlin the Wizard (who knows everything),
• A = the verifier = the young Arthur (who knows nothing and has to learn
everything).

Here is a rough description of the way our interactive algorithm proceeds.

Suppose one has to compute something. Basically Merlin should convince Arthur

of the solution, and Arthur should be convinced only beyond any reasonable doubt

(say up to a 10−50 probability error). In fact Arthur does not know for certain that

Merlin is not lying and so has to check very carefully what Merlin asserts. As said,

at the beginning A has no information about the answer of the problem, so the only
way he has to proceed is to press Merlin, to check and to contradict his statements

randomly, just casting the dice. On this ground:

• A puts questions,
• M provides answers.
The number of messages between A and M, as well as the length of their

contents, must be polynomially bounded by the length on the input. At the end of

this correspondence A gathers the information he got and checks deterministically
the answer again in polynomial time. The final result clearly depends on the random

contributions of A. Accordingly it is required that M has high probability of

convincing A of the right answer and low probability of cheating him.
Several classes are built in this way. NP itself corresponds to this scheme,

in the particular case when the interaction between M and A reduces to a single
message fromM, revealing the solution or a crucial information, so that a final fast
computation of A is sufficient to conclude without any random step. Even BPP can
be recovered in this framework, when it is A who casts the dice and, on this ground,
accomplishes his computation without any help from Merlin. Let us also mention, for

instance:

• MA, where only two interactions are allowed: firstly a message is sent from
M, after that A shares randomly and just casts the dice on the basis of what
M said;
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• or AM , again consisting of two interactions, but with inverted roles (so nowM
answers a random question of A).
The reason why MA and AM are named in this way is transparent. Another

class, more or less corresponding to the general description given above (so admitting

polynomially bounded messages and lengths) is IP (meaning Interactive Polynomial).

It was introduced by Goldwasser, Micali and Rackoff in 1985 [30]. It is easily seen

that:

NP ⊆MA⊆AM ⊆ IP .
But there is a very deep theorem of Shamir [31] connecting IP and the class PSPACE

introduced before and showing:

Theorem 3. (Shamir, 1992) IP =PSPACE.

Actually the inclusion IP ⊆PSPACE is not difficult to prove, as (even interac-
tive) procedures running in a polynomially bounded time cannot exceed polynomially

bounded resources of memory. So the critical point is to show the inverse inclusion

PSPACE ⊆ IP . But here we may refer to the PSPACE -complete QSAT as a com-
mon and legal representative of all the problems in PSPACE , and consequently limit

ourselves to check that QSAT lies in IP : again, a question of Mathematical Logic

arises as the hearth of the matter and plays the key role in the proof. Indeed what

Shamir’s Theorem provides is just an interactive procedure testing QSAT in at most

polynomial time, as required by the definition of IP .

7. A tale of unrest

In conclusion, the candidacies for a right notion of feasibility (with respect

to time, space, randomness, interactivity or anything else) are quite numerous. And

indeed today a website www.complexityzoo.com, maintained by Scott Aaronson, takes

care of a census of these computational classes. Up to June 2005, the complexity zoo

collects 425 species, although the real number of its members might be quite different,

perhaps lower, perhaps bigger. Indeed, should P and NP coincide, the level 425 would

drastically decrease. On the other hand, some species in the zoo include and hide a lot

of subspecies, so it might also happen that complexity classes are much more than

425, and even infinitely many. The site also describes the connections between all

these classes.

But what remains behind this plethora of examples? What can we say about

the basic question of singling out the right notion of feasibility?

1. With respect to the latter question, we have to admit that an ultimate and

generally agreed answer seems to be far from being reached. Indeed, as said

in our introduction, it is the notion itself of computability that is still and

largely debated nowadays. It is possible that new perspectives (for instance,

the quantum way to computation) may suggest new convincing candidates.

Indeed they have already proposed new candidates, which are not considered in

these pages (just because we chose to limit our analysis to the Turing scenery).

However what we have said so far just prefigures a sort of tale of unrest (to

quote Joseph Conrad), witnessing how fretful and far from a solution is our

question.
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2. Anyway this research is also disclosing new connections and reductions and

relevant analogies between the classes obtained so far. We have mentioned in

the previous section Shamir’s Theorem IP = PSPACE . But we might quote

here also the celebrated Baker-Gill-Solovay Theorem confirming how difficult

the problem P = NP is and how involving oracles may radically change its

answer. Before stating the theorem, let us briefly recall what oracle means

in this setting. Everyone knows that, in the world of ancient Greeks, citizens

having to face too obscure mysteries might consider to consult oracles, and

hence ask for gods’ help and advice through some sybil or prophetess. Of course,

modern Computer Science does not need sybils and prophets, but may still

admit oracles, just meaning problems O. So, when testing an instance of some
problem S, one may consider to spend a step in the computation to ask O, to
propose a single input to it and to wait for its output. O’s assistance may be
invoked as many times as you like, and the cost of any single intervention of O
is just one step of computation, as said. New computational classes arise in this

way. For instance, for a given oracle O, PO collects those problems that can be
deterministically answered within a polynomial time with the help of O. NPO
is introduced in a similar way. That being said, let us recall the statement of

the theorem of Baker, Gill and Solovay.

Theorem 4. (Baker-Gill-Solovay, 1975, [32]) There are two oracles O and O′
such that:

(i) PO =NPO,

(ii) PO
′ 6=NPO′ .

Mathematical Logic again supports the proof. In fact, showing (ii), although

combinatorially intricate, basically requires a classical Cantor diagonalization

procedure. But, what is even more relevant, (i) refers to the PSPACE -complete

logical problem QSAT as O.
This also introduces and partially answers the final question we would like to

treat. In fact, one might wonder whether this restless searching of new classes and

frontiers in Theoretical Computer Science is Logic yet, or has anything to share with

Logic. But we have seen all throughout this paper how often Logic appears round

the corner, and even along the road, not only in the basic original question (about

what does computable, or feasible, mean), but also in the theoretical developments

it produced. Indeed P =NP itself is a question of Logic, and logical problems, like

SAT , QSAT and further ones, often arise as the core of the theory and the hearth of

the affair. For instance, the Baker-Gill-Solovay theorem, or that of Shamir, do witness

this authoritatively.

Also, some relevant members of the complexity zoo are directly inspired by

Logic. In some sense, this is also the case of NP and coNP . In fact, the difference

itself between NP and coNP depends on a question of very basic and elementary Logic,

as in the former case, that of NP , we expect some witness, while in the latter, the one

of coNP , we have to hear every possible witness. So the distinguishing line between

NP and coNP formally relies on the logical nature (existential, or universal) of the
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defining conditions. But at this point new classes might come to mind, corresponding

to more complicated formulas, such as those requiring that:

• for every witness d, there is a witness d′ . . .,
• for every witness d, there is a witness d′ such that, for every witness d′′, . ..

and so on. Indeed one can build in this way infinitely many complexity classes and

altogether form the so called polynomial hierarchy. P , NP and coNP are the bottom

levels of this hierarchy, while its top, i.e. the union of all the classes obtained in

this way, is usually denoted PH – just meaning Polynomial Hierarchy. Of course, the

hierarchy might collapse and so these new classes might coincide with each other. For

instance nothing exclude that P = PH (even if this would imply P = NP , because

P ⊆NP ⊆PH ). On the other hand, there is no evidence supporting this conjecture,
and it may also happen that the classes in the hierarchy are pairwise distinct (in

which case the complexity zoo would include infinitely many different members).

An alternative source of computational classes springs from propositional logic

and some related algebraic facts. In fact computational problems are often of the

following form: You are given an input – like a natural number N , or a formula

α – and you have to decide whether this input satisfies or not a certain property

– like primality, or satisfiability – and accordingly to output “Yes” or “No”. The

bits 1 and 0 usually represent these opposite answers; moreover the input itself can

be encoded as a finite string of 0 and 1. In this sense a problem S is naturally

accompanied by a countable sequence of functions fSn from {0, 1}n to {0, 1} where n
ranges over positive integers; for every n, fSn takes any string of length n in {0, 1}
to the corresponding output in S, 1 or 0, “Yes” or “No”. On the other hand there is

a classical result dealing with functions f from {0, 1}n to {0, 1} (n > 0) and saying
that each of them can be obtained, although not uniquely, as the composition of three

functions NOT , AND , OR sending respectively:

• 0 to 1 and 1 to 0,
• (1, 1) to 1 and (0, 1), (1, 0), (0, 0) to 0,
• (1, 1), (0, 1), (1, 0) to 1 and (0, 0) to 0.
The proof use basic combinatorial arguments, and the theorem has a quite

relevant logical interpretation, as it can be equivalently stated by saying that the

three connectives not, and, or are sufficient to develop the whole propositional logic.

But let us come back to our functions f . One might use the theorem above and

choose to measure how “complicated” f is by looking at its decompositions via NOT ,

AND , OR and counting, for instance, the minimal number of NOT , AND , OR which

are necessary to decompose f . One is led in this way to build quite naturally a new

class, collecting the problems S such that in the corresponding sequence of functions

fSn (n > 0) the “complexity” of f
S
n is polynomially bounded with respect to n: So

Logic does cooperate in generating this new member of the zoo. The class we get in

this way is shown to include P , while it is not clear if it extends also NP . However

it exhibits a remarkable anomaly, as it contains even some problems which are not

algorithmically computable in the sense of Turing. In fact, take any set K of integers

whose membership cannot be decided by a Turing machine, and consider the following

problem S: Given a string of 0 and 1, output 1 if its length belongs to K and 0
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otherwise. So, for every n, the function fSn corresponding to S is constant and can be

decomposed by using NOT , AND , OR at most twice. Anyway S cannot be decided

by a Turing machine, as K is not. To get over this trouble one may require that the

process generating fSn from n for every n be carried out by a Turing machine, running

of course in at most polynomial time. But the class one obtains under this additional

condition is easily seen to coincide with P .

In conclusion, Logic does still have something relevant to do and to say in the

computational framework. To support this claim further on, let us mention, as a final

topic of these notes, Descriptive Complexity. This is a branch of both Mathematical

Logic and Complexity Theory, and aims at characterizing complexity classes by the

type of Logic needed to express their problems. It was Richard Fagin who opened this

research area in the seventies, when he found a surprising and notable characterization

of NP [33]; in fact Fagin showed that a problem is in NP if and only if it is described by

a formula in existential second order logic (so allowing quantifiers over both individual

and relation variables, but using only existential quantifiers). After that, a lot of

similar results were obtained, mostly by Neil Immermann (see [34] or visit the website

ww2.cs.umass.edu/∼immerman/descriptive complexity.html). For instance, it turns
out that:

• the class of problems which can be described by arbitrary formulas in second
order logic is PH (the top of the polynomial hierarchy),

• coNP corresponds – of course – to universal second order logic,
• PSPACE to second order logic with a transitive closure

and so on. Even the class of problems which can be described by formulas in

first order logic (the one forbidding quantifiers over relation variables) has its own

characterization in terms of concurrent random access machines.

The sense of these results is clear. In fact, as we already pointed out, the broad

expanse of complexity zoo may sound excessive, and many of the classes it includes

may look quite artificial. But, once a class is given a nice logical description (as in

the examples before), everyone has to agree how natural the class is. So, even in this

direction, Logic can support and help Computability.

References

[1] Herken R (Ed.) 1994 The Universal Turing Machine: A Half-Century Survey, Springer

[2] Beeson M 1994 Computerizing Mathematics: Logic and Computation, in: [1], pp. 172–205

[3] Davis M 1994 Mathematical Logic and the Origin of Modern Computing, in: [1], pp. 135–158

[4] Brady A 1994 The Busy Beaver Game and the Meaning of Life, in: [1], pp. 237–254

[5] Birkhoff G and Von Neumann J 1936 Ann. Math. 37 823

[6] Papadimitriou C H 1994 Computational Complexity, Addison-Wesley

[7] Sipser M 1996 Introduction to the Theory of Computation, Course Technology

[8] Hemandspaandra L A and Ogihara M 2002 The Complexity Theory Companion, Springer

[9] Fischer M and Rabin M 1974 Complexity of Computation, SIAM-AMS Proc. (Karp R,

Ed.) 7 27

[10] Edmonds J 1965 Can. J. Math. 17 449

[11] Edmonds J 1967 J. Res. Nat. Bur. Standards 71B 233

[12] Edmonds J 1967 J. Res. Nat. Bur. Standards 71B 241

[13] Von Neumann J 1953 Contributions to the Theory of Games II (Kahn H W and Tucker A W,

Eds.), Princeton University Press

[14] Rabin M 1963 Israel J. Math. 1 203

tq309p-g/290 27IX2005 BOP s.c., http://www.bop.com.pl



Logic, Primes and Computation: a Tale of Unrest 291

[15] Cobham A 1964 Proc. Int. Congress for Logic, Methodoly and Philosophhy of Science

(Bar-Hillel Y, Ed.), Jerusalem, Israel, pp. 24–30

[16] Agrawal M, Kayal N and Saxena N 2004 Ann. Math. 160 781

[17] Granville A 2005 Bull. Amer. Math. Soc. 42 3

[18] Bernstein D 2004 http://cr.yp.to/primetests/quartic-20040213.pdf (to appear)

[19] Lenstra H W jr and Pomerance C 2005

http://www.math.dartmouth.edu/∼carlp/PDF/complexity12.pdf (to appear)
[20] Shor P 1994 Proc. 35 th Ann. IEEE Symp. on Foundations of Comp. Sci., Santa Fe, NM,

USA, pp. 20–22

[21] Garey M and Johnson D 1979 Computers and Intractability: A Guide to the Theory of

Completeness, Freeman

[22] Johnson D 1990 Handbook of Theoretical Computer Science – A: Algorithms and Complexity

(Van Leeuwen J, Ed.), Elsevier, pp. 67–161

[23] Miller G 1976 J. Comput. System Sci. 13 300

[24] Rabin M 1980 J. Number Theory 12 128

[25] Lautemann C 1983 Information Processing Letters 17 215

[26] Sipser M 1983 Proc. 15 th ACM Symp. Theory of Computing, Boston, MA, USA, pp. 330–335

[27] Valiant L and Vazirani V 1986 Theor. Comp. Sci. 47 85

[28] Stockmeyer L 1973 Proc. 5 th Ann. ACM Symp. on Theory of Computing, Austin, TX, USA,

pp. 1–9

[29] Babai L and Moran S 1988 J. Comput. System Sci. 36 254

[30] Goldwasser S, Micali S and Rackoff C 1985 Proc. 17 th ACM Symp. on Theory of Computing,

Providence, RI, USA, pp. 291–304

[31] Shamir A 1992 J. Ass. Comput. Mach. 39 869

[32] Baker T, Gill J and Solovay R 1975 SIAM J. Comput. 4 431

[33] Fagin R 1974 Complexity of Computation, SIAM-AMS Proc. (Karp R, Ed.) 7 43

[34] Immerman N 1983 Proc. 15 th ACM Symp. on Theory of Computing, Boston, MA, USA,

pp. 347–354

tq309p-g/291 27IX2005 BOP s.c., http://www.bop.com.pl



292 TASK QUARTERLY 9 No 3

tq309p-g/292 27IX2005 BOP s.c., http://www.bop.com.pl


