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Abstract: Critical temperatures for the ferro-paramagnetic transition in the Ising model are
evaluated for five Archimedean lattices, basing on Monte Carlo simulations. The obtained Curie
temperatures are 1.25, 1.40, 1.45, 2.15 and 2.80 [J/kB] for (3,122), (4,6,12), (4,82), (3,4,6,4) and
(34,6) lattices, respectively.
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1. Introduction

The beauty of the Ising model (IM) [1–4] lies in its simplicity. The considered
system is a network of N interacting spins, Si=±1, which energy is:

E≡−J
∑

(i,j)

SiSj , (1)

where J is an exchange integral. We assume homogeneous short-range spin interac-
tions, i.e. the summation in Equation (1) is performed over (i,j) pairs of the nearest
neighbours. The positive sign of J > 0 leads to ferromagnetic interactions among spins.
The minimisation of energy (1) for temperature T = 0 produces spin dynamics which
may be described by a deterministic cellular automaton with the following rule:

Si(t+1) = sign



J
∑

j

Sj(t)



, (2)

where t denotes discrete time and summation is performed over the nearest neighbours
of the ith spin.

For a finite temperature T > 0 the deterministic rule (2) is replaced by
a probabilistic cellular automaton with a spin update rule, Si(t)→Si(t+1), described

tq409u-e/475 12I2006 BOP s.c., http://www.bop.com.pl



476 K. Malarz et al.

by the Glauber [5] or Metropolis [6] dynamics. Phase transition may then be observed:
below the critical temperature, T <TC , spontaneous magnetisation,m≡

∑N

i=1Si/N 6=
0, is observed, while m= 0 for T >TC .

The Ising model has already been investigated in many ways, including Monte
Carlo simulation [7–12], series expansion [13–17], the mean-field approach [18–20] or
the partition function technique [21–23], and for many systems, such as: antiferro-
magnets [24–30], frustrated [24, 25, 31], disordered [32, 33] or diluted [34, 35] networks
on complex [24, 36–38] or shuffled lattices [39, 40], etc. [41].

In this paper, critical temperature TC is estimated for five two-dimensional
lattices, on the basis of the 〈m(T )〉 dependence, where 〈···〉 denotes the time average.
Archimedean lattices (AL) are vertex transitive graphs that can be embedded in
a plane such that every face is a regular polygon. Kepler demonstrated that there is
exactly eleven such graphs [42]. The names of the lattices are given according to the
sizes of faces incident to a given vertex. The face sizes are listed in order, starting with
a face such that the list is the smallest possible in the lexicographical order. In this
way, the square latticeis called (4,4,4,4), abbreviated to (44), the honeycomb is called
(63) and Kagomé is (3,6,3,6). Some results concerning IM on AL were presented in
Refs. [43–62]; however the Curie temperatures of several AL’s are still missing in the
literature of which the authors are aware.

Critical properties of these lattices were investigated in terms of site percolation
[63, 64] in Ref. [65], where the topologies of all AL’s are given as well.

2. Simulation results

We evaluate the Curie temperature, TC , on the basis of the termal dependence
of magnetisation 〈m〉. The investigated systems contain about N ≈ 6·104 spins, which
decorate nodes of (34,6), (3,4,6,4), (4,6,12), (4,82) AL. The Glauber dynamics [5] is
applied and the simulation takes Niter = 2 ·105 Monte Carlo steps (MCS). One MCS
is completed when all N spins are investigated (spin-by-spin in a type-writer order),
whether they should flip or not. The time average is performed over the last 105MCS’s
for an evaluation of 〈m〉. The results are presented in Figure 1. The temperature at
which spontaneous magnetisation 〈m〉 ceases is accepted to be an estimation of TC .
These estimations are shown in Table 1.

Table 1. AL’s and the associated critical temperatures, TC

z lattice TC [J/kB] Ref.

3 (3,122) 1.25 —
(4,6,12) 1.40 —
(4,82) 1.45 —
(63) 1.52 [59]

4 (3,4,6,4) 2.15 —
(44) 2/arcsinh1≈ 2.27 [60–62]
(3,6,3,6) 2.27 [17]

5 (34,6) 2.80 —
(33,42) 2/ln2≈ 2.89 [58]
(32,4,3,4) 2.93 [58]

6 (36) 3.64 [59]

tq409u-e/476 12I2006 BOP s.c., http://www.bop.com.pl



Curie Temperatures for the Ising Model on Archimedean Lattices 477

〈m
〉

T [J/kB]

Figure 1. Dependence of average magnetisation 〈m〉 on temperature T expressed
in J/kB for (34,6), (3,4,6,4), (4,6,12), (4,82) and (44) AL’s. Simulations

carried out for N ≈ 6 ·104 spins during Niter= 2 ·105MCS.
Magnetisation 〈m〉 is averaged over the last 105MCS

〈m
〉

κ=T/TC

Figure 2. Dependence of average magnetisation 〈m〉 on normalized dimensionless temperature
T/TC for (34,6), (3,4,6,4), (4,6,12), (4,82) and (44) AL’s. Same data as in Figure 1

3. Conclusions

In this paper the Curie temperatures have been collected for IM on all AL’s.
TC for (3,122), (4,6,12), (4,82), (3,4,6,4) and (34,6) AL’s have been evaluated for the
first time with the Monte Carlo simulation.

For all the investigated AL’s, the shape of the m(T/TC) curve (see Figure 2) is
roughly the same as for the square lattice. In the latter case, an analytical expression
[66] is known:

|m(κ)|= 8

√

cosh2(2/κ)

sinh4(2/κ)

(

sinh2(2/κ)−1
)

, (3)

where κ≡T/TC .
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In contrast to the Galam-Mauger [67, 68] semi-exact formula for TC dependence
on the system dimensionality, d, and the lattice coordination number, z, we have
shown that the critical temperature for IM differs slightly for several AL’s (where
d= 2) with the same values of z. Similarly to the percolation phenomena [63, 64],
the dimensionality, d, and the coordination number, z, are not sufficient [69–78] for
determining the critical point TC for IM.
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