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Abstract: The aim of the paper is to propose an FE procedure for static and dynamic non-

linear analysis including elasto-viscoplastic constitutive equations of the Bodner-Partom model.

Basic equations of the constitutive model are given with the flow graph used in the FE procedure.

The proposed procedure has been applied in the MSC.Marc commercial system with a user-defined

UVSCPL subroutine that enables application to a wide range of varied finite elements. A number of

simple problems of static and dynamic analysis are presented to show the accuracy of this approach.

The numerical simulations are compared with experiments to validate the proposed FE procedure.
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1. Introduction

Although a number of constitutive equations have been developed for elasto-

viscoplastic deformations of materials (see e.g. [1] or [2]), engineering applications

of the majority of the models are limited due to difficulties in identification of

a large number of material parameters. The B-P constitutive model, proposed by

Bodner and Partom [3] in the 1970s, is one of the unified theories, used in many

practical engineering applications. A brief review of applications of the B-P model is

given below.

A simple, unconditionally stable numerical procedure for time integration of

the flow rule for large plastic deformation of metals was developed by Rubin [4]. The

crack tip temperature due to near-tip dissipation of mechanical energy for a crack

propagating in a viscoplastic material was investigated by Sung and Achenbach [5].

The problem of the elasto-viscoplastic dynamic behaviour of geometrically non-

linear plates and shells, under the assumption of small strains and moderate rotations,

was investigated by Kłosowski et al. [6]. The elasto-viscoplastic equations of B-P was
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modified by Rubin and Bodner [7] to model strong non-proportional loading paths

such as those experienced in corner turning tests and certain cases of inelastic buck-

ling. A numerical method for the implementation of a micromechanical model capable

of predicting the thermomechanical response of laminated metal matrix composites in

the presence of damage development with the B-P model was developed by Lissenden

and Herakovich [8]. In [9], Mahnken and Stein presented a unified strategy for identifi-

cation of material parameters of the Chaboche [10], Bodner-Partom [3] and Steck [11]

viscoplastic constitutive models from uniaxial tests. Several explicit integration algo-

rithms with self-adaptive time integration strategies was developed and investigated

by Arya [12] and applied to the Freed-Verrilli [13] and B-P viscoplastic models. The

numerous computations performed showed that, for comparable accuracy, the effi-

ciency of an integration algorithm depends significantly on the type of application.

Zhang and Moore [14] used the B-P and the extended Kelvin models to describe

the behaviour of high-density polyethylene. Foringer et al. [15] described fatigue life

modelling of titanium-based MMCs (metal-matrix composites), on the examples of

SCS-6/Timetal21s and SCS-6/Ti-15-3. Sansour and Kollmann [16] considered the the-

ory and numerics of finite inelastic deformations. They employed evolution equations

of the Bodner-Partom type with the concept of multiplicative decomposition of the

deformation gradient and various numerical examples of finite strain deformations.

Kroupa and Bartsch [17] investigated an improved formulation for the viscoplastic

response of the Timetalt21S matrix. Their modifications to the Bodner-Partom con-

stitutive equations improved flexibility in fitting a larger strain-rate range than previ-

ously available. The material parameters of the isotropic form of the Bodner-Partom

model were found as functions of temperature for the eutectic solder by Skipor and

Harren [18]. The resulting temperature-dependent viscoplastic description was imple-

mented in an infinitesimal-strain, incrementally-linear finite element method.

Sansour and Kollmann [19] investigated large viscoplastic deformations of shells

with the constitutive model based on the concept of unified Bodner-Partom evolution

constitutive equations. They proposed an algorithm for the evaluation of the expo-

nential map for non-symmetric arguments and a closed form of the tangent operator.

An enhanced strain FEM and various examples of large shell deformations were also

given, including loading-unloading cycles. Esat et al. [20] presented an implementation

of the unified Bodner-Partom theory in a three-dimensional finite-element program

analysing anisotropic inelastic behaviour of selected metals. A comparative study of

vibrations of elasto-viscoplastic circular plates subjected to shock-wave impulses were

presented by Kłosowski et al. [21]. Woznica and Kłosowski [22] evaluated material pa-

rameters for viscoplastic Chaboche and Bodner-Partom constitutive equations using

tensile tests.

Frank and Brockman [23] developed the Bodner-Partom constitutive equations

for glassy polymers. Their model was implemented into an FEA program and ap-

propriate parameters were identified for a polycarbonate. Barta and Jaber [24] used

the Litonski-Batra, Johnson-Cook, Bodner-Partom and power law thermo-viscoplastic

constitutive relations to model the thermo-viscoplastic response of an HY-100 steel

material. A numerical tool was developed by Aa et al. [25] to analyse the wall ironing

process of sheet metal coated with a polymer layer. Under industrial processing con-

ditions, both sheet metal and polymer coating exhibit elasto-viscoplastic behaviour.
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The material behaviour of the polymer layers was described by the Leonov model [26]

and that of the metal sheet – by the B-P model. A framework of additive models

of finite strain plasticity and viscoplasticity was developed by Sansour and Wagner

([27, 28]). They modified the Bodner-Partom evolution equations so that they fit into

the theoretical framework adopted and fully developed their numerical treatment

of the problem.

Andersson et al. [29] performed crack growth tests on specimens with rectan-

gular cross-section of Incotel 718 in order to examine the low-cycle fatigue behaviour.

The material was described in terms of the Bodner-Partom viscoplastic constitutive

equations and the material parameters were found by fitting simulations to experi-

mental data. An FE implementation of Bodner’s unified elastic-viscoplastic theory for

the analysis of metal matrix composites was presented by Shati et al. [30]. An original

model of circular fibres embedded in a square array of matrix material was chosen for

their investigation.

Barta and Chen [31] investigated thermomechanical deformations of a steel

block deformed in simple shear and modelled the thermo-viscoplastic response of the

material. Song et al. [32] presented an application of the Bodner-Partom model to

FEA of high velocity impact. The material parameters were determined on the basis

of experiments with Hopkins bar tests. Bodner [33] described the unified constitutive

theory for elasto-viscoelastic material behaviour at high and very high strain rates.

A framework for an implicit implementation of the Bodner-Partom material model

was presented by Anderson [34]. Batra et al. [35] numerically investigated the effect of

the shape of the notch-tip and the presence of a hole ahead of a circular notch-tip on

the initiation and transition speed of the failure mode. Jiang et al. [36] developed a B-P

constitutive model for predicting the thermal and mechanical responses of a cobalt-

based ULTIMET alloy subjected to cyclic deformation. The model was constructed in

the light of internal state variables, developed to characterize the inelastic strain of

the material during cyclic loading.

Kłosowski and Woznica [37] investigated the influence of higher order terms,

which should be taken into account in the shell strain-displacement relations accord-

ing to moderate or large rotations theories. They also discussed various types of

viscoplastic constitutive models applied to FE problems. Hart et al. [38] introduced

stochastic methods to describe the influence of scattering test data on the identifica-

tion of material parameters for the B-P viscoplastic constitutive model. The material

parameters were determined for AINSI SS316 stainless steel at 600̊ C on the basis of

creep tests, constant strain rate tension tests and cyclic tension-compression tests.

Kłosowski et al. [39] presented the results of experiments on the Panama technical

fabric performed to identify the inelastic properties of warp and weft. The B-P and

Chaboche viscoplastic models were applied to describe their properties.

In order to predict the inelastic deformations of shock wave loaded plates’

simulations, Stoffel ([40, 41]) used the viscoplastic constitutive equations of Chaboche

and B-P combined with a structural theory. Zäıri et al. [42] applied a unified elastic-

viscoplastic B-P model to non-linear modelling of glass polymers. They showed the

modified B-P model associated with the original version to be sufficiently flexible

to permit the modelling of the representative amorphous glassy polymer’s response.
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Experimental tests in tension on a RT-PMMA material were performed by Zäıri

et al. [43] under various constant strain rates.

2. Bodner-Partom constitutive equations

The Bodner-Partom model [3] is based on the assumption of strain additivity,

where strain rate ε̇ is decomposed into its elastic, ε̇E , and inelastic, ε̇I , strain elements:

ε̇= ε̇E+ ε̇I . (1)

Generally, strain rate σ̇ is specified by the time derivate of Hooke’s law as:

σ̇=B : ε̇E =B :
(

ε̇− ε̇I
)

, (2)

where B is the tensor of elastic modules. In a practical numerical algorithm, the stress

in time t may also be written in the form:

t
σ= t−∆tσ+∆σ, (3)

where stress increment ∆σ is specified by the following equation:

∆σ=B :∆εE =B :
(

∆ε−∆εI
)

. (4)

The inelastic strain rate, ε̇I , of the Bodner-Partom model is given by the equation:

ε̇
I =
3

2
ṗ
σ
′

J (σ′)
, (5)

where ṗ, σ′ and J (σ′) =
√

3
2 (σ

′ :σ′) are the equivalent plastic strain, the deviatoric
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where D0 and n are material parameters and represent the limiting plastic strain rate

and the strain rate sensitivity parameter. The equivalent strain rate, ṗ, may be found

in the literature in another form as well, viz.:

ṗ=
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. (7)

Isotropic and kinematic hardenings are specified by the following equations:

Ṙ=m1 (Z1−R) Ẇ
I−A1 Z1

(

R−Z2
Z1

)r1

, (8)

Ẋ=m2

(

3

2
Z3
σ

J (σ)
−X

)

Ẇ I−A2 Z1
3

2

( 2
3J (X)

Z1

)r2
X

J (X)
, (9)

where m1, A1, r1 are the hardening rate coefficient, the recovery coefficient and the

recovery exponent for isotropic hardening, while m2, A2, r2 are the hardening rate
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coefficient, the recovery coefficient and the recovery exponent for kinematic hardening,

respectively. The parameters are as follows: Z1 – the limiting (maximum) value for

isotropic hardening, Z2 – the fully recovered (minimum) value for isotropic hardening,

and Z3 – the limiting (maximum) value for kinematic hardening. The initial value of

isotropic hardening is R(t=0) = Z0. It should be noted that the plastic work rate,

Ẇ I , is calculated from the following equation:

Ẇ I =σ : ε̇I . (10)

3. Numerical examples

The MSC.Marc system in numerical calculations was used. However, as the

standard MSC.Marc system does not support the Bodner-Partom material models,

user-defined UVSCPL subroutines [44] were used to apply the Bodner-Partom model to

the system, specifying the inelastic strain rate and stress increments. The fundamental

part of the algorithm used in the implementation of UVSCPL subroutines is presented

in Figure 1 in the form of a flow graph.

[step 1]→

[

∆X= ∆t2

(
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)

, Xj =Xj−1+∆X

∆R= ∆t2
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)
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]
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Figure 1. Flow graph of the UVSCPL subroutine of the Bodner-Partom model

3.1. Test 1

Numerical calculations were performed for simple shell, solid and truss struc-

tures. A four-node thin-shell element (Element 139, [45]), a three-dimensional eight-

node isoparametric solid element (Element 7, [45]) and a three-dimensional two-node

straight truss element (Element 9, [45]) were applied. The geometry and boundary

conditions of these structures were assumed in order to compare the obtained numer-

ical results with the uniaxial tension tests performed at the Department of General
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Table 1. Parameters for the Bodner-Partom model for steel at 20̊ C

T E ν D0 n Z0 m1 Z1
[̊ C] [GPa] [ – ] [s−1] [ – ] [MPa] [MPa−1] [MPa]

Steel, [46] 20 223 0.3 1 ·104 9.61 259.38 0.068 422.90

A1 Z2 r1 m2 Z3 A2 r2 ṗ

[s−1] [MPa] [ – ] [MPa−1] [MPa] [s−1] [ – ]

Steel, [46] 0.0 0.0 0.0 1.82 21.35 0.0 0.0 Eq. (6)

Mechanics of RWTH Aachen (see [46] for details). Parameters for the Bodner-Partom

model were taken for steel at 20̊ C (see Table 1).

The graphs of stress versus strain for the strain rate of ε̇=1 ·10−2s−1 are given

in Figure 2. There is good agreement between the stress-strain relations obtained from

MSC.Marc calculations and laboratory tests. It should be noted that the results are the

same for various types of finite elements applied in the numerical calculations. This

simple test confirms that the Bodner-Partom equations have correctly introduced to

the MSC.Marc system using the UVSCPL subroutine.

Figure 2. Results of numerical simulations of uniaxial tension tests

3.2. Test 2

In this example, numerical simulations of uniaxial tension tests for various

strain rates using the Bodner-Partom models are presented. The material parameters

of INCO718 at 650̊ C (see Table 2) were taken for the Bodner-Partom model analysis.

The graphs of stress versus strain for the strain rates of ε̇=1 ·10−7s−1, ε̇=1 ·10−2s−1

and ε̇=1 ·10−1s−1 are shown in Figure 3.
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Figure 3. Numerical simulations of constant strain rate tests

Figure 4. INCO718 results of numerical simulations for ε̇=1 ·10−2s−1

It should be noted that, even for the same materials under the same conditions,

some material parameters vary significantly. Numerical calculations were performed

with the material parameters of the chosen nickel-based INCO718 alloy at 650̊ C given
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Table 2. Parameters for the Bodner-Partom model for nickel based the INCO718 alloy

T E ν D0 n Z0 m1 Z1
[̊ C] [GPa] [ – ] [s−1] [ – ] [MPa] [MPa−1] [MPa]

INCO718 [47] 650 172 0.3 1.03 ·104 0.74 6520 0.686 7030

INCO718, [48] 650 169 0.3 104 1.17 3130 0.024 4140

INCO718, [49] 650 162.4 0.3 106 3.0 1621.5 0.42 1794.7

A1 Z2 r1 m2 Z3 A2 r2 ṗ

[s−1] [MPa] [ – ] [MPa−1] [MPa] [s−1] [ – ]

INCO718, [47] 6.82 ·10−4 3690 4.73 — — — r2= r1 Eq. (6)

INCO718, [48] 1.10 ·10−4 2760 2.86 — — — r2= r1 Eq. (6)

INCO718, [49] 1.50 ·10−3 718 7.0 — — — r2= r1 Eq. (6)

by Kolkaillah and McPhate [47], Eftis et al. [49] and Milly and Allen [48] (see Table 2

for details). The numerical simulations (see Figure 4) were performed for a constant

strain rate of ε̇ = 1 · 10−2s−1. Significant differences can be observed between the

presented material constants for Bodner-Partom constitutive model analysis. Milly

and Allen [48] observed hardening while Eftis et al. [49] noticed softening of the

alloy. Kolkaillah and McPhate [47] obtained a 15% increase of yield stress for the

same material in comparison with each other (see Figure 4). It is therefore necessary

for detailed research to perform experimental tests and determine the material

parameters for particular cases.

3.3. Test 3

In this example, the static and dynamic results of numerical analysis of

a circular steel plate are investigated. Numerical analyses are compared with the

experimental tests performed at the Department of General Mechanics of RWTH

Aachen (see [46] for details). Due to the symmetry of geometry and loadings,

only a quarter of the plate has been investigated, with proper symmetry boundary

conditions at the x=0 and y=0 coordinates (see Figure 5). The four-node thin-shell

Element 139 of [45] was used in numerical analysis.

In the calculation’s first step, a static elastic analysis was performed to ver-

ify the assumed boundary conditions and the type of analysis. An elastic modulus

of E = 223000MPa, a Poisson’s ratio of ν = 0.3 and plate thicknesses of t= 0.001m

were assumed. The mass density of the steel plate was taken to be ρ= 7800kg/m3.

Two analytical options were tested in the MSC.Marc calculations: ‘LargeDisp’ and

‘LargeDisp+UPDATE’. The ‘LargeDisp’ parameter was used when MSC.Marc was ap-

plied to calculate the total Lagrangian method. The ‘LargeDisp+UPDATE’ was em-

ployed when MSC.Marc was applied to calculate the Cauchy stresses and true strains.

Table 3. Deflection of the plate’s middle point

MSC.MarcPressure

p [bar]

Tests

[mm]
FEA [46]

LargeDisp [mm] LargeDisp+UPDATE [mm]

0.5 0.490 0.493 0.508 0.427

1.0 0.830 0.792 0.826 0.714
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Figure 5. Visualization of the circular plate

The results of static, elastic numerical analysis are given in Table 3. The

obtained results are compared with experimental measurements and FE calculations

performed by Kłosowski [46], with very good agreement of vertical displacements

obtained from FE calculations and experiments. The calculations confirm that the

boundary conditions, values of loadings and density of mesh were assumed correctly.

For the following calculations, the ‘LargeDisp’ option had to be used. It is worth

pointing out that Kłosowski [46] used nine-node isoparametric shell elements, while

four-node shell elements were applied in the present analysis.

In the second step of the numerical calculations, elastic dynamic analysis was

carried out. In this case, the value of pressure was time-dependent. The experimental

value of pressure, p(t), for the elastic dynamic analysis was estimated through straight-

line approximation and is given in Table 4. The non-linear equations of motion were

integrated with the Newmark algorithm [50] with a time step of ∆t= 2.5 ·10−5 s. It

was assumed in the numerical analysis that the mass matrix was lumped and damped

by linear combinations of stiffness and mass matrices (Rayleigh or proportional

damping):

C=α ·(K1+K2)+β ·M, (11)

where α is the stiffness matrix multiplier and β is the mass matrix multiplier.
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The total time of the experiment and numerical calculations was 28ms (see

Figure 6). The mean value of deflection of the plate’s middle point obtained from

dynamic elastic numerical calculations did not exceed 10% in comparison with the

experimental results. Rayleigh damping multipliers α=5.39 ·10−6 and β=15.16 were

assumed to analyze the elastic vibrations of the plate. The multipliers were established

on the basis of the assumed value of critical damping, ξ1= ξ2=0.01, and two known

frequencies (see Table 5), in accordance with the following expressions (see e.g. Clough

and Penzien [51]):

α=2 ·
(ξ2 ·ω2−ξ1 ·ω1)

ω22−ω
2
1

,

β=2 ·ω1 ·ω2 ·
(ξ1 ·ω2−ξ2 ·ω1)

ω22−ω
2
1

.

(12)

It should be noted that, when α=0, the highest frequencies of the constructional

system are weakly damped, while they are strongly damped when β=0.

Table 4. Time-dependent value of the calculated pressure – the elastic solution

t
0.00 3.20 3.25 4.00 4.35 6.00 18.00 28.00

[ms]

p
0.00 0.00 0.70 0.70 0.85 0.90 0.90 1.00

[bar]

Table 5. Comparison of frequencies of free vibrations – the elastic solution

Initial, for t=0.0ms, Current, for t=28ms,
Configuration

p=0.0bar p=1.0bar

[s−1] [ – ] [s−1] [ – ]

1 704 1.0 1062 1.51

2 2477 1.0 2651 1.07

The next step of the numerical calculations was dynamic, geometrically non-

linear analysis of the steel plate. The Bodner-Partom model was taken to describe

the steel material, with the parameters given in Table 1. The Newmark algorithm [50]

with a time step of ∆t= 7 ·10−7s was used to integrate the non-linear equations of

motion. The experimental value of pressure, p(t), was estimated through straight-line

approximation, like in the case of elastic dynamic analysis, and is given in Table 6.

Table 6. Time-dependent value of the calculated pressure – the inelastic solution

t
0.00 3.20 3.25 4.10 4.50 6.00 11.30 14.2 16.0 24.0 28.0

[ms]

p
0.00 0.00 3.40 3.40 4.00 4.50 4.60 5.60 5.80 6.05 6.10

[bar]

The results of dynamic vibrations of the steel plate’s middle point are given in

Figure 7 (without damping) and Figure 8 (with damping). The same values of the

Rayleigh damping multipliers were assumed to analyze elastic vibrations of the plate

as those assumed for elastic dynamic analysis.
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Figure 6. Elastic vibrations of the middle point

Figure 7. Inelastic vibrations of the plate’s middle point (without damping)

A significant difference from the experimental results can be observed in the

plate’s behaviour for the case of undamped vibrations (Figure 7). When the damping

factor is included, the results are very close to the functions obtained from laboratory

tests (Figure 8). The simple damping model applied in the analysis and validity of

material parameters (which lead to small divergences from the experiment already in

the simulations of uniaxial tensile tests, see Figure 2) can explain the small differences.

In the case of dynamic analysis the differences are even more emphasized.
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Figure 8. Inelastic vibrations of the plat’se middle point (with damping)

4. Summary

The finite element procedure for the elasto-viscoplastic non-linear static and

dynamic calculations has been developed in the paper. The Bodner-Partom model

can be directly applied in the calculations. The validity of the proposed FE procedure

and the concept of the calculated Rayleigh damping multipliers have been confirmed.

The described FE procedure with the Bodner-Partom model is open and flexible and

may be implemented in many industrial applications.
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[43] Zäıri F, Näıt-Abdelaziz M, Woznica K and Gloaguen J-M 2005 European J. Mech. A/Solids

24 169

[44] Users handbook: MSC.Marc Volume D: User Subroutines and Special Routines, Version 2003,

MSC.Software Corporation, 2003

[45] Users handbook: MSC.Marc Volume B: Element Library, Version 2003, MSC.Software Corpo-

ration, 2003

[46] Kłosowski P 1999 Non-linear Numerical Analysis and Experiments on Vibrations of Elasto-

Viscoplastic Plates and Shells, DSc Thesis, Gdansk University of Technology, Gdansk (in Pol-

ish)

[47] Kolkaillah F A and McPhate A J 1989 J. Eng. Mech. ASCE 10 195

[48] Milly T M and Allen D H 1982 A Comparative Study of Non-linear Rate-dependent Mechanical

Constitutive Theories for Crystalline Solids at Elevated Temperatures, Technical Report

API-E-5-82, Virginia Polytechnic Inst. and State University, Blacksburg

[49] Eftis J, Abdel Kader M S and Jones D I 1989 Int. J. Plasticity 6 1

[50] Newmark N M 1959 J. Eng. Mechanics Division 85 67

[51] Clough R W and Penzien J 1993 Dynamics of Structures, McGraw-Hill, Inc., International

Edition

tq409t-e/473 12I2006 BOP s.c., http://www.bop.com.pl



474 TASK QUARTERLY 9 No 4

tq409t-e/474 12I2006 BOP s.c., http://www.bop.com.pl


