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Abstract: The main purpose of this paper is to present a new method for the study of single fluid

mixing in a stirred vessel. The simulation has been realized with a parallel implementation of the

Lattice Boltzmann coloured particles model. The mixing phenomenon is compared with the one

derived with a Lagrangian approach.
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1. Introduction

The main purpose of Computational Fluid Dynamics (CFD) is to investigate

the behavior of fluid flow under various conditions. The motion of an isothermal and

incompressible fluid is described by the continuity equation and the Navier-Stokes

equation. The complexity of this differential system is due to the non-linear terms.

Lattice Boltzmann Models (LBMs) are a relatively recent technique to simulate

fluid motion (see [1–6]). The basic idea of LBMs is to model the macroscopic

behavior of a fluid by implementing microscopic interactions between its particles.

This approach leads to an easy parallelizable procedure capable of simulating flow in

complex geometries.

LBMs were initially derived from Lattice Gas Cellular Automata but this

approach involved some problems such as statistical noise, low Reynolds number

and increased complexity of the collision operator when one tries to increase the

number of dimensions from two to three. In 1988, McNamara and Zanetti, [7],

proposed the first Lattice Boltzmann equation in order to overcome the statistical

noise problem. From this moment the evolution accelerated until it produced the

simplest Lattice Boltzmann Equation, the so-called Lattice-Bhatnagar-Gross-Krook

equation (LBGK), [8], based on single relaxation time approximation. It has also been

shown that the Lattice Boltzmann Equation can be viewed as a discretization of the

continuum Boltzmann BGK equation [9].
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In LBMs space is discretized by a regular lattice (square or hexagonal for two-

dimensional domains and cubic for three dimensional domains) and a distribution

function of flow density is defined at each discrete lattice point. The model evolution

consists of two alternating steps: relaxation of the distribution function to local

equilibrium in each node (collision) and propagation of the fluid to the nearest

neighbours of the lattice (propagation).

The aim of this work has been to study the mixing of a fluid in a stirred vessel

with an easy and parallelizable algorithm. This problem was already developed in [10]

where the velocity field was modelled by LBM D3Q19 and the particles’ trajectories

were restored with a Lagrangian approach. The main disadvantages of this technique

are a strong load imbalance when each processor knows only its own velocity field

with fine grids and the massive memory use when the whole velocity field is stored in

each processor (see [11]).

We have used the Lattice Boltzmann Coloured Particles Model (LBCPM) similar

to that proposed by E. G. Flekkøy, [12], for miscible binary fluids. To observe mixing

we mark some particles introducing a colour distribution function. Its evolution is

based on a Lattice Boltzmann scheme with an appropriate equilibrium distribution,

[13]. We will show that the LBCPM offers a qualitative and quantitative description

of the mixed fluid very similar to that obtained in [10] with the coloured particles

tracking method (CPTM). Furthermore, this method allows us to take advantage of

all the computational merits of LBMs. Comparability of the models has been the only

reason for the particular choice of the domain geometry and the physical constants.

2. The Boltzmann model for miscible fluids

Let us consider a viscous, incompressible and isothermal fluid that completely

fills a mixer with four rotating blades. The motion is described by the continuity

equation:

∇ ·u =0, (1)

and by the dimensionless Navier-Stokes equation:

∂u

∂t
+(u ·∇)u =−∇P + 1

Re
∇2u , (2)

where t ∈ [0,T ], x = (x1,x2,x3) ∈ Ω ⊂ R
3, and the dimensionless vector function

u(x ,t)= (u1,u2,u3) represents the fluid velocity.

With fixed length, lb, of each blade and velocity, ωb, of the impeller, the kind

of the fluid is represented by the Reynolds number:

Re=
4l2b ωb
ν
, (3)

where ν= µ
ρ
is the kinematic viscosity of the fluid, i.e. the ratio between its absolute

viscosity, µ, and its density, ρ.

To compare the LBCPM and the CPTM, we have chosen the domain already

presented in [10], it has the shape of a frustum of a right circular cone:

TC =

{

(x1,x2,x3)∈R
3 : 0<x3<zs, (x

2
1+x

2
2)<

(

rs−ri
zs
x3+ri

)2
}

, (4)
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where ri, rs are the radii of the lower and the upper base and zs is its height. The

impeller is modelled by a right, circular cylinder C:

C =
{

(x1,x2,x3)∈R
3 : zm≤x3≤ zM , (x21+x22)≤ (rC)2

}

, (5)

where rC is its radius and zM −zm is its height. These parameters must verify the
following relationships: 0<ri,rs, 0<zm<zM <zs, and 0<rC <

(

rs−ri
zs
zm+ri

)

.

Figure 1. Position of the impeller inside the vessel with ri=4.5 ·10−2m, rs=6.6 ·10−2m,
rc=2.75 ·10−2m, zm=2.4 ·10−2m, zM =3.3 ·10−2m, zs=1.68 ·10−1m

Four blades determine the shape of the impeller (see Figure 1). Initially we

put them along directions θi =
iπ
2 with i=0, . .. , 3, at the height of z0 =

1
2 (zm+zM ).

Our model has a maximum angular speed of ωb=4π, so that the blades’ position is

θ(t)= θi+ωbt, t> 0. We model them so that the blades along the θ0 and θ2 directions

produce upward vertical speed while those at θ1 and θ3 produce downward vertical

speed (see [14]).

The domain is:

Ω=TC \C, (6)

and its boundary is ∂Ω=Γ0∪Γ1=Γ, where
Γ0= ∂TC , Γ1= ∂C . (7)

The Lattice Boltzmann Model is applied to simulate the dimensioned velocity

field of an incompressible fluid when mixed by the impeller. The chosen model is

D3Q19, a multi-speed model with a cubic lattice (Figure 2).

Figure 2. Cubic lattice with 19 velocity directions
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We consider the frustum of the right circular cone TC enclosed in a parallelogram

with the following discrete lattice:

Gσ =
{

(xm1 ,x
n
2 ,x
k
3)∈R

3 : xm1 =−rs+mσ, xn2 =−rs+nσ, xk3 = kσ,
m, n=0,. .. , nx, k=0,. . ., nz

}

,
(8)

where σ is the minimal distance between two grid points. We set nx = 2rs/σ and

nz = zs/σ. Points x ∈TC , called active points, define the domain where the simulation
takes place, whereas the boundary condition of the vessel is imposed at points

x ∈ ∂TC . The remaining points of the lattice are defined as inactive.
In the stirred vessel, TC , we put a single, isothermal and incompressible fluid

whose density, ρ(x ,t), is represented by the mass distribution functions Fi as follows:

ρ(x ,t)=

18
∑

i=0

Fi(x ,t). (9)

Fi(x ,t) represents the mass fraction of the fluid moving with velocity ci from the

node in position x at time t. The set of velocities ci, i= 0,. . .,18, is defined by the

D3Q19 model. At the same time we consider the total momentum density of the fluid:

j (x ,t)=

18
∑

i=0

Fi(x ,t)ci= ρu . (10)

Initially, the fluid fills the stirred vessel completely and remains at rest:

ρ(x ,0)= ρ0, x ∈TC ,
j (x ,0)= 0, x ∈TC .

(11)

To visualize mixing we mark a small part of the fluid by defining a colour function:

δ(x ,t)=

18
∑

i=0

Ci(x ,t) . (12)

At time t=0 we choose to colour a fraction of the fluid S⊂TC :
δ(x ,0)= δ0, x ∈S ,
δ(x ,0)=0, x ∈TC \S .

(13)

At each node, the density and colour of the fluid are shared between the lattice vectors

according to the equilibrium weights. In the D3Q19 model we have:

Wi=
1

3
i=0,

Wi=
1

18
i=1, . .. , 6,

Wi=
1

36
i=7, 8, .. . , 18.

(14)

Then, Fi(x ,0)= ρ0Wi and Ci(x ,0)= δ(x ,0)Wi, x ∈TC .
The dynamics of the fluid is performed by the Boltzmann kinetic equation in

the BGK approximation:

F ?i (x ,t+1)=Fi(x ,t)+ω(F
(eq)
i (x ,t)−Fi(x ,t),) (15)
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and for the colour:

C?i (x ,t+1)=Ci(x ,t)+λD(C
(eq)
i (x ,t)−Ci(x ,t)), (16)

where F
(eq)
i (x ,t) and C

(eq)
i (x ,t) are the equilibrium distributions:

F
(eq)
i (x ,t)=Wiρ

{

1+3ci ·u+
9

2
(ci ·u)2−

3

2
u2
}

, (17)

C
(eq)
i (x ,t)=

δ(x ,t)Fi(x ,t)

ρ(x ,t)
. (18)

The velocity, u , of the fluid is given as follows:

u =
j
ρ =

18
∑

i=0

ciFi

18
∑

i=0

Fi

x ∈Ω ,

u = v x ∈C ,

(19)

where v(x ,t) is the known velocity of the impeller blades. The first relaxation

parameter, ω, defines the kinematic viscosity:

ν=∆tc2s

(

1
ω −
1
2

)

, (20)

where cs=σ/(
√
3∆t) is the sound speed in the D3Q19 model and ∆t is the time step.

The ω value is deduced from the Reynolds number

Re=
4l2b ωb
ν =

4l2b ωb

c2s∆t
(

1
ω
− 12
) ⇒ ω=

1

1
2+

4l2
b
ωb

c2
s
∆tRe

. (21)

In the next step, we propagate the density and colour distribution functions,

Fi and Ci, respectively, to the nearest neighbour along the i direction:

Fi(x +ci,t+1)=F
?
i (x ,t+1) x ∈TC ∩Gσ ,

Ci(x +ci,t+1)= C
?
i (x ,t+1) x ∈TC ∩Gσ .

(22)

We apply no-slip conditions on the boundary Γ0 as in [10].

As shown in [13], the colour function, δ(x ,t), with the chosen equilibrium

distributions, Equation (18), satisfies the following equation:

∂tδ+ u ·∇δ=
δ
ρ

(

1

λD
− 1
2

)

∂xa∂xbPab , (23)

where summation over a and b is assumed and Pab is the moment flux tensor:

Pab(x ,t) =
∑

i

cia cibFi(x ,t) a, b =1, 2, 3. (24)

It follows from Equation (23) that, if the value of the relaxation parameter λD is

chosen as close as possible to two, the motion of coloured particles describes the fluid

particles’ trajectories very well.

3. Parallel implementation

In the last section we have established that fluid mixing can be modelled by

the evolution of the colour function, δ(x ,t). The full locality operation in Equations
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(15), (16) and (22) allows an easy parallel implementation by applying the classical

domain decomposition technique.

We divide the discrete domain along the Z axis into spatially contiguous

blocks. The number of blocks equals the number of processors available in the cluster.

The balance of the computational work between machines is realized by a bisection

algorithm. Let us recall that grid points x ∈Gσ are divided into active and inactive
points, with negligible CPU time for the latter. Consequently, we split the lattice into

parts containing the same number of active points. Let us suppose that our cluster

has n, n> 1, processors. We call hi, i=0, . .. , n−1, the height of frustum of the right
circular cone memorized in processor i: we should find an array h = [h0, .. .,hn−1] such

that:

V (hi)=V (hj) i,j =0,. . ., n−1, (25)

where V (hi) is the volume of the frustum stored in processor i:

V (hi)=
1
3
πhi (r

2
m+r

2
M +rmrM ) , (26)

rm = rm(hi) and rM = rM (hi) being the smallest and the greatest radius of the

subdomain.

Let n= 2p, p ∈ N. First, we divide the volume of the whole frustum, TC , by

two along the Z axis, so that the two contiguous subdomains have the same number

of active points. Then, the volume of each subdomain is further divided by two. We

repeat this division p times until we obtain 2p parts of the same volume. Finally, we

store the points of the parallelepiped H0 = {x ∈Gσ : 0≤x3≤h0} in the 0 processor,
the points of H1 = {x ∈Gσ :h0≤x3≤h1} in the 1 processor, and so on. In this way
the bottom of the vessel is placed in the master processor and the top – in the last

processor of the cluster.

We define a border site as a node with at least one of its neighbours on the

contiguous processor. Regular sites are nodes with own neighbours known by the

same processor. In our problem, border sites are only situated in the first and the last

levels stored in each processor. In the parallel implementation we can complete the

streaming in the border sites only through data exchange between adjacent blocks. In

each processor, the data of the higher sites are sent to the next client; similarly the

lower sites pass information to the former client.

According to [14] and [10], the dimensions of our domain Ω are ri = 0.045m,

rs = 0.066m, zs = 0.168m. The impeller occupies the right circular cylinder C

with rC = 0.0275m, zm = 0.024m, zM = 0.033m. The blades’ length is lb = rC .

A parallelepiped encloses the Ω domain: its base is rs×rs and its height equals zs.
We have considered two discrete grids Gσ on the parallelepiped. One has a step of

σ=3.0 ·10−3m; the obtained points are nx=45 along the X and Y axes and nz =57
along the Z axis. In the other grid the step is halved, σ = 1.5 · 10−3m, and then
nx=89 along the X and Y axes and nz =112 along the Z axis. In the first case we

put ∆t=10−3 s and, if the simulations is based on the grid with σ=1.5 ·10−3m, the
time step is halved.

We consider a fluid with a relatively low Reynolds number: Re = 250. The

relaxation parameter, ω, is univocally determined by Equation (21). We chose the
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diffusion parameter to be λD = 1.99, the highest value that keeps the numerical

stability of this single relaxation time model.

We assumed ρ0 = 0.1 as the initial fluid density and concentrated all the

coloured particles in the S region of the vessel, according to Equations (11) and

(13), setting δ0 = ρ0. For a qualitative study of the mixing as in [10], we chose (see

Figure 3):

S= {x ∈TC : z0−0.015m≤x3≤ z0+0.015m, 0≤x1,x2≤ ri}. (27)

Figure 3. Initial position of the coloured particles

The simulations were performed on a cluster made by Xeon at 3.2GHz with

Debian as the operating system. They were connected via an Ethernet network

at 1Gbit/sec. Considering the SPMD paradigm, data exchanges were carried out by

a MPICH library. The serial version of the model was run on a Xeon at 3.2GHz. The

CPU took 479 seconds for each second of the simulation on the coarse grid (1000

iterations) and 6400 seconds for the fine grid (2000 iterations).

We tested the parallel program on clusters with 2, 4 and 8 processors in order

to evaluate the speedup, Su, and efficiency, Ef . The results are shown in Table 1.

Table 1. Speedup and efficiency

2 processors 4 processors 8 processors

Su Ef Su Ef Su Ef

σ=0.03m 1.90 95% 3.22 80.5% 5.28 66%

σ=0.015m 1.91 96% 3.44 86% 6.03 75%

4. Results

To check our simulation and measure the mixing in the model we imagine the

TC domain to be divided into layers Lk:

Lk =

{

x ∈TC
(

k− 1
2

)

d2 ≤ z≤
(

k+
3
2

)

d2

}

, k=1,. .. , 54, (28)

where d2 = 3.0 ·10−3m. By analogy with the definition of the diffusion index given
in [10], we chose to colour all lattice points located in region Sj of the vessel:

Sj = {(x1,x2,x3)∈TC : bj ≤x3≤uj , 0≤x1,x2≤ ri}, (29)
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ρ?1 ρ1

ρ?2 ρ2

ρ?3 ρ3

Figure 4. Diffusion indices during the first 7 seconds of the simulation. The horizontal axis

represents the time in lattice units (100=1second) and the vertical axis represents the layers Lk

where [b1,u1] = [3,12], [b2,u2] = [6,15], [b3,u3] = [20,29]. At time t > 0 we consider

a node x ∈ TC as a coloured particle when δ(x ,t) > 0. We can thus evaluate the
amount of colour in the Lk layer at time t:

N?j (t,k)=
∑

δ(x ,t)>0

δ(x ,t), k=1, . .. , 54 . (30)
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LBCPM CPTM

T =0 seconds

T =0.5 seconds

T =1.0 seconds

T =1.5 seconds

T =2.0 seconds

Figure 5. Fluid behaviour in the stirred vessel during the first two seconds of the simulation
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Then, we put the diffusion index as:

ρ?j (t,k) =
N?j (t,k)

Vk
, k=1, .. . , 54, (31)

where Vk is the volume of the Lk layer.

In [10] the diffusion index, ρj(t,k), is defined as a ratio between Nj(t,k), the

number of particles started from the Sj region and arrived in the Lk layer at time t,

and Vk:

ρj(t,k) =
Nj(t,k)
Vk

, k=1, .. ., 54. (32)

In Figure 4, ρ?j (t,k) and ρj(t,k) with j=1, 2, 3 and 0≤ t≤ 7 seconds are shown.
The equality of the ρ?j (t,k) and ρj(t,k) indices shows that the diffusive behaviour of

the models is very similar.

In Figure 5, we have shown the fluid’s qualitative behavior under the action of

blades during the first two seconds of the simulations: the results obtained by [10] on

the right and the results of the Lattice Boltzmann Coloured Particles Model on the

left. As the shapes of the moved fluid and the occupied volume are very similar in

both cases, the resemblance of the following images is another proof of the accuracy

of the new model.

5. Conclusions

To determine the efficiency of a mixer, one needs to establish means by which

the extent of fluid mixing can be gauged both qualitatively and quantitatively. An

accurate description of the mixing phenomenon can be achieved by calculating the

trajectories of particles in the mixer’s flow field from the path equation, dx
dt
= u .

Interpolation of the lattice velocity vectors determines the velocity vector, u(x ,t), at

any point x of the TC domain. The precision of this model strongly depends on the

number of tracked particles, which makes it difficult to parallelize.

To simulate mixing in a stirred vessel, we have developed a new technique,

LBCPM, fully based on lattice Boltzmann schemes. We have checked the technique by

comparing both the qualitative behaviour and the diffusion indices of the two models.

The results show that the two procedures are in good agreement. Furthermore, the run

time of LBCPM is comparable to that of the velocity field alone (cf. Equations (15),

(17) and (22)). The model can be employed efficiently to simulate fluids in a laminar

regime only for relatively short time intervals, as problems tend to arise when the

simulation time is too long. When the colour function breaks into many components,

the colour, due to the intrinsic diffusivity of the model, tend to disappear in the

smaller connected components.
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