
TASK QUARTERLY 9 No 4, 373–396

CONSTRUCTION OF QUEUE-BASED

SIMULATORS FOR WEB APPLICATIONS

DISTRIBUTED ON COMPUTER NETWORKS

LEONARDO PASINI AND SANDRO FELIZIANI

Departments of Mathematics and Computer Science,

University of Camerino,

Madonna delle Carceri, 62032 Camerino, Italy

{leonardo.pasini,sandro.feliziani}@unicam.it

(Received 1 June 2005; revised manuscript received 4 September 2005)

Abstract: Modern Internet and web applications involve interactions among remote host computers

connected by communication networks. Simulation modelling is an important technique to evaluate

performance in the implementation of a web-distributed application over given networks formed

by computer hosts connected by heterogeneous networks. In this paper we extend a previous work

concerning the construction of a queue-based simulator of communication networks. We define a set

of new queue-based object types which permit us to specify the behaviour of a web-distributed

application whose software components run over different hosts in a given communication network.

We apply this technique to show how to build a simulator to evaluate the performance of various

software architectures for a web-distributed application run over a given computer network.

Keywords: queuing systems, web-distributed applications, computer networks simulation, commu-

nication systems, web interaction paradigms

1. Introduction

In [1] we introduced a method of traffic specification in telecommunications

systems. The method was based on definitions of the following set of devices/items:

Flux, Package, Host, Routers, Connection Lines between Host and Router, and Con-

nection Line between Router and Router. Each one of these devices was characterised

through a description of its functional requirements in a telecommunications system.

For each of the above-listed devices, we defined a model with a queue- and user-

based architecture that enabled us to simulate its functioning in a telecommunications

system.

The work enabled us to create a library of items and a method to automatically

generate a simulator of a given telecommunications system. We defined a procedure

that, given a telecommunications system described by the specification method,

automatically generates a system simulator. The procedure required an input of a list

of the system’s components with values of their characteristic parameters.

tq409b-e/373 12I2006 BOP s.c., http://www.bop.com.pl



374 L. Pasini and S. Feliziani

The present work remains within this context. Its aim is to develop a level

above that implemented in our previous work. We have developed a method to

specify and simulate software applications carried out while distributed on a number

of computers interconnected via a telecommunications network. We have considered

the problem of defining a method to specify the functioning of a software application

whose components are carried out at different Hosts. In order to achieve that, we

have defined the following new types of structural objects of queue-based architecture:

Terminal and Software. We have also defined a new type of non-structural objects

that is a subtype of the user type, viz. WEBAPP.

A Terminal object must be connected to a Host object and it is where a software

component runs. Execution of a software component generates a flow of requests

towards remote hosts where other components of the considered software application

run. The flow is managed at the Host level and at the telecommunications network

level as described in our previous work.

A Software object individuates a software component of a distributed web

application. This object enables us to describe the stages of local execution of the

web application to the specific Hosts where its components are set up. The stages are

specified by describing the elaboration software blocks required by the application

on devices within the Terminal objects linked to the Hosts where its components are

set up. Local execution of a software block ends when the application’s execution or

the Software object sends a request to a remote Host. The request forwarded from

Software A set up at Host HA to Software B set up at Host HB is forwarded from HA

to HB via a communications network.

A WEBAPP object individuates the execution flux of a web application distributed

over a computer network. Software blocks of local execution in single components

of the application and messages forwarded therefrom through the network during

execution are specified with this object.

The specification method elaborated in the present work to describe and

simulate the execution of a software application distributed over a given computer

network consists in fulfilling the following activities to characterise the structural

part of the elaboration system:

• listing all the Software components used by the web application;

• associating every Software component to a Host of the computer network.

The behavioural part of the elaboration is characterised through the following

specification activities describing the execution flux of the application:

• listing the application’s execution stages;

• stating for each elaboration stage the software blocks performed on the Terminal

objects where the application’s software components have been set up and the

size of messages activated through the network.

2. The WEBAPP object

We would like to introduce here a new type of library objects specifying the

requirements of a web application in our context. An object of this type does not

have a queue-based architecture and is defined as a subtype of the Customer type.

tq409b-e/374 12I2006 BOP s.c., http://www.bop.com.pl



Construction of Queue-Based Simulators for Web Applications. .. 375

WEBAPP is introduced to describe the execution flux of a web application whose

software architecture shows the following execution characteristics on a given network

composed by Hosts.

A computational component A of an application located at host HA needs the

result of a service, and there is another host HB that can be involved in the execution

of this service. We have focussed our investigation on two paradigms of interaction

among different hosts.

Firstly, we consider the Client-Server (CS) paradigm, according to which

component B offering the service is located at host HB. Its resources and the knowledge

necessary for the service’s execution are also located at HB. The client component, A,

located at HA, requires the execution of the service to component B. This component

realises the service using the knowledge and resources located at HB.

Secondly, we consider the Mobile Agent (MA) paradigm, according to which

knowledge is owned by component A located at HA, but the necessary resources are

located at HB. In order to carry out the service component, A migrates to HB, bringing

the necessary knowledge with it. Once HB is reached, A performs the service using

the resources available at HB.

Other paradigms can be described in a similar way, including the Code on

Demand (COD) paradigm and the Remote Evaluation (REV) paradigm.

In Figures 1 and 2 execution diagrams [2] are shown relative to two examples

of software models for web applications structured according to the CS and MA

paradigms. The diagrams are divided in three columns. The left column describes

the software execution blocks of component A of the web application at host HA. The

central column describes the software blocks performed by the network. The right

column contains the software block performed by component B at host HB.

Each software execution block relative to component A is described by three

integers of the following meaning:

1. number of visits to the HA terminal;

2. number of operations at the HA CPU;

3. number of accesses to the HA disk.

The blocks performed by the network are described by an integer marking the

size (in bytes) of the http message sent through the network from component A to

component B.

Each software execution block relative to component B is described by a couple

of integers of the following meaning:

1. number of operations at the HB CPU;

2. number of accesses to the HB disk.

The definition code of the WEBAPP object type in the context of programming

with the QNAP2.V9 language [3] is given below. The ways in which a realisation of

this kind expresses the specifications of a web application are also discussed with the

help of Figure 3. The specifications are expressed in the execution phases that can be

described by means of performance diagrams similar to those shown in Figures 1 and 2:

CUSTOMER OBJECT WEBAPP;

INTEGER AT,ACPU,AD,N,BCPU,BD;

INTEGER OP,L;

tq409b-e/375 12I2006 BOP s.c., http://www.bop.com.pl



376 L. Pasini and S. Feliziani

Figure 1. Execution diagram with the CS paradigm

INTEGER WTOUT;

INTEGER SEQ N;

INTEGER SOUR NP,DEST NP;

INTEGER NF,R;

END;

The concept of execution phase for a WEBAPP object is fundamental to model

the way in which a WEBAPP user causes the reading from a description file the data

tq409b-e/376 12I2006 BOP s.c., http://www.bop.com.pl



Construction of Queue-Based Simulators for Web Applications. .. 377

Figure 2. Execution diagram with the MA paradigm

characterising the software blocks of execution, during the simulation run within

the service device of a component. This mechanism is illustrated in detail below,

in the paragraphs describing the architecture of Software and Terminal objects. The

execution plan of a web application on the considered computer network is supplied

through a text file listing, in the chronological order of execution, for each phase

the software block descriptions relative to component A, to the network and to

component B, as described previously in Figures 1 and 2. This file is formed by

a list of n-tuple ordinate of six integers, whose meaning is illustrated hereafter. The

length of the list states the number of phases in the execution of the web application

of the computer network. The six integers of any n-tuple of the web application’s

execution plan are given according to the inner variable of the WEBAPP object stated

hereafter, characterising the software execution blocks of the corresponding phase:

tq409b-e/377 12I2006 BOP s.c., http://www.bop.com.pl



378 L. Pasini and S. Feliziani

1. ACPU: states the number of operations required in the phase at the CPU of the

HA host;

2. AD: states the number of disk accesses required in the phase at the HA host;

3. AT: states an estimate of the time the application will have to spend during the

phase for the operations of I/O with the user;

4. N: states the number of bytes transmitted in the phase via the network;

5. BCPU: represents the number of operations required in the phase at the CPU of

the HB host;

6. BD: represents the number of disk accesses required in the phase at the HB host.

A schema of execution is shown in Figure 3; it concerns a web application where

single software execution blocks divided into phases are stated.

Figure 3. Execution scheme of a web application

tq409b-e/378 12I2006 BOP s.c., http://www.bop.com.pl



Construction of Queue-Based Simulators for Web Applications. .. 379

The package transmitted via the network during a web application’s execution

phase is sent from the software component through the Terminal object to the

connected Host. From there the package is directed to a network Router and then

towards the Host, where the second software component used by the web application

is connected to. Having reached the destination Host, the package is transmitted

according to the protocol procedures to the above Terminal. Then it is transmitted

to the connected Software component executing the end-of-phase software block. All

the transmissions through the communication network devices depend on the size of

the package sent.

Tables 1 and 2 list the execution phases of two web applications, specifying in

the respective files the applications’ execution plan. The applications use the Client-

Server and the Mobile Agent paradigms. Their execution plans have been derived

from the execution graphs shown in Figures 1 and 2. The applications are structured

according to different paradigms, but – from a functional point of view – they perform

the same tasks.

Table 1. Execution plan for the CS application

ACPU AD AT N BCPU BD

1000 10 100 400 1500 3

1000 5 200 5000 750 1

5000 4 300 600 2500 2

1000 10 200 5000 100 5

5000 4 300 600 2500 2

1000 10 200 5000 100 5

5000 4 300 600 2500 2

1000 10 200 5000 100 5

5000 4 300 600 2500 2

1000 10 200 5000 100 5

5000 4 300 600 2500 2

1000 10 200 5000 100 5

5000 4 300 600 2500 2

1000 10 200 5000 100 5

5000 4 300 600 2500 2

1000 10 200 5000 100 5

5000 4 300 600 2500 2

1000 10 200 5000 100 5

5000 4 300 600 2500 2

1000 10 200 5000 100 5

5000 4 300 600 2500 2

1000 10 200 5000 100 5

5000 4 300 600 2500 2

1000 10 200 5000 100 5

5000 4 300 600 2500 2

1000 10 200 5000 100 5

The WEBAPP object has variable members of the following functional meaning

in the service algorithms within the queues crossed by the user while simulating the

web application’s execution flux:

tq409b-e/379 12I2006 BOP s.c., http://www.bop.com.pl



380 L. Pasini and S. Feliziani

Table 2. Execution plan for the MA application

ACPU AD AT N BCPU BD

1000 10 100 400 1500 3

1000 5 200 5000 750 1

2000 5 100 150000 45000 12

5000 1 300 5000 45000 12

• OP: states the next operation to be performed within a phase (e.g.: access to

disk, transmission via the network, etc.);

• L: states the side where the execution of the web application takes place

(A or B);

• WTOT: states the time-out time, after which a transmission is considered as failed

and is repeated;

• SEQ N: states the position occupied by the package in the network in the

transmission sequence and helps to discover packages duplicated in reception

(the mechanisms of retransmission and recognition of the sequence are described

in detail in the description of Hosts [1]);

• SOUR NP: specifies the Software that produced the package (in the TCP protocol

this username is called a door number);

• DEST NP: specifies the Software to which the package is addressed;

• NF: states the current phase of the application (this variable is used for the

filing of statistics and results);

• R: states the position in an array of the file used to store the simulation’s results

and statistics.

The network traffic generated by the Hosts that are not locations of Software

components’ elaboration has the characteristics described in our previous work [1].

This traffic utilixes the following user classes:

1. EMISSION: is the class of the requests issued by the Host;

2. RICHIN: is the class of the requests coming to the Host;

3. RISPOSTA: is the class of the answers coming to the Host.

We have introduced here a new class of users, WEBAP, that identifies the

execution flux of the web application on the communication network.

3. The Software object

The architecture of the Software object is shown in Figure 4. This device has

only one Program queue. This queue receives the flux of users coming in from the

Terminal object to which the Software object is connected. The users served by

Figure 4. The Software object

tq409b-e/380 12I2006 BOP s.c., http://www.bop.com.pl



Construction of Queue-Based Simulators for Web Applications. .. 381

the Program are then sent to the SCH queue of the Terminal object. The Program

queue serves users of the WEBAPP type. When a WEBAPP user enters the device at the

beginning of a web application’s execution phase, the service algorithm reads the data

corresponding to the phase from the planning file, assigning them to the variables of

the WEBAPP user. The WEBAPP is then transferred to the SCH queue that is a control

device of the flux in the Terminal object. Here, according to the value of variable

L in the WEBAPP, the SCH service algorithm recognises whether the web application’s

execution is to take place on side A or side B (as per the previous paragraph). The SCH

service algorithm manages the forwarding of the WEBAPP in the queues of the terminal

object, updating the WEBAPP’s inner variable OP according to the data relative to the

first software block of the phase.

A definition code of the new Software object type in our programming context

is given below. We also report comment on some parts of the service procedure in the

Program queue:

OBJECT SOFTWARE;

QUEUE PROGRAM;

INTEGER EXIT;

INTEGER IDS;

REF FILE FA;

REF WEBAPP WA;

INTEGER BUF;

INTEGER C SEQ N;

END;

In particular we describe the use of the following inner variables:

• EXIT is used in the simulator construction phase to store the ID number in the

network of the terminal object to which the software object is connected;

• IDS is used to manage the beginning of the web application’s execution. Its

values are read from the data file that enables generation of the simulator

contextually to the reading of the identifier numbers of the HA and HB hosts of

the network where the web application’s components are performed. If IDS has

a value different from zero, the Software object corresponds to the component

performed on the HA side of the web application and the queue Program

generates a WEBAPP user in the system by a BOOT class user;

• FA is a pointer-to-file object. Once the simulator is constructed, in the presence

of a web application using the Software object, the text file containing the

execution plan of the web application is assigned to FA.

The QNAP2.V9 programming context enables us to define in general terms the

service procedures of a queue in any realisation of a given type of object defined by

the user. In this context, we have applied these mechanisms in particular to define

the service procedures of queues in software and terminal objects:

/STATION/

NAME = *SOFTWARE.PROGRAM;

INIT(BOOT)=1;

SERVICE (BOOT)= BEGIN

IF (IDS=0) THEN BEGIN

PRINT ("CUSTOMER FUORI IDS",IDS);

TRANSIT (OUT);

tq409b-e/381 12I2006 BOP s.c., http://www.bop.com.pl



382 L. Pasini and S. Feliziani

END

ELSE

BEGIN

WA:=NEW (WEBAPP);

WA.OP:=0;

WA.L:=0;

WA.SEQ N:=1;

WA.TYPE:="web";

WA.TYP:="app";

OPEN (FA,1);

WA.NF:=0;

WA.R:=IDS;

FILASSIGN(SRT(IDS),FA.FILASSGN//".srt");

OPEN(SRT(IDS),2);

FILASSIGN(SRN(IDS),FA.FILASSGN//".srn");

OPEN(SRN(IDS),2);

WA.SOUR ID:=GET(FA,INTEGER);

WA.SOUR NP:=GET(FA,INTEGER);

WA.WTOUT:=GET(FA,INTEGER);

NewLn(FA);

WA.DEST ID:=TERM#(EXIT).IDT;

WA.DEST NP:=IDS;

TRANSIT (WA,PROGRAM,WEBAP);

END;

END;

SERVICE (WEBAP)= BEGIN

WITH (CUSTOMER::WEBAPP) DO BEGIN

BUF:=SOUR ID;

SOUR ID:=DEST ID;

DEST ID:=BUF;

BUF:=SOUR NP;

SOUR NP:=DEST NP;

DEST NP:=BUF;

ACPU:=GET(FA,INTEGER);

IF (ACPU=-1)THEN BEGIN

PRINT ("END");

WRITELN (SRT(R),"Total phase ",NF," ",TIME);

CLOSE (SRT(R));

TRANSIT(OUT);

END;

AD:=GET(FA,INTEGER);

AT:=GET(FA,INTEGER);

N:=GET(FA,INTEGER);

IF (N=0) THEN PRINT ("ERROR: inconsistent data");

BCPU:=GET(FA,INTEGER);

BD:=GET(FA,INTEGER);

NewLn(FA);

WRITELN (SRT(R),"Total phase ",NF," ",TIME);

NF:=NF+1;

OP:=1;

SEQ N:=SEQ N+1;

TRANSIT (TERM#(EXIT).SCH);

END;

END;

TRANSIT=OUT;

tq409b-e/382 12I2006 BOP s.c., http://www.bop.com.pl



Construction of Queue-Based Simulators for Web Applications. .. 383

All the Program queues of any given Software object are initialised with

a BOOT class user inside. This user is rejected if the Software object is used in the

web application’s execution as a B component. Otherwise, before being rejected it

generates a new WEBAPP user that is reinserted in the Program queue with the WEBAP

class to start the first execution phase of the web application.

When a WEBAPP user enters the Program server, destinations and sources are

exchanged. In fact, if in a phase the application has run through the network from an

HA host to an HB host, it will have to make the reverse path in the following phase

(i.e. from HB to HA). Additionally, a reading from the FA file of a new n-tuple of

integers is made. These numbers are assigned to the inner variables by the ACPU, AD,

AT, N, BCPU and BD WEBAPP users. The sequence number is increased so that the new

transmission cannot be confused with the previous reception.

At every file reading, a check on the first value of the n-tuple of integers is

performed. If the value of −1 is obtained, the application has finished its execution.

A control on the quality of transmitted bytes is also performed and it should be other

than zero.

The service algorithm of the Program queue registers the moments of the

execution being finished at each software block, for every phase of the web application

(also in a text file).

4. The Terminal object

The Terminal object represents the whole of the local hardware structures for

the elaboration of the web application’s software blocks. It is connected to a Software

object above from which it receives the flux made by the WEBAPP user to execute the

software block of the beginning of the phase. It is also connected to a Host below

where it sends the WEBAPP user after a software block has been executed in order to

send a request through the communication network to the remote host used by the

Web application. A realisation of the Terminal object always receives the WEBAPP user

of the Host below for the execution of the second software block of the phase, after

transmission from the remote host. Also in this case, the inner SCH queue recognises

the WEBAPP user and sends it to the inner devices of the terminal object to execute

the computation requests relative to the second software block of the phase. At the

end of the second software block’s execution, the SCH queue sends the WEBAPP user

in the Program queue of the Software object above in order to start a new execution

phase of the web application.

Figure 5 illustrates the architecture of the terminal object type. The structure

of this new kind of object is rather complex. It contains five queue devices of the

following functions, with a single server:

1. the USER queue is a source of traffic. This queue is active in those Terminal

realisations that are not elaboration locations of web applications. They gen-

erate a flux of requests of the EMISSION class that are inserted in the network

by the HOST below. This traffic is present in the communication network at the

same time as the traffic WEBAP-class requests generated by the web application’s

execution;

tq409b-e/383 12I2006 BOP s.c., http://www.bop.com.pl



384 L. Pasini and S. Feliziani

Figure 5. The Terminal object

2. the SCH queue serves WEBAP-class users only. It is active only in realisations of

Terminal objects that are locations of an elaboration of a web application. Its

service algorithm manages sending of the WEBAPP user in the CPU, DISK and

TERM devices of the Terminal object for the execution of the web application’s

software blocks. This control activity is performed through inner variables OP

and L of the WEBAPP object;

3. the CPU queue serves all classes of users. For users of the WEBAP class it has

an average service time that depends on the average number of operations

requested of the CPU in the execution of a particular software block of the web

application;

4. the DISK queue also serves all classes of users. For users of the WEBAP class it has

an average service time that depends, directly proportionally, on the average

number of disk accesses requested in the execution of a particular software block

by the web application;

5. the ACCESS H queue is an entrance-to-Terminal device for packages of any class

coming from the host below;

6. the TERM queue serves WEBAP-class users only. It has an average service time that

depends on the cumulative think time required for the user in the execution of

a web application’s software block.

A definition code of the new type of Terminal object is given below. We also

give some service procedures of the queues in the new object type, which we have

already described functionally:

OBJECT TERMINAL (IDT);

QUEUE USER, ACCESS H, CPU, DISK;

QUEUE SCH,TERM;

tq409b-e/384 12I2006 BOP s.c., http://www.bop.com.pl



Construction of Queue-Based Simulators for Web Applications. .. 385

BOOLEAN ACTIVES;

INTEGER IDT;

INTEGER ID H;

STRING NAME;

INTEGER REQLENGTH;

REAL PROCESS, PROC D, US TIME;

REF REQUEST RQ;

REF QUEUE NET;

END;

The following member variables of a Terminal-type object are related to the

functioning of service algorithms of the queues in the object:

1. ACTIVES is used for the activation of the USER source;

2. IDT is the unequivocal identification number of a Terminal realisation;

3. ID H is the identification number of the host to which the Terminal realisation

is connected;

4. REQLENGTH is the length of a generic request for a CPU or a disk in a Terminal

realisation;

5. PROCESS is the time necessary for the CPU to carry out an operation;

6. PROC D is the time necessary to access a disk.

/STATION/

NAME = *TERMINAL.SCH;

SERVICE(WEBAP) = BEGIN

WITH (CUSTOMER::WEBAPP) DO BEGIN

IF (OP=0) THEN TRANSIT (SW#(DEST NP).PROGRAM);

IF (OP=1) THEN BEGIN

OP:=2;

TRANSIT (CPU);

END;

IF (OP=2) THEN BEGIN

OP:=3;

TRANSIT (DISK);

END;

IF (L=1) THEN BEGIN

IF (OP=3) THEN BEGIN

OP:=5;

TRANSIT (NET);

END;

. . .

/STATION/

NAME = *TERMINAL.CPU;

SERVICE (WEBAP) = BEGIN

WITH (CUSTOMER::WEBAPP) DO BEGIN

IF (L=1) THEN EXP(BCPU*PROCESS)

ELSE EXP(ACPU*PROCESS);

WRITELN (SRT(R),"CPU TIME",TIME);

TRANSIT (SCH);

END;

END;

SERVICE = EXP(PROCESS);

TRANSIT = DISK;

/STATION/

NAME = *TERMINAL.DISK;

tq409b-e/385 12I2006 BOP s.c., http://www.bop.com.pl



386 L. Pasini and S. Feliziani

SERVICE(WEBAP) = BEGIN

WITH (CUSTOMER::WEBAPP) DO BEGIN

IF (L=1) THEN EXP(BD*PROC D)

ELSE EXP(AD*PROC D);

WRITELN (SRT(R),"DISK TIME",TIME);

TRANSIT (SCH);

END;

END;

SERVICE(EMISSION) = BEGIN

EXP(PROC D);

TRANSIT(NET,EMISSION);

END;

SERVICE(RICHIN) = BEGIN

EXP(PROC D);

TRANSIT(NET,RICHIN);

END;

SERVICE(RISPOSTA) = BEGIN

EXP(PROC D);

TRANSIT(OUT);

END;

TRANSIT = OUT;

/STATION/

NAME = *TERMINAL.TERM;

SERVICE (WEBAP) = WITH (CUSTOMER::WEBAPP) DO BEGIN

EXP(AT);

WRITELN (SRT(R),"TERMINAL TIME ",TIME);

END;

TRANSIT = SCH;

/STATION/

NAME = *TERMINAL.ACCESS H;

SERVICE (WEBAP) = WITH (CUSTOMER::WEBAPP) DO BEGIN

IF L=0 THEN L:=1 ELSE L:=0;

WRITELN (SRT(R)," NETWORK TIME ",TIME);

TRANSIT (SCH);

END;

SERVICE = BEGIN

EXP((LUNGH*8)/CAP BUF);

TRANSIT(CPU);

END;

/STATION/

NAME = *TERMINAL.USER;

TYPE = SOURCE;

SERVICE = BEGIN

IF (ACTIVES)THEN BEGIN

EXP(US TIME);

RQ: = NEW(REQUEST);

RQ.ORIG:=IDT;

RQ.SIZE:= REQLENGTH;

DEST: = RINT(1,NHTEST);

RQ.DESTI: = DEST;

LUNGH: = RQ.SIZE;

TRANSIT(RQ,CPU,EMISSION);

END

ELSE CST(T MAX);

END;

TRANSIT = OUT;

tq409b-e/386 12I2006 BOP s.c., http://www.bop.com.pl



Construction of Queue-Based Simulators for Web Applications. .. 387

We have previously seen that the service algorithm of the Program queue of

the Software object, when it generates a WEBAPP-class user at the start of a web

application’s execution, generates two text-format files where one can trace the

progress of the application’s execution during the simulation.

Service algorithms of the CPU, DISK and TERM queues write on one of the

two files, at every passage of the WEBAPP user, the moments of service termination

collected through the system variable of system TIME during the simulation. The

service algorithm of the ACCESS H queue writes in the same file the moment of entrance

of the WEBAPP user coming from the communication network, the Terminal object for

the execution of the software block of end of phase. The chronological sequence of

the moments of execution of each software block allows us to trace the temporal

diagram of a web application’s execution in a computer network, measured during its

simulation.

We have also defined the LINE TH object type to realise a way of fully duplex

communication in order to connect a realisation of the Terminal object with its

access Host to the communication network. The LINE TH object type is the level

of connection between the objects of the library introduced in this work and the

objects of the library defined in our previous work [1].

The definition code of this type of object is given below:

OBJECT LINE TH(TH);

QUEUE QH,HQ;

REF QUEUE TOUT,TIN;

REAL TH;

END;

Inner queues QH and HQ are delay centres without waiting time and simulate

the transmission delay on the channel singled out from the variable member TH. In

particular, the queues are used in the following ways:

1. the QH queue sends data from a Terminal object to a Host object. In this case, in

the simulator’s construction phase, the BuildMod procedure performs connec-

tions for the Terminal-LINE TH-Host flux performing the following assignations.

The QH of LINE TH queue is given to the NET variable of the Terminal. The USER

queue of the Host is assigned to the TOUT of LINE TH variable;

2. the HQ queue sends data from a Host object to a Terminal object. In this

case, in the simulator’s construction phase, the BuildMod procedure performs

the connections for the Host-LINE TH-Terminal flux performing the following

assignations. The HQ of LINE TH queue is given to the HOTE variable of the Host.

The ACCESS H queue of the Terminal is assigned to the TIN of LINE TH variable.

5. Constructing the Simulator

In this context, generating a simulator of a given system requires the execution

of the following steps:

1. generation of the communication network. It consists in generating realisations

of HOST, ROUTER, LINE HR, LINE RR, etc. object types forming the communica-

tion network and assigning their connections. We thus have a communication

tq409b-e/387 12I2006 BOP s.c., http://www.bop.com.pl



388 L. Pasini and S. Feliziani

infrastructure of the system where the traffic of generic packages and one of the

packages relative to the execution of web applications will flow;

2. generation of the hardware components aimed at elaboration of the software and

the management of interaction with the users. This step consists in generating

realisations of the Terminal and LINE TH objects, which are present in the

system in the assignation of their connections. At this stage one can also perform

the connection between the LINE TH objects and the corresponding Host object

in the system. Thus, a connection is made between the level formed by software

elaboration devices and the generic traffic generation present in the system with

the communication infrastructure of the system implemented in the first step;

3. implementation of a distributed web application in an elaboration network.

This point consists in generating objects of software type realisations, made

according to the architecture of the web application and in creating connections

with the Terminal object type where the software blocks of the web application

will be carried out. At this point one must also specify the file containing the

execution plan of the web application whose execution we want to simulate.

The service algorithm of the queues inside the software objects read the data

relative to the execution phases on this file.

We have automated the execution of the above points by defining a BuildMod

procedure. This procedure automatically generates a simulator of a given system,

starting from the system’s description file. The description file of the system is called

Model.dat and it is in text format. The BuildMod procedure reads the data from the

Model.dat file and, by realising the following points, it yields the system simulator

as an output:

• generating the system’s global variables and assigning the specific values of the

studied system;

• generating realisations of the various types of objects that constitute the system

devices and assigning specific values to their inner parameters;

• assigning the connections among the various system devices.

We have redefined here the BuildMod procedure originally introduced for the

context dealt with in [1]. The new definition is so structured that in addition to point

one the procedure also realises steps two and three above. The extended part of the

definition code is given below:

& PROCEDURE BuildMod

PROCEDURE BuildMod;

INTEGER

N Hosts,N Router,N Vie,N soft,idh,idr,idv,I,J,K,idter,idhost;

BEGIN

& GLOBAL VARIABLES

N Hosts: = GET(INTEGER);

N Router:= GET(INTEGER);

N Vie:=GET(INTEGER);

N soft:=GET(INTEGER);

. . .

&----------------------------------------------------

& TERMINAL CONSTRUCTION AND TERMINAL-HOST CONNECTIONS

&----------------------------------------------------

tq409b-e/388 12I2006 BOP s.c., http://www.bop.com.pl



Construction of Queue-Based Simulators for Web Applications. .. 389

IF (N Hosts > 0) THEN

FOR I:=1 STEP 1 UNTIL N Hosts DO

BEGIN

idter: = GET(INTEGER);

TERM#(idter):=NEW(TERMINAL,idter);

WITH TERM#(idter) DO BEGIN

TERM#(idter).ACTIVES: = GET(BOOLEAN);

TERM#(idter).NAME: = GET(STRING);

PRINT ("GEN",TERM#(idter).ACTIVES, TERM#(idter).NAME);

TERM#(idter).REQLENGTH: = GET(INTEGER);

TERM#(idter).PROCESS: = GET(REAL);

TERM#(idter).PROC D: = GET(REAL);

END;

LINE TH#(idter):=NEW(LINE TH,GET(REAL));

& CONNESSIONI HOST-TERMINAL

idhost:=GET(INTEGER);

TERM#(idter).ID H: = idhost;

HOSTS#(idhost).HOTE:=LINE TH#(idter).HQ;

LINE TH#(idter).TIN:=TERM#(idter).ACCESS H;

NewLine;

END;

& CONNECTIONS TERMINAL-HOST

IF (N Hosts > 0) THEN

FOR I:=1 STEP 1 UNTIL N Hosts DO

BEGIN

TERM#(I).NET:=LINE TH#(I).QH;

LINE TH#(I).TOUT:=HOSTS#(TERM#(I).ID H).USER;

END;

&--------------------------------------------------

& SOFTWARE CONSTRUCTION

&--------------------------------------------------

IF (N soft > 0) THEN

FOR I:=1 STEP 1 UNTIL (N soft) DO

BEGIN

SW#(I):=NEW (SOFTWARE);

SW#(I).IDS:=GET(INTEGER);

SW#(I).EXIT:=GET(INTEGER);

IF (SW#(I).IDS<>0) THEN BEGIN

SW#(I).FA:= NEW (FILE);

FILASSIGN(SW#(I).FA,GET(STRING));

END

ELSE

SW#(I).FA:= SW#(GET(INTEGER)).FA;

NewLine;

END;

&-------------

END;

A part of the Model.dat file relative to the description of the system is

shown in Figure 6. The communication network of this system coincides with the

communication network studied in our previous work. In this context, we have

added the levels described in steps 2 and 3 of the simulator construction scheme.

The component of the Model.dat file shown below has been added to the previous

version of the Model.dat file found in [1], where it described the system’s sub-network

communication. The component added to the BuildMod procedure generates the new

tq409b-e/389 12I2006 BOP s.c., http://www.bop.com.pl



390 L. Pasini and S. Feliziani

system components described in stages 2 and 3, reading the data given below from

the Model.dat file. We have chosen this approach to be able to evaluate the variations

of the traffic fluxes present on the network due to addition of the levels described in

points 2 and 3 above.

. . .

& Terminal

&IDT Actives Name Length CPU Time Disk Time LINE TH IDH

1 TRUE "T1" 120 0.01 20 1.20 1;

2 FALSE "T2" 123 0.001 20 1.30 2;

3 TRUE "T3" 124 0.01 20 1.26 3;

4 TRUE "T4" 135 0.01 20 1.00 4;

5 TRUE "T5" 120 0.01 20 1.10 5;

6 TRUE "T6" 123 0.01 20 1.20 6;

7 TRUE "T7" 201 0.01 20 1.30 7;

8 TRUE "T8" 204 0.01 20 1.50 8;

9 FALSE "T9" 112 0.001 20 1.20 9;

10 TRUE "T10" 180 0.01 20 1.03 10;

11 TRUE "T11" 110 0.01 20 0.96 11;

12 TRUE "T12" 112 0.01 20 0.85 12;

13 TRUE "T13" 302 0.01 20 1.30 13;

14 TRUE "T14" 145 0.01 20 1.13 14;

15 TRUE "T15" 143 0.01 20 1.22 15;

16 TRUE "T16" 100 0.01 20 1.47 16;

& Web Application

&IDS exit File

1 2 "wp.app";

0 9 1;

The last two lines of the Model.dat file describe the level specified in point 3

in the simulator generation chart. The software components of the implemented web

application are set up at terminals 2 and 9 of the system shown in Figure 6. The

application’s execution starts from the Software object connected to terminal 2 and

the data relative to the execution plan of the application are read by the wp.app text

file set in the work directory.

We have thus generated two simulators relative to two different systems, each of

them implementing one of the two web applications described with execution diagrams

shown in Figures 1 and 2. The execution plans of these two web applications are given

in Tables 1 and 2 and contained in two different files, wp1.app and wp2.app. In both

cases, the software components of the application are located at Hosts 2 and 9 of the

system.

We have created a simulation plan for each system varying the local CPU time on

the two execution sides. In particular, we have considered the following combinations

of values of the PROCESS parameter of the CPU queue:

1. CPUA.Process=0.01ms and CPUB.Process=0.01ms;

2. CPUA.Process=0.001ms and CPUB.Process=0.01ms;

3. CPUA.Process=0.001ms and CPUB.Process=0.001ms.

The temporal values collected in the simulation of service algorithms of the

queues in the Terminal 2 and Terminal 9 objects have enabled us to built graphs

illustrating the progress in execution of the considered web applications.

tq409b-e/390 12I2006 BOP s.c., http://www.bop.com.pl



Construction of Queue-Based Simulators for Web Applications. .. 391

Figure 6. Network of elaboration systems for executing distributed web applications

The following three diagrams illustrate the progress monitored during the

simulation of the web application built according to the Client-Server paradigm and

they refer to the above combinations of CPU time values.

In Figures 7–9 every point in light gray (rotated squares) states a moment

when a service is terminated in the inner queues of the Terminal object relative to

the execution of the web application. The moments when these events take place

enable us to trace the application’s execution during the simulation. Each of these

events marks the end of an operation in a web application execution phase, according

to the kind of schematisation we have introduced. The points in dark gray (squares)

correspond to the moments of ending an execution phase. The triangular black points

correspond to the moments of re-sending a package caused by a loss or an excessive

delay of the consignment.

The total execution time of the web application shown in Figure 7 is 121600ms.

In this case, the application’s execution is characterised by multiple re-sending

packages in the network, causing considerable delays in execution.

The total execution time of the web application shown in Figure 8 is 84990ms.

In this case, the execution is more compact. Please note the increase of the CPUA

power and less frequent re-sending events. Delays due to transmission in the network

tq409b-e/391 12I2006 BOP s.c., http://www.bop.com.pl



392 L. Pasini and S. Feliziani

Figure 7. Traced events during simulation run, CS application – CPUA=0.01ms, CPUB=0.01ms

Figure 8. Traced events during simulation run, CS application – CPUA=0.001ms, CPUB=0.01ms

Figure 9. Traced events during simulation run, CS application – CPUA=0.001ms, CPUB=0.001ms

tq409b-e/392 12I2006 BOP s.c., http://www.bop.com.pl



Construction of Queue-Based Simulators for Web Applications. .. 393

are noticeable, but their extent is limited and they are distributed along the whole

execution of the application.

The total execution time of the web application shown in Figure 9 is 91290ms.

In this case, a delay of about 15000ms took place during the fourth phase of the first

part of the application’s execution due to the effective loss of the application package

in transmission. This event was partly compensated for by the increase in the CPUB

power in comparison to the two previous cases.

Similarly, we have built the following diagrams referring to web application

simulations according to the Mobile Agent paradigm. We have used the same graphic

annotation to state the end of service events, the end of phase one and sending

back a package in the network during the application’s execution. Some instances

of application packages being re-sent were caused by delayed consignment of the

corresponding “ack” package that exceeded the time-out parameters of the devices.

In this case, the re-sending event had no influence on the execution phase and the

copy sent back was then erased by the system.

Figure 10 shows the web application generated according to the Mobile Agent

paradigm to have a number of phases inferior to those of the Client-Server architec-

ture. The MA paradigm is characterised by transferring the whole application from

side A of the execution to side B, as previously described. In this simulation, the trans-

fer from Terminal 2 to Terminal 9 takes place in the third phase of the application’s

execution. This phase is characterised by three events of packages being re-sent, which

have strongly influenced the total execution time. The diagram shows an execution

time slightly inferior to that shown in Figure 7, corresponding to the CS paradigm.

Figures 11 and 12 illustrate the improvements in the global execution time

obtained with the MA architecture, increasing the power of CPUA and CPUB. In

particular, the improved power of CPUB greatly improves the execution performance

of the of the web application build according to the MA paradigm that carries the

bulkiest software block on side B. The improved capacity of CPUB compensates the

delay due to sending the application via the network.

Figure 10. Traced events during simulation run, MA application – CPUA=0.01ms, CPUB=0.01ms

tq409b-e/393 12I2006 BOP s.c., http://www.bop.com.pl



394 L. Pasini and S. Feliziani

Figure 11. Traced events during simulation run, MA application – CPUA=0.001ms,

CPUB=0.01ms

Figure 12. Traced events during simulation run, MA application – CPUA=0.001ms,

CPUB=0.001ms

Figure 13 offers a comparison of the global execution times of of web applica-

tions realised by the two architecture Client-Server and Mobile Agent. The comparison

has been made on the basis of a simulation plan characterised by three applications of

values relative to the power of CPUA and CPUB. We have used the graphic notation

of L=0.01ms and V=0.001ms. This diagram highlights the level of communication

of the system simulated in the net infrastructure shown in Figure 6. The infrastruc-

ture shown in the figure and used to simulate the web application’s execution was an

interdepartmental academical network, consisting of 100.0Mbps Departmental LANs

Ethernet interconnected by a 1.0Gbps Fast Ethernet network. The traffic bottleneck

of this communication system was the entrance and exit doors of the hosts towards

the net. These devices have a capacity varying between 0.2Mbps and 1.0Mbps. There-

fore, we can assume that the HA and HB hosts where the software components of the

web application were carried out must be connected respectively to the IT Depart-

tq409b-e/394 12I2006 BOP s.c., http://www.bop.com.pl



Construction of Queue-Based Simulators for Web Applications.. . 395

Figure 13. Global execution time of the web application

ment’s and the Physics Department’s networks and inter-connected to the University

Campus network. In this context, Figure 13 clearly shows that the web application

built according the Mobile Agent paradigm is more efficient than that built accord-

ing to the Client-Server paradigm. This case is an example where the system’s level

of communication does not constitute a bottleneck of the global elaboration system.

This factor, in conjunction with the high power of CPUA and CPUB, has determined

the choice of the Mobile Agent paradigm for the web application’s implementation

in the network.

6. Conclusions

In this paper we have extended the library of item types defined in our

previous work to construct simulators of communication networks. The object types

defined previously and those introduced here have an architecture that specifies their

functioning based on the concepts of queue and user. The new types of objects

introduced in the library enable implementation above the level formed by the

communication network, a level representing the software elaboration plants and

a level representing the functioning of the software itself. In particular, this last level

enables execution of software applications whose software components are carried

out at various elaboration plants present in the system. The software components

are elaborated locally in a synchronous manner and the results and requests are

communicated to the remote components through the communication network. We

have applied these results to the study of a specific case to choose a paradigm

of web interaction on which the structure of a software application can be based.

We have compared the Mobile Agent and the Client Server paradigms applied to

a distributed web application executed on two different hosts placed connected by an

inter-departmental network of a University Campus. The results of this comparison

complement the case studied in [2]. By using other simulation techniques, we have

tq409b-e/395 12I2006 BOP s.c., http://www.bop.com.pl



396 L. Pasini and S. Feliziani

valued the two paradigms of web interaction in an elaborated distributed system

formed by local LANs interconnected by a WAN net to 100Kbps.

References

[1] Pasini L and Feliziani S 2004 TASK Quart. 8 (3) 333

[2] D’Ambrogio A, Iazeolla G and Pasini L 2004 Simulation Practice and Theory, Elsevier

(in print)

[3] Simulog, QNAP2 Reference Manual, ver. 9.3

tq409b-e/396 12I2006 BOP s.c., http://www.bop.com.pl


