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Abstract: The elasto-viscoplastic constitutive equations of the Chaboche model [1] have been

developed and modified many times. The aim of the present paper is to present the existing Chaboche

model variants and describe its scientific and engineering applications. A compact review of literature

on these applications is given, focussed on publications offering a wider and more comprehensive view

of the elasto-viscoplastic Chaboche model.

The article is an introduction to a comprehensive investigation of the elasto-viscoplastic

Chaboche model.
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1. Introduction

Computation of structures beyond the yield limit requires taking into ac-

count materials’ viscosity and hardening properties. Developing realistic mathemat-

ical constitutive equations to describe the elasto-viscoplastic material behaviour

has been an important objective of research in constitutive modelling for the

last decades. Woznica in his work [2], gave a detailed description of the twelve

elasto-viscoplastic laws proposed by Aubertin [3], Bodner-Partom [4], Chaboche [1],

Freed-Verrilli [5], Krieg-Swearengen-Jones [6], Krempl [7], Korhonen-Hannula-Le [8],

Lehmann-Imatani [9], Miller [10], Perzyna [11], Tanimura [12], and Walker [13]. Rapid

advances in computational power made it possible to implement these constitutive

equations in engineering applications.

2. Applications of the Chaboche model

The finite element method (FEM) has recently become the most powerful

approach in structural analysis, applicable in engineering calculations under various

conditions. FEM developed rapidly in the last decade and is nowadays a fundamental

tool for various problems of the engineering science. Argyris et al. presented in their
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pioneering work [14] a computational technique of solving the viscous flow approach

with an Eulerian description of the velocity field using a finite element mesh fixed

in space, and solving the solid mechanics approach with a Lagrangian description of

the displacement field using an updated material mesh to trace the motion of each

particle. Both formulations are illustrated with two forming problems: the extrusion

of an aluminium billet through a curved nozzle and forming the head of a steel

bolt. Argyris and Doltsinis [15] extended their considerations published in an earlier

paper [16] concerning large-strain inelastic phenomena in the dynamic domain. In

a homogeneous, natural presentation of the strain and stress states, description of

the material’s behaviour was discussed on the basis of thermodynamics. An extension

of the application range of the simple triangular shell element introduced in [17] to

the domain of large inelastic deformations was presented by Argyris et al. in [18].

The element is partly based on ideas of physical lumping with a simple mechanical

interpretation. Argyris and Doltsinis (see [19] and [20]) examined the numerical

properties of an approximation scheme for incremental inelastic stress-strain relations

and proposed an integration procedure for a time dependent or independent material

response.

The finite element structure computations under cyclic viscoplasticity by

Chaboche [21] were discussed on the basis of several actual examples, includ-

ing notched specimens under repeated loads including hold periods and a tube

under tension and a cyclic thermal gradient. Based on an overstress model for

elastic-viscoplastic materials, an incrementally formulated FE algorithm was described

by Pitzer [22]. The field equations, not translated to the weak formulation, were

expressed in the function of the velocity field components and became the ground-

work for discretisation. Regarding the precise rendering of stress distributions, the

above-mentioned methods were compared to each other with two types of elements:

plate (for the plane-stress problems) and axisymmetric elements. Imatani [23] pre-

sented the fundamental investigation of the inelastic constitutive relationship for

high-temperature materials and its application to finite element analysis. His work

was divided into three parts. The first introduced the theoretical formulation of the

inelastic constitutive relationship. Inelastic behaviour of high-temperature materials

under the biaxial stress state was described in the second. A finite element implemen-

tation with the constitutive models employed was carried out in the third.

Kłosowski et al. [24] studied the problem of the elasto-viscoplastic dynamic

behaviour of geometrically non-linear plates and shells under the assumption of

small strains and moderate rotations. A nine-node isoparametric shell element was

applied in the finite element algorithm. The Chaboche and Bodner-Partom models

were chosen from several types of constitutive laws. To avoid calculating the stiffness

matrix, an effective procedure has been applied using the central difference method

of solving the equations of motion. The trapezoidal method was used to integrate the

constitutive viscoplastic laws. Chellapandi et al. [25] examined the modified structural

material 9Cr1Mo (RCC-MR). One of the important material parameters necessary

for the use of simplified rules given in RCC-MR was the symmetrisation coefficient,

KS , not yet included in RCC-MR. The KS values were established from numerous

stress-strain cyclic data generated theoretically using the Chaboche viscoplastic model
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and recommended for application in the RCC-MR. The Chaboche model used 20

material parameters which are identified on the basis of uniaxial monotonic and

cyclic data. The published data and ample uniaxial monotonic, cyclic, creep data

were compared with the predictions.

The paper [26] by Hartmann et al. dealt with two main topics. One of them

was the equivalence of stress algorithms, based on a Backward-Euler-step applied

to viscoplastic models of the Chaboche type, and their elastoplastic counterpart.

The other concerned a special constitutive relation based on a kinematic hardening

model using a sum of Armstrong-Frederick terms, equivalent to a multi-surface

plasticity model. Furthermore, only the viscoplastic algorithm had to be implemented,

since it included the elastoplastic constitutive model as a special case. Furukawa

and Yagawa [27] presented a method of identifying the parameter set of inelastic

constitutive equations based on an evolutionary algorithm. The method’s advantage

is that appropriate parameters can be identified even when the measured data are

subject to considerable errors and the model equations are inaccurate. Experiments

were described with respect to parameter identification of the Chaboche material

model under uniaxial loading and stationary temperature conditions. In a finite

element viscoplastic analysis program with the Chaboche model, the non-iterative and

self-correcting solution method, proposed by Tanaka and Miller [28] was implemented

by Chellapand and Alwar in [29]. The computational efficiency of this model was

demonstrated by solving a variety of benchmark problems over a wide range of strain

sensitivity domain under complex monotonic and cyclic loading histories related to

fast breeder reactor applications.

Two parameter identification procedures for linear viscoelastic materials were

presented by Ohkami [30]. One method used the incremental constitutive relation

for linear viscoelastic materials, whilst the other applied the elastic-viscoelastic

correspondence principle. Part of back analysis in both methods was formulated on

the basis of the boundary control concept. Two numerical examples were presented

to compare the efficiency of both methods. An evaluation of material parameters for

the viscoplastic Chaboche and the Bodner-Partom formulations was carried out by

Woznica and Kłosowski [31]. In this work, the authors proposed supporting tensile

test experiments with numerical simulations. A set of parameters for each formulation

was identified for steel and used to calculate the dynamic behaviour of circular plates.

The results were compared with experimental data concerning steel plates. Modelling

the dynamic behaviour of elasto-viscoplastic structural elements using the Chaboche

and Bodner-Partom models was studied by Kłosowski and Woznica [32].

The problem of simulating cyclic loadings made of long-life components was

investigated by Kiewel et al. [33]. To overcome this problem, the authors extrapolated

a complete set of internal variables over a certain number of cycles. To demonstrate

the capabilities of the scheme, failure analysis was carried out for a ring combustor

of a gas turbine. The material model used was based on the Chaboche model in

combination with Kachanov’s damage model [34].

Alwar et al. [35] described elastic and axisymmetric inelastic analysis. The au-

thors used the classical kinematic hardening model, ORNL, and Chaboche viscoplastic

models to assess the creep-fatigue damage for the inner vessel of a pool-type fast re-

actor. The material properties of 316LN stainless steel at various temperatures were
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used in their analysis. The results were used to assess creep-fatigue damage and ratch-

eting. Chaboche [36] analysed aspects of the thermodynamics of local state, focussing

on two complementary aspects: the generalized standard models and the micro-macro

approach to elastoplasticity. The author revised some of the thermodynamic proper-

ties with an internal variable and discussed some properties of constitutive equations

deduced from macro-homogenisation tools in the light of thermodynamic aspects.

Kłosowski et al. [37] presented the results of experiments on the Panama

technical fabric, carried out in order to identify the inelastic properties of the warp

and weft, as well as identification techniques based on the least-squares method. The

dense net type of a finite element was proposed to mimic the fabric’s behaviour in the

FEM analysis. The Bodner-Partom and Chaboche viscoplastic models were applied in

the description of the warp and weft properties. Material parameters were calculated

on the basis of an uniaxial tension test in the warp and weft directions.

These are only a few of the many engineering applications of the Chaboche

model. A limited number of applications are available, as they are usually subject to

intellectual property restrictions.

3. The Chaboche model equations

In this section a brief review is given of variants of the Chaboche constitutive

equations most often used for material modelling in practical engineering applica-

tions. It should be noted that the Chaboche model belongs to a group of isotropic

constitutive models which can describe the elasto-viscoplastic behaviour of materials.

3.1. Variants of equations of the Chaboche model without damage

The inelastic strain rate, Ė I , of the simple variant of the Chaboche model can

be written as:

Ė I =
3

2
ṗ
S ′−X ′

J (S ′−X ′)
, (1)

where ṗ describes the rate of the equivalent plastic strain and has the following form:

ṗ=

〈

J (S ′−X ′)−R−k

K

〉n

. (2)

The k, R and K, n constants are the initial yield stress, isotropic hardening and

two material parameters, respectively. Tensors S ′ and X ′ are the deviatoric parts

of stress and back stress tensors. The J (S ′−X ′) invariant is calculated form the

following formula:

J (S ′−X ′)=

√

3

2
(S ′−X ′) : (S ′−X ′). (3)

The evolution of the kinematic hardening rate, Ẋ , is defined by:

Ẋ =
2

3
a Ė I−cX ṗ, (4)

while Ṙ is the isotropic hardening rate calculated form the following equation:

Ṙ= b(R1−R) ṗ. (5)

Applications of this basic variant of the Chaboche model in the MSC.Marc

commercial program are presented in the papers [38] and [39]. In both papers, the
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UVSCPL [40] user’s subroutine is used to introduce the elastic-viscoplastic Chaboche

equations into the MSC.Marc system.

It should be noted that the variants of the Chaboche model presented in this

paper, are based on the assumption of additive strain rates,

Ė = ĖE+Ė I . (6)

Material parameters can be found in the literature, e.g. for steel (Table 1).

Table 1. Parameters of steel for the Chaboche mode

Steel

400̊ C

[27]

St37

20̊ C

[41]

St37

20̊ C

[42]

Steel 316

20̊ C

[43]

Steel 316

20̊ C

[44]

Steel

20̊ C

[45]

E [MPa] 160000.0 168600.0 113066.0 196000.0 200000.0 223000.0

ν [–] 0.3 0.3 0.3 0.3 0.3 0.3

k [MPa] 96.0 167.88 180.0 82.0 80.0 210.15

n [–] 5.0 4.22 8.15 24.0 4.55 9.51

K [MPa ·s1/n] 50.0 63.12 11.45 151.0 85.2 14.085

b [–] 100.0 0.0 0.0 8.0 21.3 16.74

R1 [MPa] 0.05 0.0 0.0 60.0 436.0 –138.48

a [MPa] 2000.0 2500.0 98939.30 162.4 93.57 611700.0

c [–] 300.0 20.3 1533.41 2800.0 843.0 38840.0

The proposed modification of the Chaboche model’s basic variant was described

by Imatani in [23], where the kinematic and isotropic hardening equations were

verified. In this concept, the kinematic back stress, X , was divided in two elements:

X =
2
∑

k=1

X(k)=X(1)+X(2). (7)

Evolution for the X(1) and X(2) elements was given as follows:

Ẋ (1)=
2

3
a1 Ė

I−c1 ṗX(1)−β1
(

J2
(

X(1)
))r1−1

X(1),

Ẋ (2)=
2

3
a2 Ė

I ,

(8)

while the isotropic variable was assumed to be:

Ṙ= b(R1−R) ṗ−q1R
q2 . (9)

The material parameters for stainless steel at 650̊ C and for 2 14Cr− 1Mo steel at

600̊ C can be found in [23] and are shown in Table 2.

The next modification of the Chaboche model was proposed by Yaguchi et al.

[46], where alternative forms of the equivalent plastic strain and kinematic hardening

equations were introduced. In this case, the equivalent plastic strain was specified as:

ṗ=

〈

J (S ′−X ′)

K

〉n

, (10)

and kinematic hardening was described as:

Ẋ =
2

3
a Ė I−cX ṗ−β1 (J2 (X ))

r1−1 X , (11)

tq110h-e/53 11I2007 BOP s.c., http://www.bop.com.pl



54 A. Ambroziak and P. Kłosowski

Table 2. Parameters for the Chaboche model [23]

Stainless steel

650̊ C

2 14Cr−1Mo

600̊ C

E [MPa] 145000 155000

ν [–] 0.3 0.3

k [MPa] 129.0 75.0

n [–] 8.03 8.54

K [MPa ·s1/n] 103.0 230.0

b [–] 25.0 63.0

R1 [MPa] 73.6 –12.0

q1 [–] 1.1 ·10−18 0.0

q2 [–] 8.03 0.0

a1 [–] 11743.9 148025.0

a2 [–] 491.0 400.0

c1 [–] 133.0 155.0

where β1 and r1 were material constants. The last term of the above equation depicted

the static recovery property of the back stress using the power law function. In the

same work, the authors considered the anisotropic deformation property and proposed

a second rank tensor, Y , acting on the back stress in the form of:

Ẋ =
2

3
a Ė I−c (X −Y ) ṗ−β1 (J2 (X ))

r1−1 X . (12)

It should be noted that Equation (12) is the same as the kinematic hardening rule

first proposed by Chaboche and Nouailhas in [47] in order to improve the descriptive

capacity in the case of ratchetting. In this case, the evolution of the Y variable Y

was expressed as:

Y =−α

(

Yst
X

J (X )
+Y

)

(J (X ))
r1 , (13)

where α and Yst were additional material constants, expressing the evolution rate

of the Y variable and saturation of Y , respectively. The material parameters for

IN738LC at 950̊ C and IN738LC at 950̊ C are given in Table 3.

Another variant of the Chaboche model was presented by Nouailhas [48] and

described by Chellapandi and Alwar [29]. The general expressions of this model

introduced a modification to the basic Chaboche equations. In this case, the inelastic

strain rate had the form:

Ė I =
3

2
ṗ exp

(

α

〈

J (S ′−X ′)−R∗−k

K (R)

〉n+1
)

S ′−X ′

J (S ′−X′)
, (14)

while the equivalent plastic strain rate was expressed as:

ṗ=

〈

J (S ′−X ′)−R∗−k

K (R)

〉n

, (15)

where R∗ was the product of material constant αR and isotropic hardening, R:

R∗=αRR. (16)
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Table 3. Parameters for the Chaboche model [46]

IN738LC

850̊ C

IN738LC

950̊ C

E [MPa] 164000.0 164000.0

ν [–] 0.3 0.3

n [–] 4.75 5.645

K [MPa ·s1/n] 1510.0 1156.0

a [MPa] 175000 175000

c [–] 500.0 500.0

β1 [–] 3.54 ·10−18 5.507 ·10−14

r1 [–] 6.08 4.275

α [–] — 5.507 ·10−15

Yst [MPa] — 100

The isotropic hardening rate (R(t=0)=0) had the following form:

Ṙ= b(Q−R) ṗ+γ |Q−R|
m
sign(QR−R), (17)

where

QR=Q−Q
∗

R

(

1−

(

Qmax−Q

Qmax

)2
)

. (18)

The material parameter K (R) was determined as:

K (R)=K0+αKR. (19)

Additionally, the plastic strain memory had the form:

Q̇=2µ (Qmax−Q) q̇, (20)

where Q(t=0) =Q0 and q̇ was the internal variable corresponding to the radius of

the memory surface, F , and its centre, ξ, as:

F = I
(

Ė
I
−ξ
)

−q≤ 0, (21)

where

I
(

Ė
I
−ξ
)

=

√

2

3

(

Ė
I
−ξ
)

:
(

Ė
I
−ξ
)

, (22)

q̇= η H (F ) 〈n :n∗〉 ṗ, ξ̇=
2

3
(1−η)H (F )〈n :n∗〉p ṅ, (23)

ṅ=
3

2

S ′−X′

J (S ′−X ′)
, n∗=

√

√

√

√

√

2

3

(

Ė I−ξ
)

I
(

Ė I−ξ
) . (24)

Following paper [23], non-linear kinematic hardening was divided into two parts

(see Equation (7)):

Ẋ (1)=
2

3
a1 Ė

I− c1 Φ(p)X(1)ṗ−β1
(

J2
(

X(1)
))r1−1

X(1)

Ẋ (2)=
2

3
a2 Ė

I−c2 Φ(p)X(2)ṗ−β2
(

J2
(

X(2)
))r2−1

X(2)

(25)
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where a1, a2, c1, c2, β1, β2, r1 and r2 were material constants. The function Φ(p) was

given by the following equation:

Φ(p)=φS+(1−φS)exp(−b p) . (26)

For the Chaboche model presented above the following material constants for

S316LN stainless steel at 600̊ C can found (see [29] or [48]): α=2 ·106, n=24, k=10,

K0 = 116, c1 = 45, c2 = 1300, φS = 0.5, αK = 2, a1 = 3600.0, a2 = 87750.0, b = 12,

αR = 0.0, β1 = 0.5 ·10
−14, β2 = 0.9 ·10

−11, γ = 0.2 ·10−6, µ= 19, r1 = r2 = 4, m= 2,

η=0.6, Qmax=455, Q0=30, Q
∗

R=200.

Notably, Rive et al. [49] specified all the above 23 parameters as functions of

temperature, in the temperature range from 0̊ C to 600̊ C.

3.2. Elements of continuum damage mechanics

The scalar isotropic damage concept can be considered as belonging to the

group of continuum damage mechanics proposed by Kachanov [34]. The foundations

of continuum damage modelling should be based on homogenization of microme-

chanical models (see e.g.: Gurson [50], Marigo [51], Krajcinovic and Lemaitre [52],

Böhm [53]). The micromechanical category defines the damage internal variable by

averaging the microscopic defects that characterize the state of internal deterio-

ration. Numerous models have been developed to describe isotropic damage (see

e.g.: Lemaitre [54], [55], Simo and Ju [56], Krajcinovic and Lemaitre [52], Ju [57],

Mazars and Pijaudier-Cabot [58], Lemaitre and Chaboche [59] Krajcinovic [60], Vree

et al. [61]).

A model of ductile fracture based on continuous damage mechanics and its ap-

plications to metal formation, particularly to deep-drawing of sheets, was presented by

Lemaitre [62]. Used the Ramberg-Osgood hardening law with damage the concept of

parameter identification was presented in detail. A model for combined elastoplasticity

and damage was developed by Hesebeck [63]. The model was based on the maximum

dissipation principle and implemented a strong coupling between plasticity and dam-

age. Hambli [64] presented numerical results obtained by a finite element analysis for

the metal sheet blanking process. These results were compared with the experimental

results in order to verify the Gurson and Lemaitre damage models describing the

initiation and propagation of cracks during the process’s evolution. A strain-based

thermodynamic framework was proposed for modelling the continuum damage be-

haviour of viscoelastic materials by Abdel-Tawab and Weitsman [65]. In their paper

damage was represented by the internal state variable in the form of a symmetric

second-rank tensor. Their approach accounted for time-dependent damage as well the

changes in material symmetry due to the damage.

The double scalar damage variables, characterizing the state of isotropic dam-

age, were described by Tang et al. in [66]. The damage influence tensor relating to

the double scalar damage variables of the damaged material was thus formulated

on the basis of the hypothesis of stress equivalence for this model. Additionally, the

damage influence tensor and the specific damage energy release rate were obtained

using the experimental results of 2024T3 pre-strained aluminium alloy specimens

under uniaxial tension tests. Zako and Uetsuji [67] showed the simulation damage be-

haviour of FRP through finite element analysis, with the use of an anisotropic damage
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model based on damage mechanics. The proposed procedure was performed twice in

the case of FEM: in aided damage simulation and in the finite element analysis of

microscopic damage propagation in woven fabric composite materials. The authors

gave the mechanical properties of boron-aluminium lamina in centrally notched spec-

imens. A series of deformation experiments was conducted by Yaguchi et al. [46] on

IN738LC nickel-base polycrystalline super alloy at 850̊ C. A kinematic hardening rule

was proposed within a viscoplasticity framework. A new internal variable of the back

stress dynamic recovery property was incorporated into the back stress evolutionary

equation. An evolutionary law of the proposed internal variable was assumed to be

a function of the back stress static recovery property.

Optimal algorithm results for the shape optimization of mechanical engineering

structures used in continuum damage mechanics were presented by Lemaitre [68].

Cormey and Welemane [69] investigated macroscopic modelling of the brittle damage

unilateral effect, due to the opening-closure of micro-cracks. These authors examined

precisely two formulations proposed by Chaboche [70], and Halm and Dragon [71]

and demonstrated that they exhibited major inconsistencies. Different results for the

calculation of fatigue strength of components made of ductile materials under complex

cyclic load were presented by Roos et al. [72]. The shear stress intensity hypothesis

and the critical plane approach were considered as typical representatives of stress

theories. Viscoplastic material models of creep-and-fatigue combination were applied.

A calculation of multiaxial creep and fatigue tests with a modified material model by

Chaboche and Nouailhas [73] was presented.

3.3. Variants of Chaboche model equations with damage

Generally, a scalar variable D (0 ≤ D ≤ 1), describing isotropic damage is

introduced into the constitutive equations using the strain equivalence principle, see

e.g.: Chaboche [74], Lemaitre [55].

In the first presented variant of the Chaboche model with damage, the vis-

coplastic strain rate, Ė I , is based on the creep plasticity isotropic hardening theory

with damage evolution, as given by the following extension of the viscoplastic con-

stitutive theory by Chaboche and Rousselier [75] to the creep plasticity isotropic

hardening model with damage evolution (see e.g.: Dune and Hayhurst [76], Skrzypek

and Ganczewski [77]):

Ė I =
3

2
ṗ
S′

J (S ′)
, (27)

where ṗ can be written in the following form:

ṗ=

〈 J(S ′)
(1−D)−R−k

K

〉n

. (28)

To determine the evolution of isotropic hardening, R, and the isotropic damage

variable, D, the following equations are employed,

R=Q1 p+Q2 [1−exp(−b p)], (29)

Ḋ=

(

Y

S

)s

ṗ. (30)
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The elastic energy release rate is described as

Y =
1

2E (1−D)
2

[

2

3
(1+ν)(J (S ′))

2
+3 (1−2ν)

(

tr(S)

3

)2
]

, (31)

where E is the Young modulus, ν is Poisson’s ratio, and k,K, n, Q1, Q2, b are material

parameters. S and s are damage constants.

When the accumulated equivalent strain exceeds its limit value, εD, damage

develops as per Equation (30), namely:

Ḋ=0 p< εD

Ḋ > 0 p≥ εD
(32)

The following physical parameters for SM490 steel at the 450̊ C can be

found in [78]: E = 178400.0MPa, ν = 0.3, yield stress 223.4MPa, ultimate strength

450.8MPa, elongation 32%, K =181.0MPas, n=30.0, k=90.0MPa, Q1=650.0MPa,

Q2=140.0MPa, b=37.0, S=0.2MPa, s=0.85, and the critical value of the damage

variable Dcr=0.45. For “ductile” analysis the threshold strain for damage initiation

is εD = 0.155. For the “quasi-brittle” analysis the threshold strain of εD = 10
−10 is

assumed.

In the next variant of the Chaboche equations with damage, the inelastic strain

rate, Ė I , is specified by Equation (1). In this variant the ṗrate ṗ is defined by the

following equation (see e.g.: Lemaitre [68]):

ṗ=

〈 J(S ′−X′)
1−D −R−k

K

〉n

, (33)

where damage evolution, D, is expressed by Equation (30). Identification and valida-

tion of material parameters for nickel-based super alloys was performed by Amar and

Dufailly (see [79]). The authors gave the following parameters, dependent on temper-

ature, (0̊ C≤T ≤ 627̊ C):

E (T )= 30000[MPa]
(

1−exp
(

1.45 ·10−3
[

C̊−1
]

·T
))

+206000[MPa], ν=0.3 [−],

k(T )= 70[MPa]
{

1−exp
(

3.10 ·10−3
[

C̊−1
]

·T
)}

+920.5[MPa], n=2.4,

K (T )= 1/
(

1.80 ·10−6 exp
(

−1.51 ·10−2
[

C̊−1
]

·T
))2.4
, a=8 ·104 [MPa],

c=200[−], b=15[−], R1 (T )= 6.6[MPa]
{

1−exp
(

5.2 ·10−3
[

C̊−1
]

·T
)}

,

damage parameters s=3.0[−] and S (T )=−8.80 ·10−3
[

MPå C−1
]

·T +10[MPa].

4. Final remarks and conclusions

The present paper collects and describes several variants of the Chaboche

model and their practical engineering application. Selected material parameters are

also included. It follows from our review that the elasto-viscoplatic equations of

the Chaboche model are still being developed and modified. The model has some

disadvantages; the presented variant of the Chaboche model, based on the assumption

of additivity of elastic and inelastic strains, is applicable only in the small strain range.

At the same time, some constitutive models are based on multiplicative decomposition

of elastic and inelastic strains. To offer an example, Brocks and Lin [80] extended the

Chaboche viscoplastic law assuming the multiplicative decomposition of the strain

into elastic and inelastic parts.
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[53] Böhm H 1998 A Short Introduction to Basic Aspects of Continuum Micromechanics,

CDL-FMD Report 3, Institute of Lightweight Structures and Structural Biomechanics, Vi-

enna University of Technology, Austria

[54] Lemaitre J 1984 Nucl. Eng. and Design 80 233

[55] Lemaitre J 1996 A Course on Damage Mechanics, Springer-Verlag, Berlin

[56] Simo J C and Ju J W 1987 Int. J. of Solids and Struct. 23 821

[57] Ju J W 1990 J. of Eng. Mech. 116 2764

[58] Mazars J and Pijaudier-Cabot G 1989 J. of Eng. Mech. 115 345

[59] Lemaitre J and Chaboche J L 1990 Mechanics of Materials, Cambridge University Press,

Cambridge

[60] Krajcinovic D 1996 Damage Mechanics, Elsevier Science, North Holland Series in Appl. Math.

and Mech. 41, Amsterdam

[61] de Vree J H P, Brekelmans W AM and van Gils M A J 1996 Computers and Structures 55 581

[62] Lemaitre J 1983 Proc. of the 4 th Int. Conf. on Mech. Behaviour of Materials 2 1047

[63] Hesebesk O 2001 Int. J. of Damage Mech. 10 325

[64] Hambli R 2001 Int. J. of Material Sciences 43 1769

[65] Abdel-Tawab K and Weitsman Y J 2001 J. of Appl. Mechanics 68 304

[66] Tang C Y, Shen W, Peng L H and Lee T C 2002 Int. J. of Damage Mech. 11 3

[67] Zako M and Uetsuji Y 2002 Int. J. of Damage Mech. 11 187

[68] Lemaitre J 1985 J. of Eng. Materials and Technology 107 83

[69] Cormery F and Welemane H 2002 Mech. Res. Comm. 29 391

[70] Chaboche J L 1992 Int. J. of Damage Mech. 1 148

[71] Halma D and Dragon A 1996 Int. J. of Damage Mech. 5 384

tq110h-e/60 11I2007 BOP s.c., http://www.bop.com.pl



The Elasto-Viscoplastic Chaboche Model 61

[72] Ross E, Gengenbach T, Rauch M and Schemmel J 2003 Matematishewissenshaft und Werk-

stofftechnic 34 (9) 781

[73] Nuailhas D 1989 Int. J. of Plasticity 5 501

[74] Chaboche J L 1977 Symposium franco-polonais, Cracow, Poland, pp. 17–26

[75] Chabche J L and Rousselier G 1983 J. of Pressure Vessel Technology 105 153

[76] Dune F P E and Hayhurst D R 1992 Proc. of Royal Society London Academy 437 545

[77] Skrzypek J and Ganczewski A 1999 Modeling of Material Damage and Failure of Structures.

Theory and Applications, Springer, Wien – New York

[78] Yutaka T and Jae-Myung L 2002 Int. J. of Damage Mech. 11 171

[79] Ammar G and Dufailly J 1993 European J. of Mechanics, A/Solids 12 197

[80] Brocks W and Lin R 2003 An Extended Chaboche Viscoplastic Law at Finite Strains and its

Numerical Implementation, GKSS-Forschunszentrum Geesthacht GmbH, Geesthacht

tq110h-e/61 11I2007 BOP s.c., http://www.bop.com.pl



62 TASK QUARTERLY 10 No 1

tq110h-e/62 11I2007 BOP s.c., http://www.bop.com.pl


