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Abstract: The paper presents a non-linear finite element procedure for analysis of membrane

structures. A four-node quadrilateral finite element is formulated to represent a general curved

elastic geometrically non-linear surface. The described isoparametric element is C0-continuous, of

constant thickness, and assumes a plane stress criterion. A simple numerical example is presented as

an application of the described theory.
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1. Introduction

A detailed description of the four-node, isoparametric, two-dimensional finite

element in the linear case can be found in almost every book on finite element

analysis, see e.g. [1]. However, there is no clear, straightforward description of

four-node membrane isoparametric 3D finite element. This has inspired the authors

of the present paper to investigate in detail the idea of finite element analysis

using a four-node membrane isoparametric 3D finite element. While there numerous

publications concerned with this finite element analysis (see e.g. [2–7]), only its

general idea has been discussed so far.

2. Membrane deformation

The free bending stress state in the shell is referred to as the membrane

stress state. As membrane elements are usually thin, it is possible to consider all

the quantities with reference to the middle surface. The position vector, R, of the

middle surface (see Figure 1) refers to the initial configuration, 0B and is specified by

the following equation:

R=
−→
0P = f

(

θ1, θ2
)

=

3
∑

k=1

fk
(

θ1, θ2
)

ik =X
k ik. (1)
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36 A. Ambroziak and P. Kłosowski

Figure 1. Visualisation of the assumed Cartesian coordinate system

Figure 2. Deformation of the four-node membrane element

Coordinates θβ (β=1, 2) form a curvilinear coordinate system, the origin

of which lies in the middle of the membrane’s surface. Base vectors Gα can be

determined as:

Gα=R,α=
0Xk,α ik, (2)

whereas the middle surface normal vector, N , is calculated at point P from the

following equation:

N =
G1×G2
|G1×G2 |

=Nk ik. (3)

Thus the covariant base of the surface coordinates is created. The contravariant base

can be determined from the following expression:

Gα ·Gβ = δαβ . (4)
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A Four-Node 3D Isoparametric Membrane Element 37

It is possible to determine the covariant and contravariant components of the metric

tensor (referred to as the first surface form):

Gαβ =Gα ·Gβ =Xi,αXj,βδij , (5)

Gαγ =Gβγ = δ
α
β . (6)

The second surface form (the curvature tensor) is defined as follows (see [8] or [9]):

bαβ =−Gβ ·N ,α=−Gα ·N ,β =N ·Gβ,α=N ·Gα,β . (7)

The global coordinate system, X1, X2, X3 is assumed to be orthogonal, while

the local coordinate system is curvilinear, θα, with the axis perpendicular to the

surface coordinate described by vector N . The initial configuration, 0B (undeformed

state), and the actual configuration, tB (deformed state), are considered in the

description of the strain state. The connection between the curvilinear systems is

assumed to be:
tθδ = 0θδ. (8)

The position vector in the actual configuration, tB, in the assumed notation can be

specified as:

r = tXk ik =R(θ
α)+u (θα) . (9)

It should be noted that all quantities of the actual configuration, tB, are

specified in the initial configuration, 0B (the Lagrange approach). The displacement

vector, u , and the base vectors, gα, can be described as:

u = r−R=uαGα+u3N =uαGα+u3N , (10)

gα=
tXk,α ik =

(

0Xk,α+u
k
,α

)

ik =Gα+u ,α. (11)

It is thus possible to write as follows:

Gβ =GβαG
α

u ,β =(uαG
α+u3N ) ,β = uα|βGα+uαGα,β+u3,βN +u3N ,β = (12)

= uα|βGα+uαbβαN +u3,βN −bαβu3Gα

For the sake of the membrane-stress-state-only assumption, the curvature tensor, bαβ ,

can be omitted, and u ,β takes the following simple form:

u ,β = uα|βGα+u3,αN . (13)

Equation (11) can be rewritten in the form:

gα=Gα+u ,α=GβαG
α+ uα|βGα+u3,αN

=
(

Gβα+ uα|β
)

Gα+u3,αN = (14)

= (Gαβ+ϑαβ)G
α+u3,αN =ψλαG

λ+ϑαN .

The following calculations give the base vector, represented in the form:

gα=ψβαG
β+ϑαN =G

βλψβαGλ+ϑαN =ψ
λ
·αGλ+ϑαN , (15)

where

ψαβ =Gαβ+ϑαβ
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38 A. Ambroziak and P. Kłosowski

ϑαβ = uα|β =uα,β−Γλαβuλ (16)

ϑα=u3,α

while Γλαβ are Christoffel’s symbols [10]:

Γrij =0 (i 6= j 6= r 6= i) , Γrii=−
1

2Grr

∂Gii

∂θr
(r 6= i) , Γiij =Γiji=

1

2Gii

∂Gii

∂θj
. (17)

The components of the metric tensor in the actual configuration can be calculated

from the following equation:

gαβ = gα ·gβ =ψλ·αψλβ+ϑαϑβ =Gαβ+ϑαβ+ϑβα+ϑλ·αϑαβ+ϑαϑβ , (18)

while the strain tensor is specified by the expression:

εαβ =
1

2
(gαβ−Gαβ) . (19)

Substituting Equation (18) to Equation (19), we obtain:

εαβ =
1

2

(

ψλ
·αψλβ+ϑαϑβ−Gαβ

)

=
1

2

(

ϑαβ+ϑβα+ϑ
λ
·αϑαβ+ϑαϑβ

)

. (20)

Finally, the components of the strain tensor are determined from the following

equation:

εαβ =
1

2

[

uα|β+ uβ |α+ uλ
∣

∣

α
uλ|β+u3,αu3,β

]

. (21)

The problem will be solved by the finite element method. This method requires

proper discretization of the structure. The orthogonal coordinate system is assumed

in every finite element; this assumption enables a simplification, viz.:

Gαβ = δαβ , Gαβ = δαβ , (22)

so that the covariant derivatives are turned into ordinary derivatives,

uα|β =uα,β , uλ
∣

∣

α
=uλ,β . (23)

According to Eqations (22) and (21), the strain tensor is as follows:

εαβ =
1

2

(

uα,β+uβ,α+u
λ
,αuλ,β+u3,αu3,β

)

. (24)

The uλ,α component can be expressed as:

uλ,α=G
λρuρ,α= δ

λρuρ,α. (25)

Finally, the components of the strain tensor are calculated from the following equation:

εαβ =
1

2

(

uα,β+uβ,α+δ
λρuρ,αuλ,β+u3,αu3,β

)

, (26)

It should be noted that the plane stress state is assumed in the membrane

elements (the strain component perpendicular to the surface is neglected according

to the Kirchhoff assumption). However, the notion of plane stress state has to be

considered in the space analysis (the three components of displacement, u1, u2, u3).

For detailed studies of the shell mechanics the reader is referred to [11], where over

2500 references are given.
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3. The FEM approach

In general, it is possible to specify two families of elements: strain elements

and stress elements. The former group uses the assumption of strain (displacement)

interpolation function analysis. In the latter group of elements, the stress interpolation

function (an Airy-type stress function) is assumed. Our considerations are restricted to

isoparametric strain-type membrane elements. An element can be called isoparametric

when the displacement interpolation functions are assumed to be the same as

the shape interpolation functions. The family of isoparametric elements has been

introduced by Zienkiewicz et al. (see e.g. [12]).

The geometry of the described C0 class of quadrilateral membrane elements is

specified by four nodes, each attributed with three translational degrees of freedom.

Constant thickness, t, is assumed. It is also assumed that mechanical behaviour is

adequately represented by the enforced plane-stress criterion. Displacements and

geometry are interpolated from nodal quantities, with the use of identical shape

functions, according to the isoparametric approach.

In the first step, the finite element discretization of the curvilinear domain is

necessary. The global coordinates can be specified, but the local quantities should be

also determined before calculating the global matrices of the FEM (e.g. the stiffness

matrix). Therefore, the global coordinates and displacements,

X1= {iX1 jX1 kX1 mX1}T , Q1= {iU1 jU1 kU1 mU1}T

X2= {iX2 jX2 kX2 mX2}T , Q2= {iU2 jU2 kU2 mU2}T (27)

X3= {iX3 jX3 kX3 mX3}T , Q3= {iU3 jU3 kU3 mU3}T

have to be transformed to the assumed local orthogonal coordinate system:

x1= {ix1 jx1 kx1 mx1}T , q1= {iu1 ju1 ku1 mu1}T

x2= {ix2 jx2 kx2 mx2}T , q2= {iu1 ju1 ku1 mu1}T (28)

x3= {ix3 jx3 kx3 mx3}T , q3= {iu1 ju1 ku1 mu1}T .

Figure 3. Deformation of the four node membrane element
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The shape of a membrane element can be expressed in terms of the interpolation

function and its nodal coordinates,







x1 (ξ)
x2 (ξ)
x3 (ξ)







=





N1 0 0 N2 0 0 N3 0 0 N4 0 0
0 N1 0 0 N2 0 0 N3 0 0 N4 0
0 0 N1 0 0 N2 0 0 N3 0 0 N4











































































ix1
ix2
ix3
jx1
jx2
jx3
kx1
kx2
kx3
mx1
mx2
mx3







































































=

= [N1I3 N2I3 N3I3 N4I3] x =N x

(29)

where

I3=





1 0 0
0 1 0
0 0 1



. (30)

In the above equations, Ni (ξ)=Ni are interpolation functions in the curvilinear

coordinates, as given below:

N1 (ξ)=
(1+ξ1)(1+ξ2)

4 , N2 (ξ)=
(1−ξ1)(1+ξ2)

4 ,

N3 (ξ)=
(1−ξ1)(1−ξ2)

4 , N4 (ξ)=
(1+ξ1)(1−ξ2)

4 .
(31)

The displacement functions, referring to the local coordinate system, are

given by:






u1 (ξ)
u2 (ξ)
u3 (ξ)







= [N1I3 N2I3 N3I3 N4I3] q =N q , (32)

where q = {iu1 iu2 iu3 ju1 ju2 ju3 ku1 ku2 ku3 mu1 mu2 mu3}T .
According to Equation (26), the total strain field, ε, can be divided into linear

and non-linear parts,

ε= e+n =







u1,1
u2,2

u1,2+u2,1







+
1

2







(u1,1)
2
+(u2,1)

2
+(u3,1)

2

(u1,2)
2
+(u2,2)

2
+(u3,2)

2

2(u1,1u1,2+u2,1u2,2+u3,1u3,2)







. (33)

The linear part of the strain vector is specified as:

e =







u1,1
u2,2

u1,2+u2,1







=





ib 0 0 jb 0 0 kb 0 0 mb 0 0
0 ic 0 0 jc 0 0 kc 0 0 mc 0

ic ib 0 jc jb 0 kc kb 0 mc mb 0



 ·




































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
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
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



















iu1
iu2
iu3
ju1
ju2
ju3
ku1
ku2
ku3
mu1
mu2
mu3
























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
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
















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









=Be q (34)
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where
jb= J̄11 ·N2,ξ1+ J̄12 ·N2,ξ2 , ib= J̄11 ·N1,ξ1+ J̄12 ·N1,ξ2
kb= J̄11 ·N3,ξ1+ J̄12 ·N3,ξ2 , mb= J̄11 ·N4,ξ1+ J̄12 ·N4,ξ2

(35)

jc= J̄21 ·N2,ξ1+ J̄22 ·N2,ξ2 , ic= J̄21 ·N1,ξ1+ J̄22 ·N1,ξ2
kc= J̄21 ·N3,ξ1+ J̄22 ·N3,ξ2 , mc= J̄21 ·N4,ξ1+ J̄22 ·N4,ξ2

(36)

The components of the inverse Jacobi matrix, J̄αβ , can be determined as:

J̄11=
J22
det(J ) , J̄12=− J12

det(J ) ,

J̄21=− J21
det(J ) , J̄22=

J11
det(J ) ,

(37)

where the components of the Jacobian J are specified as follows:

J =

[

N1,ξ1 N2,ξ1 N3,ξ1 N4,ξ1
N1,ξ2 N2,ξ2 N3,ξ2 N4,ξ2

]







ix1 ix2

jx1 jx2

kx1 kx2

mx1 mx2






. (38)

The non-linear part of the strain tensor is determined from the following

relation:

n
1

2





u1,1 0 u2,1 0 u3,1 0
0 u1,2 0 u2,2 0 u3,2
u1,2 u1,1 u2,2 u2,1 u3,2 u3,1































u1,1
u1,2
u2,1
u2,2
u3,1
u3,2



























=
1

2
AGq =BN q (39)

where matrices A and G have the form:

G =















ib 0 0 jb 0 0 kb 0 0 mb 0 0

ic 0 0 jc 0 0 kc 0 0 mc 0 0
0 ib 0 0 jb 0 0 kb 0 0 mb 0
0 ic 0 0 jc 0 0 kc 0 0 mc 0
0 0 ib 0 0 jb 0 0 kb 0 0 mb

0 0 ic 0 0 jc 0 0 kc 0 0 mc















, (40)

A=





Bu 0 Bv 0 Bw 0
0 Cu 0 Cv 0 Cw
Cu Bu Cv Bv Cw Bw



, (41)

while the components of matrix A are:

Bu= [ibiu1+ jbju1+kbku1]
Bv = [ibiu2+ jbju2+kbku2]
Bw = [ibiu3+ jbju3+kbku3]
Cu= [iciu1+ jcju1+kcku1]
Cv = [iciu2+ jcju2+kcku2]
Cw = [iciu3+ jcju3+kcku3]

(42)

Consequently, the local elastic stiffness matrix of the element, K eL, and the

geometric stiffness matrix K eσ , can be calculated from the following equations:

K eL=
1

|J |

+1
∫

−1

+1
∫

−1

(Be+Be (q))
T
D (Be+Be (q))

T
tdξ1dξ2, (43)
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K eσ =
1

|J |

+1
∫

−1

+1
∫

−1

GTHG tdξ1dξ2, (44)

where

H =

[

σ11I τ12I

τ12I σ22I

]

. (45)

The sum of matrices given by Equations (44) and (45) is equal to the total

stiffness matrix of the element.

4. Example of the strain state analysis

The values of the nodal coordinates and displacements in the global orthogonal

coordinate system are assumed as:






1X1

1X2

1X3







=







0
0
0







,







2X1

2X2

2X3







=







6
−8
5







,







3X1

3X2

3X3







=







6
2
3







,







4X1

4X2

4X3







=







0
5
2







, (46)







1U1

1U2

1U3







=







0
0
0







,







2U1

2U2

2U3







=







0
0
0







,







3U1

3U2

3U3







=







0
0
1







,







4U1

4U2

4U3







=







0
0
0







. (47)

The distribution of the strain vector in the isoparametric finite element is

investigated. The values at the four integration points are calculated (see Figure 4).

Figure 4. Plane visualization of the isoparametric membrane element

The values of ξ1 =+0.57735, ξ2 =+0.57735 are taken for the first integration

point. Consequently, the shape functions and its derivatives are specified as:

N = [N1 N2 N3 N4] = [0.62201 0.16667 0.04466 0.16667], (48)

[

N1,ξ1 N2,ξ1 N3,ξ1 N4,ξ1
N1,ξ2 N2,ξ2 N3,ξ2 N4,ξ2

]

=

[

0.39434 −0.39434 −0.10566 0.10566
0.39434 0.10566 −0.10566 −0.39434

]

. (49)
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The position vector, R(ξ), at the first integration point can be described as:

R(ξ)= (N ·X1) i1+(N ·X2) i2+(N ·X3) i3=
=1.26795 i1−0.41068 i2+1.3006 i3.

(50)

It is necessary to specify the derivatives of the position vector, R(ξ), with

respect to ξ1 and ξ2 as follows:

R ,ξ1 =(N ,ξ1 ·X1) i1+(N ,ξ1 ·X2) i2+(N ,ξ1 ·X3) i3=
=−3i1+3.47169i2−2.07735i3

R ,ξ2 =(N ,ξ2 ·X1) i1+(N ,ξ2 ·X2) i2+(N ,ξ2 ·X3) i3=
=0i1−3.028313i2−0.57735i3

(51)

It is useful to build vectors tα, sα and dα, instrumental in creating the local

Cartesian coordinate system,

t1=
R ,ξ1
|R ,ξ1 |

, t2=
R ,ξ2
|R ,ξ2 |

, s1= t1+t2, s2= t1−t2, d1=
s1√
2|s1|

, d2=
s2√
2|s2|

(52)

Finally, the local orthogonal unit vector can be obtained as follows:

j1=d1+d2=−0.70625 i1+0.42917 i2−0.56304 i3
j2=d1−d2=−0.23534 i1−0.892397 i2−0.38502 i3
j3= j1× j2=−0.6677 i1−0.139416 i2+0.73126 i3

(53)

It is easy to prove that

|j1|=1, |j2|=1, |j3|=1 and j3× j1= j2=−0.23534i1−0.892397 i2−0.38502 i3.
In the next step, it is necessary to transform the system of global coordinates

of nodes, and define displacements in this system, to the local coordinate system. The

transformation matrix, L, is used in this operation,

L=





{j1}T
{j2}T
{j3}T



=





−0.70625 0.4291746 −0.56304
−0.23534 −0.892397 −0.38502
−0.6677 −0.139416 0.73126



. (54)

Thus, the new local coordinates of nodes are as follows:






1x1

1x2

1x3







=







1.8041
0.4327
−0.1617







,







2x1

2x2

2x3







=







−8.6821
4.2346
0.60369







,







3x1

3x2

3x3







=







−3.2642
−3.9192
−2.2530







,







4x1

4x2

4x3







=







2.8238
−4.7993
0.60369







,

(55)

while the new local displacements can be calculated as:






1u1

1u2

1u3







=







0
0
0







,







2u1

2u2

2u3







=







0
0
0







,







3u1

3u2

3u3







=







−0.56304
−0.385021
0.731261







,







4u1

4u2

4u3







=







0
0
0







.

(56)
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Then, the following Be , A, and G matrices can be obtained:

Be =

[

0.1434 0 0 −0.0793 0 0 −0.0384 0 0 −0.0256 0 0

0 0.1826 0 0 0.0097 0 0 −0.0489 0 0 −0.1434 0
0.1826 0.1434 0 0.0097 −0.0793 0 −0.0489 −0.0384 0 −0.1434 −0.0256 0

]

, (57)

A=

[

0.02163 0 0.01479 0 −0.02809 0

0 0.02755 0 0.01884 0 −0.03578
0.02755 0.02163 0.01884 0.01479 −0.03578 −0.02809

]

, (58)

G =















0.14337 0 0 −0.0793 0 0 −0.0384 0 0 −0.02567 0 0

0.18260 0 0 0.0097 0 0 −0.0489 0 0 −0.1434 0 0

0 0.14337 0 0 −0.0793 0 0 −0.0384 0 0 −0.02567 0
0 0.18260 0 0 0.0097 0 0 −0.0489 0 0 −0.1434 0
0 0 0.14337 0 0 −0.0793 0 0 −0.0384 0 0 −0.02567
0 0 0.18260 0 0 0.0097 0 0 −0.0489 0 0 −0.1434















. (59)

As the matrices of the finite element method have been created, the components of

the strain vector, 1ε, at the first integration point can be determined,

1ε= e+n =Be q+
1

2
AGq =







0.021630
0.018838
0.042340







+







0.000738
0.001197
0.001880







=







0.022368
0.020035
0.044220







. (60)

If the same calculation procedure is repeated for the other integration points,

the following values of the strain component vector can be obtained for the second,

third and fourth integration point:

2ε= e+n =







0.038749
0.009405
0.068848







+







0.003231
0.008559
0.010517







=







0.0419799
0.0179642
0.0793649







(61)

3ε= e+n =







0.037077
−0.00826
0.024506







+







0.01191
0.009789
0.021596







=







0.0489875
0.0015318
0.0461014







(62)

4ε= e+n =







0.041528
0.019049
0.057720







+







0.008039
0.002337
0.008669







=







0.0495664
0.0213861
0.0663889







(63)

For the sake of the presented procedure, a verification of the geometrical

non-linear analysis was carried out in theMSC.Marc commercial system. The results of

the strain state distribution obtained from the commercial program (see Figures 5–7)

and from the described procedure are exactly the same. It should be noted that the

strain values presented in the Figures 5–7 correspond to the integration points (the

TRANSLATE option of the MSC.Marc system was applied).

5. Remarks and conclusions

A four-node, isoparametric, membrane element analysis has been performed.

It should be noted that this element has no bending stiffness and is very unstable –

membrane analysis is extremely difficult due to rigid body modes. As the membrane

element is used with geometric non-linear analysis, the tensile initial stress stiffness

increases the element’s rigidity. Due to bilinear interpolation, the surface forms

a hyperbolic paraboloid, which is allowed to degenerate into a plane.
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Figure 5. Integration point values of the strain component ε11

Figure 6. Integration point values of the strain component ε22
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Figure 7. Integration point values of the strain component ε12

Generally, membrane elements are used for analysis of membrane structures.

Usually, membrane sheet constructions are made from the glass fibres or carbon

fibres covered by a plastics coating (e.g. PTFE, PVC), referred to as technical woven

fabric. A number of theoretical models have been developed to describe the behaviour

of technical woven fabrics (see e.g. [13, 14]).The choice of the constitutive model

assumed to describe the fabric’s behaviour is always a disputable problem ([15, 16]).

The authors have successfully used this type of finite elements in their analysis of

membrane hanging roofs, with various types of constitutive modelling used to describe

the behaviour of the fabric membrane ([17–19]) in which the viscoelastic characteristic

[20], the viscoplastic characteristic ([21, 22]) or the non-linear elastic characteristic

([23, 24]) can be applied.
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