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Abstract: The paper considers a method of conditional simulation of spatiotemporal scalar random

fields of certain environmental phenomena. The method can be used to predict field values at given

space points at specified time, on the basis of field values at other locations and data on second

order moment functions in the domain. This approach has been applied to a space-time prognosis

of soil contamination fields. The assessment of the spatiotemporal variability of heavy metals’

concentrations provides the knowledge needed to monitor and control soil contamination. Empirical

data of heavy metal (viz. chromium) concentration in the soil of northern Poland have been used

in the study. The acceptance-rejection method has been applied to generate covariance matrices

and vectors of discrete field values, taking into account conditional probability distributions. The

results of the study show that the considered method can be successfully used to model conditional,

spatiotemporal random fields of contamination with relatively small simulation errors.

Keywords: stochastic modelling, random fields, spatiotemporal covariance function, soil con-

tamination

1. Introduction

In recent years, the theory of random fields has been intensively studied and

applied in many areas, including civil and environmental engineering, geotechnics,

mechanics, ocean engineering, earth sciences and environmental protection [1–4].

Simulation methods are often used to deal with random processes such as, for

example, the propagation of seismic waves [5], fluctuations of wind forces or ocean

waves [6], geometrical imperfections in structures [7], or environmental contamination

[8]. In particular, methods of modelling random fields of contamination have been

shown to be very useful in monitoring contamination levels and predicting unknown

contamination values (see e.g. [4, 8]).

The present paper is concerned with reconstructing the random field of an

environmental (contamination-type) phenomenon in terms of the fragmentary data

available. The data include space-time concentrations of some contaminants and
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the corresponding second-order functional characteristics of spatiotemporal random

fields. The concept of spatiotemporal random fields (see [9]) offers means of adequate

representation of natural processes that are irregular, space-nonhomogeneous and

time-nonstationary in character. The field reconstruction can be approached in

an efficient (practical) or inefficient (e.g. too general) manner. The choice of the

model and numerical techniques discussed in this paper has been governed by their

usefulness in practical stochastic analysis of soil contamination with heavy metals.

In the considered approach, the theoretical model and the numerical simulations are

considered jointly, which leads to a deeper understanding of the random phenomena of

environmental contamination in terms of covariance functions, optimal sampling, etc.

2. Theoretical models of random fields of contamination

In the theory of random fields of contamination (see e.g. [3, 8]), natural

environmental phenomena are simulated by means of spatial random field models. It

is usually assumed that X(r) represents a scalar, in general a space-nonhomogeneous

random field, where r ∈R2 denotes a two-dimensional position vector. The so-called

second order field is characterised in terms of its mean value function:

m(r)=E (X(r)), (1)

and the spatial covariance function:

K (r1,r2)=E ((X(r1)−m(r1)) ·(X(r2)−m(r2))), (2)

where E (·) denotes the expectation operator and r1,r2 ∈R
2.

The concepts of homogeneity, ergodicity and isotropy serve as useful hypotheses.

The X(r) second-order field is considered to be space-homogeneous if its mean and

covariance functions are unaffected by an argument shift. A homogeneous field is

ergodic if all the statistical information is included in the single realisation available.

An isotropic field is a special instance of a homogeneous random field. In this case,

the covariance function depends only on the |r2−r1| length of the distance vector.

Importantly, the behaviour of the covariance function of a homogeneous random

field in the neighbourhood of r2−r1 = 0 may be a determining factor with regard

to the field’s differentiability (in the so-called mean-square sense). For example,

a homogeneous 1-D field is differentiable (in the mean-square sense) if, and only

if, its covariance function K has its second derivative at |r2−r1|=0.

An example of a differentiable, homogeneous, isotropic, 2-D random field is the

so-called Shinozuka field. Its covariance function is described by [10]:

K (r1,r2)=σ
2 ·exp

(

−α
(

(r2x−r1x)
2
+(r2y−r1y)

2
))

, (3)

where σ is the field’s standard deviation, α (α> 0) is a scale parameter describing the

degree of space correlation, and rix, riy (i=1,2) are the components of the distance

vector, ri.

If the covariance function of the 2-D field is of the form:

K (r1,r2)=σ
2 ·exp

(

−α(r2x−r1x)
2
−β (r2y−r1y)

2
)

, (4)

where α 6= β (α> 0, β > 0), then the field is anisotropic but homogeneous and

differentiable (in the mean-square sense). An example of a non-differentiable (in the
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mean-square sense) but homogeneous and isotropic 2-D field is the so-called white-

noise field (see [8, 11]) defined by the covariance function:

K (r1,r2)=

{

σ2 for |r2−r1|=0
0 for |r2−r1| 6=0

(5)

and the zero-mean value function.

3. Spatiotemporal random fields

Let us now denote a scalar, space-nonhomogeneous, time-nonstationary random

field by X(r ,t), where (r ,t) ∈ R2 × T denotes space-time coordinates such that

‖(r ,t)‖2 = ‖r‖2+ t2 with ‖r‖2 = r2
1
+ r2
2
. The second-order field, X(r ,t), r ∈ R2,

t∈T = [0,∞), is characterised in terms of its spatiotemporal mean value function:

m(r ,t)=E (X(r ,t)) (6)

and the spatiotemporal covariance function:

K (r1,t1;r2,t2)=E ((X(r1,t1)−m(r1,t1)) ·(X(r2,t2)−m(r2,t2))). (7)

We can interpret X(r ,t), r ∈R2, t∈ T = [0,∞) either as a random field in a three-

dimensional space or as a time-dependent random field in a two-dimensional space.

The latter interpretation is more convenient.

In the present paper, let us propose the spatiotemporal covariance function in

the following form:

K (r1,t1;r2,t2)=σ
2 ·exp

(

−α
(

(r2x−r1x)
2
+(r2y−r1y)

2
))

·exp(−β (t2− t1)) , (8)

where α, β (α> 0, β > 0) are the scale parameters, which are essential for describing

the degree of space and time correlation of the field, respectively. Notably, the above

covariance function can be considered as an extension of the spatial Shinozuka field

(see Equation (3)) into the space-time domain.

4. Numerical simulations of spatiotemporal random fields

For simulation purposes, let us consider the discrete random field in the form

of 2-D random variables defined at every node of the spatiotemporal grid. Then, the

covariance matrix, K , assumes the role of the covariance function, K. Let us now

denote the number of points in a plane 2-D space domain as M and the number of

points in a 1-D time domain as N . Then, the covariance matrix, K , of dimension

(M ·N)×(M ·N) is given in the following block form:

K =









k11 k12 . .. k1N
k21 k22 . .. k2N
...

...
...

kN1 kN2 . .. kNN









, (9)

where kij =E
(

(Xi−mi) ·(Xj−mj)
T
)

is a matrix of dimension M×M and mi is a

vector of mean values at the space points at time i (i, j=1,2,. ..,N). Let us now divide

the random variable vectorX (of dimensionM ·N×1) with an assumed joint Gaussian
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truncated (with high truncation level) probability density, f(X ), into two blocks

consisting of unknown, Xu (n×1), and known, Xk (p×1), elements (M ·N =n+p):

X =

{

Xu
Xk

}

. (10)

Due to this division, the covariance matrix K (M ·N ×M ·N) and the mean values

vector m (M ·N×1) can be parted into the following blocks:

K =

[

K11 K12
K21 K22

]

, m =

{

mu
mk

}

. (11)

Then, the conditional covariance matrix Kc (n×n) and the conditional mean value

vector mc (n×1) are calculated from the conditional distribution [8]:

f (Xu|Xk)= (detKc)
−

1

2 ·(2π)
−

n
2 ·exp

(

−
1

2
(Xu−mc)

T
K−1c (Xu−mc)

)

(12)

and are equal to:

Kc=K11−K12K
−1

22
K21, (13)

mc=mu+K12K
−1

22
(Xk−mk). (14)

It can be proved that vector mc is the best approximation (in the mean-square sense)

of vector Xu of the unknown discrete field values.

In order to check the error of this prediction, let us generate realisations

of discrete spatiotemporal random fields in the acceptance-rejection approach (see

[5, 8, 11] for details). The known statistical formulae yield estimators of the mean

value m and the global covariance matrix K of the generated set of realisations, Xi:

m =
1

NR

NR
∑

i=1

Xi, (15)

K =
1

NR−1

NR
∑

i=1

(Xi−m)(Xi−m)
T
, (16)

where NR is the number of realisations in a set. Two types of errors can be used.

Global error, GE , is a useful measure of quality of the generation method and can be

expressed as:

GE =

∣

∣

∣

∣

‖K‖−‖K‖

‖K‖

∣

∣

∣

∣

·100%, (17)

where ‖K‖ and ‖K‖ are the Euclidean norms for the assumed (theoretical) and the

generated covariance matrix, respectively, and can be calculated as:

‖K‖=
√

tr(K 2)=

√

√

√

√

M ·N
∑

i,j=1

Kij , (18)

Local error, LE , is a measure of quality of the spatiotemporal prediction by the

conditional mean value, mci:

LE i=

∣

∣

∣

∣

Xi−mci
Xi

∣

∣

∣

∣

·100%, (19)

where i=1,2, .. . ,M for a fixed time t∈ [1,2, .. .,N ].
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5. Example of modelling of spatiotemporal

contamination field

In this study, an exemplary spatiotemporal random field is considered described

by a heavy metal (viz. chromium) concentration in the soil of northern Poland. Five

locations have been chosen for analysis. The data concerning chromium concentration

in the soil at these points are presented in Table 1. The mean values for all points

are used as the parameters to formulae (12)–(14) at time t1. The objective of the

analysis is to predict the soil contamination value at location no. 1 at time t2, if, for

example, t2− t1=1 year.

Table 1. Data concerning chromium concentration in the soil

Position Chromium concentration (ppm)

No. Place rx (km) ry (km) Lower

bound, a

Upper

bound, b

Mean

value, m

Standard

deviation, σ

1 Kościerzyna 10.00 10.00 9.6 26.2 17.9 1.66

2 Strzebielino 14.10 61.00 12.8 26.8 19.8 1.40

3 Rębiechowo 40.85 38.30 11.1 20.7 15.9 0.96

4 Wejherowo 26.45 63.10 13.7 30.7 22.2 1.70

5 Gdynia-Obłuże 43.60 57.60 9.3 26.1 17.7 1.68

Mean values: 11.3 26.1 18.7 1.48

The spatiotemporal covariance function defined by Equation (8) has been used

in the study. For the numerical simulation purposes, the acceptance-rejection method

has been employed (see [12]).

First, the values of chromium concentration at five locations at time t1 were

generated with the Gaussian distribution. Then, by treating them as known values

(Xki, i= 1,2, .. .,5), the chromium concentration value at location no. 1 at time t2
was generated (Xu). Subsequently, the conditional mean value, mc, was determined

from Equation (14). Finally, GE and LE errors were calculated using Equations (17)

and (19), respectively.

Examples of the generated field values and the calculated local errors, LE , for

the scale parameters of α=0.004 and β =0.693, obtained with the help of the least

squares error method, are shown in Table 2. The errors of the generated covariance

matrices are presented in Table 3 as global errors, GE , and global errors of variances

(calculated similarly to GE ).

6. Concluding remarks

In modelling contamination fields, the general theory of spatiotemporal random

fields can be restricted to specific classes of moment functions. In the present paper,

a practical example of soil contamination prediction in northern Poland has been

solved with the hypothesis of a space-time separable correlation structure. This

assumption, however, does not restrict the generality of the method. The results of the

study show that the considered method allow us to model conditional spatiotemporal

random fields of contamination with relatively small simulation errors.
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Table 2. Examples of generated field values

Xk1 18.1672 17.0747 19.4393 17.3650 19.4787 20.9898 17.8201 19.2872

Xk2 18.4993 20.3615 17.1380 15.6612 18.4270 19.6545 18.8928 17.9199

Xk3 16.7030 19.5609 18.0329 18.8318 18.9942 15.5204 18.7518 19.2100

Xk4 16.8197 18.2984 20.5802 21.7889 21.0538 17.1773 17.7755 17.6295

Xk5 20.1572 19.3130 20.0301 19.2404 18.7476 18.4905 17.9011 20.5769

Xu 18.9874 19.0985 18.3704 18.7669 18.6109 18.8965 18.2252 19.7605

mc 19.4287 19.0077 19.3637 18.9675 18.7233 18.5961 18.3008 19.6381

LE (%) 2.32 0.48 5.41 1.07 0.60 1.59 0.41 0.62

Mean error LE (%): 1.56

Table 3. Global errors with respect to the number of realisations (NR)

NR=500 NR=2000 NR=10000

Global error (%) 5.48 5.05 5.70

Global error of variances (%) 2.01 1.41 0.37

In the standard methods of random field simulation of various environmental

phenomena, stochastic estimation and simulation are considered as two separate

problems. In the presented modelling approach, simulation and estimation are treated

jointly, with computational advantages such as unified conditional methodology,

evaluation of errors and simple algorithms.
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