
TASK QUARTERLY 10 No 2, 125–138

EFFICIENT IMPLEMENTATION OF

A COMPACT-PSEUDOSPECTRAL METHOD

FOR TURBULENCE MODELING

ARTUR TYLISZCZAK

Institute of Thermal Machinery,

Czestochowa University of Technology,

Al. Armii Krajowej 21, 42-200 Czestochowa, Poland

atyl@imc.pcz.czest.pl

(Received 3 March 2006)

Abstract: The paper is devoted to parallel implementation of a compact discretization scheme

combined with the Fourier pseudospectral method. The idle time of processors resulting from the

method of computating derivatives using compact schemes is eliminated by proper ordering of

subtasks and by performing useful computations when processors are waiting for data from their

neighbors. The correctnes of the algorithm is confirmed by comparison of results of LES simulations

with DNS data for flow in a 3D channel with periodic non-slip wall boundary conditions.

Keywords: large eddy simulation, compact scheme, channel flow

1. Introduction

Although computers’ performance is continually enhanced, the modeling of

turbulent flows remains one of the most difficult tasks from the point of view of

computational costs. Using the classical approach based on the Reynolds-Averaged

Navier-Stokes (RANS) method, one may obtain a converged solution of a 2D or 3D

problem within a few hours or days, respectively. Obviously, this is only possible when

the numerical mesh used to discretize the computational domain is relatively coarse,

resulting in small numbers of grid nodes. However, there is no need to use very fine

meshes in the RANS approach as the final solution is much more dependent on the

dissipative nature of the closure model applied than by the numerical dissipation

due to the mesh size. In RANS simulations, the time evolution of the flow field is

either lost by definition (steady RANS) or considerably suppressed (unsteady RANS);

thus all small-scale spatial phenomena related to variations of the time flow field are

absent from the simulations and mesh refinement will not improve the solution’s

accuracy in capturing “more physics”. The only improvement achieved by mesh

refinment is in accuracy of the discretization method. This property of the RANS

approach results from the Reynolds-averaging assumption which is true only when

the averaging time is sufficiently long. In unsteady RANS simulations there is also no

tq210q-e/125 11I2007 BOP s.c., http://www.bop.com.pl



126 A. Tyliszczak

need for very small numerical time steps: by analogy to spatial discretization errors

they can only decrease errors resulting from time integration methods but not those

resulting from the RANS assumptions. Contrary to RANS modeling, Direct Numerical

Simulation (DNS) or Large Eddy Simulation (LES) allow to accurately predict the flow

evolution in time and small scale spatial phenomena related to flow fields varying in

time. Small-scale phenomena varying in time and space require accurate solutions.

Therefore, the numerical meshes applied in DNS or LES are considerably finer

compared to those used in RANS modeling. This leads to much longer computational

times needed to obtain the solution; even for simple flow cases, the statistically

converged solution using LES or DNS requires days or weeks of computations. At

this point the efficiency of the applied numerical algorithm and its implementation in

the numerical code become very important. In the LES or DNS method, the accuracy

of the solution is improved by applying high-order discretization methods reducing

the number of mesh points while preserving the accuracy of results. Although the use

of high-order discretization methods is very limited in complicated geometries, their

applications in simple domains allow us to analyze phenomena which require very

precise solutions. In this paper, a combination of the compact discretization method

[1] with the pseudospectral method [2] based on the Fourier series is used to solve the

Navier-Stokes equation in a 3D domain. These methods are characterized by very good

accuracy partly attributable wide computational stencil used to calculate derivatives.

Therefore, a parallel implementation of the compact and pseudospectral methods is

not trivial and it may happen that the parallel code will be less efficient than the serial

one. This may be due to the large amount of data which has to be sent to or received

from particular processors. When the ratio of the amount of data sent/received by

a given processor to the effective work (computations) performed by this processor is

high, the overall performance of the parallel code is reduced. This happens when the

calculation of particular quantities (e.g. a derivative) requires non-local information

– in our case this problem arises due to the wide computational stencil. This paper is

mainly devoted to parallel implementation of compact discretization methods where

calculation of derivatives requires solving a linear system of equations. In our case, the

system is three-diagonal and thus the computationally less expensive way to solve it

is to use the Thomas algorithm, sometimes referred to as the Three-Diagonal Matrix

Algorithm (TDMA). However, this algorithm is purely serial in nature and cannot be

parallelized effectively. The proposed method of parallelization is an attempt to use

the time when processors are waiting for the data from neighboring processors (idle

time) for useful work – intuitively, the simplest possible solution as long as there is

“useful work” which can be performed during idle time.

2. The governing equations

Although this paper is focused on the parallel efficiency of the numerical

code, the correctness of the obtained results had to be confirmed by comparison

with the available numerical and experimental data. The flow in a periodic channel

was chosen as a test case, but the proposed algorithm may be applied to many

other flow problems. The Fourier pseudospectral method was applied for periodic

directions (stream-wise and span-wise) while the compact scheme was used in the

tq210q-e/126 11I2007 BOP s.c., http://www.bop.com.pl



Efficient Implementation of a Compact-pseudospectral Method for Turbulence Modeling 127

wall-normal direction. The time integration was performed with the low-storage III

step Runge-Kutta method. The pressure field computed according to the projection

method with Neumann boundary conditions on the walls. The geometry of the flow

is shown in Figure 1. The dimensions of the channel are 4πh×2πh×2h stream-wise,

span-wise and in the wall-normal direction, respectively. The incompressible flow is

governed by the continuity equation and the Navier-Stokes equations, in context of

LES given as:
∂ūj
∂xj
=0, (1)

∂ūi
∂t
+
∂ūiūj
∂xj

=−
∂p̄

∂xi
+
∂

∂xj

(

(ν+νT )

(

∂ūi
∂xj
+
∂ūj
∂xi

))

+Fi. (2)

Variables ui and p are dimensionless velocity and pressure. Symbols ν and νT respec-

tively denote the kinematic and subgrid viscosities. The last term of Equation (2) is

a source term forcing the flow and plaing the role of a constant pressure gradient.

Figure 1. 3D schematic view of the computational domain

The results presented in this paper were obtained with the Smagorinsky model

[3] and the dynamic Germano model [4], which can be written as:

νT =(∆C)
2

√

2S̄ijS̄ij ∗D , (3)

where ∆= (∆x∆y∆z)1/3 is the LES filter width and C is the Smagorinsky constant

assumed equal 0.1 in the case of the Smagorinsky model, computed depending on

the flow according to the dynamic Germano procedure. Symbol Sij denotes the

deformation tensor of the filtered field,

S̄ij =
1

2

(

∂ūi
∂xj
+
∂ūj
∂xi

)

. (4)

The last term, D , in Equation (3) is a damping function defined similarly to the

van Driest damping formula:

D =

(

1−exp

(

y+

26

))n

, (5)

where y+=uτy/ν. The damping function is used only with the Smagorinsky model.

For n=1 the damping function is reduced to the van Driest formula. However, we ob-

tq210q-e/127 11I2007 BOP s.c., http://www.bop.com.pl



128 A. Tyliszczak

served that when computations are atarted from a randomly disturbed initial solution

with n=1 the flow became laminar. Therefore, in order to dampen subgrid viscosity

close to the walls more intensely, the computations were performed with n=2.

3. Discretization scheme

In case of the Fourier pseudospectral method, the calculation of a derivative

at a particular grid point may be performed either by Fast Fourier Transform (FFT)

or by matrix-vector multiplication [2]. The former requires information from all mesh

points along a given grid line and when the grid line is split between processors all

the necessary data have to be transferred between them. If parallel computations are

performed on clusters built from separate computers connected through a network,

sending and receiving so large amounts of data decreases the efficiency of the code

considerably. The situation is better when computations are performed on shared

memory parallel (SMP) computers, where all processors share the same physical

memory and there is no need to send or receive data via a network. However, due to

relatively high costs of such computers, the cluster architecture is the most popular

nowadays and, consequently, it has been assumed in the following that communication

between processors takes place via a network using Message Passing Interface (MPI)

libraries. Obviously, the code that using MPI may also be run on SMP computers.

When the derivatives are computed by matrix-vector multiplications, the

amount of data that has to be transferred between processors is reduced but still

each processor must communicate with all the remaining processors. The application

of the so-called collective communications (MPI REDUCE, MPI SCATTER) seems to

be the most efficient in such cases, rather than direct communication among particu-

lar processors. The overhead due to sending and receiving data is still relatively high,

but compared with computation of derivatives by FFT, parallel matrix-vector multi-

plication is more efficient as the ratio of transferred data to effective computations

is smaller in this case. However, we are mainly interested in the real time required

for computations and not in the above mentioned parallel efficiency. Therefore, it

is necessary to realize that the number of operations (multiplications, additions) for

matrix-vector multiplication increases considerably compared with the number of op-

erations performed during the FFT procedure: from O (N logN) in the case of FFT

to N2 for matrix-vector multiplication (where N is the number of nodes along a grid

line). This is the main reason of “increased” efficiency of the matrix-vector multipli-

cation method, which in fact leads to worse overall performance of the parallel code.

Therefore, in the proposed parallelization method, we do not divide the computa-

tional domain in directions where the pseudospectral method is applied; thus all data

needed to compute derivatives in those directions are directly available. Instead, we

divide the domain in the direction where the compact discretization method is applied.

A disadvantage of this approach is that each processor always sends/receives the same

number of data to its neighbors, while in the same time the amount of computations

on a given processor decreases in proportion to the total the number of processors

used in computations. However, judging from the author’s experience, this approach

is more efficient than parallelization of FFT on cluster-architecture computers.

tq210q-e/128 11I2007 BOP s.c., http://www.bop.com.pl



Efficient Implementation of a Compact-pseudospectral Method for Turbulence Modeling 129

In the case of compact schemes, there are also two approaches to compute

derivatives, both of them relying on solutions of linear systems of equations. In one

approach, we may compute matrix inversion and then solve the system of equations

by matrix-vector multiplication. The other approch benefits from the properties of

the resulting system of equations to be solved, viz. that this system is tridiagonal

or at most pentadiagonal and may thus be treated by efficient methods of linear

algebra. For example, the cost of solving tridiagonal systems using the Thomas

algorithm is very low (of the order of O (N)) and hence the most efficient. However, as

mentioned in previous section, this algorithm cannot be efficiently parallelized. In the

following considerations, the idea of the compact discretization method is presented

and parallelization issues are discussed.

3.1. The compact discretization scheme

A compact scheme for the first derivative is only presented, as an approximation

for the second derivative may be obtained by two consequtive applications of the first

derivative approximation. For a node i, the relation between the values of a function,

f , and its derivative, f ′, is defined [1] by linear combination of function f and f ′:

1

3
f ′i−1+f

′

i+
1

3
f ′i+1=

1

9

fi+2−fi−2
4∆x

+
14

9

fi+1−fi−1
2∆x

, (6)

where ∆x is the mesh size. The values of the coefficients have been obtained by

expanding function f and its derivative f ′ into a Taylor series around node i and

by matching various orders of these expansions. The presented scheme is formally

of sixth-order accuracy; readers interested in derivations of compact schemes are

refered to Lele’s seminar paper [1]. The formula of Equation (6) can be used for

inner nodes starting from node i=3 up to i=N−2, while approximations on i=1, 2

and i =N , N −1 require different treatment. The equations for derivatives at the

boundary nodes are given as:

f ′1+2f
′

2=
1

h

(

−

15

6
f1+2f2+

1

2
f3

)

,

f ′N +2f
′

N−1=
1

h

(

15

6
fN −2fN−1−

1

2
fN−2

)

,

(7)

while the equation for the second and the penultimate node is as follows:

f ′i−1+4f
′

i+f
′

i+1=3
fi+1−fi−1
h

. (8)

The values of derivatives are obtained by solving a linear system of equations given as:

Af ′=Bf (9)

where matrices A and B consist of the coefficients defined on the left- and right-hand

sides of Equations (6)–(8).

tq210q-e/129 11I2007 BOP s.c., http://www.bop.com.pl



130 A. Tyliszczak

3.2. Parallel implementation of the compact scheme

A tridiagonal system of equations presented above may be written as:

aif
′

i−1+bif
′

i+cif
′

i+1=RHSi, (10)

where coefficients ai, bi and ci correspond to coefficients of matrix A, and RHSi
represents the product of multiplication Bf . The first part of the Thomas algorithm

is factorization:

d1= b1, di= bi−ai
ci−1
di−1
, for i=2, .. . ,N. (11)

The remainder of the algorithm may be divided into two steps. One, called the forward

step, is defined as:

g1=
RHS1
d1
, gi=

RHSi−aigi−1
di

, for i=2, .. . ,N. (12)

The other, called backward substitution, is defined as:

f ′N = gN , f
′

i = gi−f
′

i+1

ci
di
, for i=N−1,. . .,1. (13)

Let us now assume that a single grid line which consist of N nodes is mapped onto

P processors, so that each processor has access to the values at i=1, .. . , N/P nodes.

There are no common or overlapping nodes shared by processors and thus each node

has a unique location in physical space. In parallel implementation of the Thomas

algorithm, coefficients ai, bi, ci, di and coefficients of matrix B are also mapped onto

P processors. The solution starts from computations of RHSki on every k
th processor.

According to formula (6), computation of RHSki requires data from nodes i−2, i−1,

i, i+1, i+2, which means that for the i=1 and i=N values at nodes i−2, i−1 and

i+1, i+2, respectively, are inaccessible for the kth processor. Similarly, for i=2 and

i=N −1 the values at i−2 and i+2 are “invisible” for a given processor. Except

for processor number 1, where values from i−2, i−1 are not required, and processor

number P , where values from i+1, i+2 are not necessary (see Equations (7) and

(8)), the data for the remaining processors for nodes i−2, i−1 and i+1, i+2 have to

be received from their neighbors. Therefore, each processor has the so-called dummy

nodes where it stores received data, i.e. the local numbering of nodes is i=−1, 0,

1, .. . , N/P N/P +1, N/P +2. RHSki can be computed when the values in nodes

i=−1, 0 and N/P +1, N/P +2 are received. The next step of the Thomas algorithm

is the forward step defined by Equation (12). This is a recurrence formula where

value gi is computed based on the value of gi−1. In a serial code, such procedure

does not decrease the efficiency of the algorithm, whereas in the case of parallel

computations starting from the left most processor (i.e. k=1) this procedure blocks

the computations on all the successive processors (i.e. k=2, k=3, etc.). For example,

let us consider a case when a domain (grid line) is mapped onto 3 processors:

1. processor 1 starts the forward step;

2. processor 2 will not start the forward step until the value of gN/P has been

computed at processor 1; when it has been computed at processor 1, it is sent

to processor 2 and which can start the forward step;

3 during this time, processor 3 waits until processors 1 and 2 have performed the

forward step.

tq210q-e/130 11I2007 BOP s.c., http://www.bop.com.pl



Efficient Implementation of a Compact-pseudospectral Method for Turbulence Modeling 131

It is obvious that the overall performance of the above procedure cannot be

higher than that of computations performed with a serial code. In this case, the only

benefit from parallelization is that RHSk has been computed on separate processors.

When the forward step has been completed at all processors then:

1. processor 3 starts the backward substitution step, which is also the recurrence

formula;

2. processor 2 will not start the backward step until the value of f ′1 has not been

computed at processor 3 (it starts the backward step when it has received f ′1
from processor 3);

3. processor 1 waits until processor 2 and 3 have performed the backward step.

Similar to the forward step, the efficiency of backward substitution is worse than

using a serial code. The time of processors’ waiting for data from their precursors or

successors is called idle time. In our simple case, it is possible to compute this time

directly as function of the forward and backward steps. We assume that the procedure

is finished when processor 1 has finished the backward step. We denote forward and

backward steps at particular processors as: FS on P1, FS on P2, BS on P1, BS on P2

and so on. Hence,

• processor 1: after sending gN/P to processor 2 waits FS on P2, FS on P3, BS

on P3 and BS on P2, resulting in two FS and two BS;

• processor 2: before starting the forward step waits FS on P1, before starting

the backward step waits FS on P3 and BS on P3, after that waits BS on P1,

resulting in two FS and two BS;

• processor 3: before starting the forward step waits FS on P1 and FS on P2,

after performing the forward and backward steps waits BS on P2 and BS on

P1, resulting in two FS and two BS.

The idle time is the same for all processors and equals the real time required to

perform two forward and two backward steps on N/3 number of nodes. If we add the

real time when the processors compute the forward and backward step, it becomes

clear that each processor effectively works only 1/3rd of the total time, the remaining

2/3rds being idle time. Hence, when the Thomas algorithm in the presented form is

mapped onto P processors, useful work is performed only during 1/P of the total

time required to finish forward and backward steps on all processors, the remaining

(P −1)/P of the total time being idle time. Fortunately, in CFD computations we

need to compute derivatives of different variables, for instance we need derivatives of

2 components of velocity. The simplest approch may be schematically presented as

the following succesive operations:

CALL TDMA RHS! to compute RHS u-component
CALL TDMA FORWARD! for u-component
CALL TDMA BACKWARD! for u-component

CALL TDMA RHS! to compute RHS v-component
CALL TDMA FORWARD! for v-component
CALL TDMA BACKWARD! for v-component

The calls to TDMA RHS, TDMA FORWARD and TDMA BACKWARD denote

particular steps of the Thomas algorithm described above. It is assumed that at

tq210q-e/131 11I2007 BOP s.c., http://www.bop.com.pl



132 A. Tyliszczak

the beginning of each call to TDMA FORWARD there is also a call to the MPI

subroutine to receive data (i.e. gN ) from processor k− 1 and that at the end of

each TDMA FORWARD there is a call to the MPI subroutine to send data (i.e. gN )

currently computed to processor k+1. By analogy, at the begining and at the end of

TDMA BACKWARD there are calls to the MPI to send and receive u′(1) and v′(1).

With the procedure presented above, the ratio of the idle time of each processor to

the time needed to compute 2 derivatives is exactly the same as previously in the case

of computing a derivative of a single variable and, hence, there is no benefit from the

presented approach.

Let us now rearrange the particular steps of this procedure to decrease idle

time. We would then have:

CALL TDMA RHS! to compute RHS u-component
CALL TDMA RHS! to compute RHS v-component

CALL TDMA FORWARD! for u-component
CALL TDMA FORWARD! for v-component

CALL TDMA BACKWARD! for u-component
CALL TDMA BACKWARD! for v-component

The only modification is that all steps, i.e. the computations of RHSk, forward

and backward steps, are executed separately. However, thus has crucial consequences

as the ratio of idle time of each processor is considerably reduced in comparison with

the previous procedure. Assuming that the domain is divided into three subdomains,

when all processors have computed RHSk, then:

1. processor 1 computes TDMA FORWARD for the u-component and sends gN (u)

to processor 2; then it computes forward steps for the v-component and sends

gN (v);

2. processor 2 is idle when processor 1 computes TDMA FORWARD for the

u-component; right after processor 2 has received gN (u), it starts to compute

the forward step; when it has finished, there is gN (v) already available from

processor 1, so there is no more idle time for processor 2 during the forward

step;

3. processor 3 waits until processor 2 completes the forward step for gN (u).

When processor 3 receives gN (u) from processor 2 it continues the forward step

for the u-component, after which gN (v) is already available as it was computed on

processor 2 when processor 3 computed the forward step for the u-component. So, as

processor 3 finishes the forward step for the v-component:

1. processor 3 starts to compute TDMA BACKWARD for the u-component; then

it sends u′1 to processor 2 and starts to compute TDMA BACKWARD for the

v-component;

2. processor 2 waits for u′1 from processor 3; then it computes TDMA BACKWARD

for the u-component and sends u′1 to processor 1; after that there is already

v′1 available from processor 3, so processor 2 may continue computations and

there is no more idle time for processor 2 during the backward step;

3. processor 1 waits until processor 2 has finished the backward step for the

u-component; there is no more idle time for processor 1 as the backward step for

tq210q-e/132 11I2007 BOP s.c., http://www.bop.com.pl



Efficient Implementation of a Compact-pseudospectral Method for Turbulence Modeling 133

the v-component is computed at processor 2 simultaneously with the backward

step for the u-component at processor 1.

If we add waiting time during forward and backward steps, we can see that

each processor waits two FS and two BS and hence the idle time while computing

two derivatives is the same as during computations of one derivative. The ratio of idle

time to the total time needed to compute derivatives of u and v components equals

twice 1/2. Extending this to P processors, we may show that the ratio of idle time to

the total time needed to compute D derivatives equals (P −1)/(P −1+D), whereas

the ratio of time of processors’ effective work to the total time equals D/(P −1+D).

This is considerable improvement compared with the computations of either a single

derivative or a sequence of derivatives. However, some idle time and we can try

to reduce it further. The simplest solution is to use processors to perform useful

work not related to backward and forward steps of the Thomas algorithm. In other

words, all computations which are not related to the derivatives in directions in

which the compact scheme is applied should be performed during idle time. In the

case of 2D or 3D flow problems it is not difficult to define such tasks: these could

be computations of derivatives in the remaining directions, explicit filtering of the

LES method, computations of subgrid viscosity (computationally very expensive with

some subgrid models), etc. Indeed, as the complexity of tasks unrelated to exchange

of data increases, the algorithm becomes more efficient. Ideally, the time needed to

perform these computations should exceed the idle time of every processor. However,

it must be noted that the ratio of these independent tasks to idle time decreases as the

number of processors increases. For example, let us assume a 3D domain discretized by

an M×K×N computational mesh and divide it in one direction into P subdomains

such that the mesh resulting in each of them consists of M ×K×N/P nodes. The

independent tasks in subdomains are directly proportional to the number of nodes,

while idle time is proportional to M×K(P −1)/(P −1+D). When the time needed

to perform the tasks exceds the idle time of the processors, one would expect that

they will perform computations continuously and the overall performance of the code

will be good. The proposed algorithm can be schematically presented for the kth

processor as follows:

CALL TDMA RHS! this is performed by processors
! in the same time for u,v,w,etc.

CALL MPI IPROBE! this is to check whether there are incoming
! data (i.e. g N) from preceding processor (k-1)

IF(MPI IPROBE return FALSE) THEN
! there are not data available yet so let us do useful work
! but check "from time to time" by MPI IPROBE whether there
! are incoming data; if they are then immediately stop
! these computations and go to the forward step (TDMA FORWARD)
...
...
...
END IF
!
receive g N from processor (k-1)

CALL TDMA FORWARD! for u,v,w,etc.
!

tq210q-e/133 11I2007 BOP s.c., http://www.bop.com.pl



134 A. Tyliszczak

send necessary data (i.e. q N) computed at current k-th!
processor to successive processor (k+1)

CALL MPI IPROBE! this is to check whether there are incoming
! data (i.e. f’ 1) from processor (k+1)

IF(MPI IPROBE return FALSE) THEN
! continue works which are independent of TDMA
! but check "from time to time" by MPI IPROBE whether there
! are incoming data; if they are then immediately stop
! these computations and go to the backward step (TDMA BACKWARD)
...
...
...
END IF
!
receive f’ 1 from processor (k+1)

CALL TDMA BACKWARD! for u,v,w,etc.
!
send f’ 1 computed at current k-th processor!
to processor (k-1) and then continue all remaining works!
if there are any left; at this point f’ is already available.

In the above procedure one may find calls to non-blocking MPI subroutine

MPI IPROBE, used to check whether there are incoming data from neighboring

processors. Compared with other MPI subroutines (e.g. MPI SEND, MPI RECV) or

the idle time of processors, calls to MPI IPROBE return very quickly, but they still

require some time. Therefore, the frequency of these calls should be minimized and is

in practice adjusted depending on the number of mesh points and subdomains.

It should be remembered that in a parallel CFD code it is not only derivatives

that require parallel communications. For example, solution of Poisson’s equations

in the projection method (parallel matrix multiplication), evaluation of the subgrid

viscosity near subdomain boundaries, convergence analysis, data saving, etc., all

require communication. However, from the algorithmic point of view there is little

hope to find “places” which could be modified (improved) for better performace.

In this work, attention has been paid to using effective MPI subroutines and so,

wherever possible, we applied the so-called non-blocking communication between

processors, which allows to post send/receive messages (MPI ISEND, MPI IRECV)

and subsequently perform other tasks with non-blocking messages being completed by

a call to MPI WAIT. The advantage of non-blocking communication over the blocking

one is that in the latter calls to blocking subroutines (MPI SEND, MPI RECV) will

not return until data are sent or received.

Additionally, as a majority of the sendings and receipts are performed repeat-

edly in a time integration loop, we have used the so-called persistent communication

pattern, which reduces the time needed to “agree” readiness for communication be-

tween processors. However, it must be stressed that neither non-blocking send/receive

nor persistent communications will reduce the time needed to transfer data and there-

fore one should never expect linear speed up, i.e. doubling the number of processors

will not increase the speed twice. Here, the measure of speed-up corresponds to the

ratio of time needed to perform computations on P processors to the time of com-

putations performed on 2P processors. In the following section we report speed-ups

obtained using P processors relative to computations on a single processor.

tq210q-e/134 11I2007 BOP s.c., http://www.bop.com.pl



Efficient Implementation of a Compact-pseudospectral Method for Turbulence Modeling 135

4. Results

The results presented in this work concern computations performed for flow in

a channel at a Reynolds number of Reτ =180. The meshes used in the computations

were 32×64×32 nodes respectively in the stream-wise, wall-normal and span-wise

directions, and 64× 128× 64 nodes. The domain was divided in the wall-normal

direction into 2, 4 and 8 subdomains. First, the results of code validation are presented,

followed by the efficiency of the parallel algorithm. The results presented in the

following comparison were obtained using 4 subdomains.

Figure 2. View of the numerical mesh 32×64×32 nodes

The computational meshes were refined near the walls by the tangent hyperbolic

function and adjusted so that there were 10 nodes from the wall to y+=10 and the

first node was located at y+< 1 (enlarged mesh close to the wall is shown in Figure 2,

top right). The computations were started with the mean velocity approximated by

analytical formula u+= y+ for y+= 0→ 10 and u+= 2.5 · ln(y+)+5 from y+= 10

to the channel’s axis. The non-dimensional mean stream-wise velocity resulting from

such initialization was around 15.5. The initial turbulent disturbances were imposed

randomly for stream-wise velocity at the level of 30%. After the initial stage, which

took approximately 10 non-dimensional time units, we started the averaging procedure

preformed over 20 time units (more than 20 flow-throughs). The profiles of mean

stream-wise velocity obtained in computations using 32×64×32 nodes are presented

in Figure 3, where the results of LES are compared with the DNS data [5]. The results

obtained with the Germano subgrid model are in very good agreement with those

from DNS, both in linear and logarithmic regions. Indeed, it is difficult to distinguish

between them and this is why enlarged parts of Figure 3 are presented in Figure 4.

The plots shown in this figure confirm previous observations. The results obtained

with the Smagorinsky model are also in acceptable agreement with the DNS data,

although in this case agreement is considerably worse.

The fluctuating components of stream-wise and normal velocities are shown

in Figure 5, and also here the results obtained with the Germano procedure are in

much better agreement with the DNS data than those obtained using the Smagorinsky

model. The disagreements of the data obtained with Smagorinsky model for the mean

and fluctuating velocity components are similar to these observed when applying

low-order discretization methods. In low-order methods, the high level of numerical

tq210q-e/135 11I2007 BOP s.c., http://www.bop.com.pl



136 A. Tyliszczak

Figure 3. Normalized stream-wise velocity across the channel from the wall to the channel’s axis

Figure 4. Normalized stream-wise velocity across the channel: enlargements

of the linear region (left) and the logarithmic layer (right)

Figure 5. Normalized stream-wise and wall-normal velocity fluctuations

dissipation play a role similar to that played in subgrid models. In our case, the

excess of dissipation caused by the Smagorinsky model is manifested in the same

way. Refining the mesh improves the accuracy of computations with the Smagorinsky

tq210q-e/136 11I2007 BOP s.c., http://www.bop.com.pl



Efficient Implementation of a Compact-pseudospectral Method for Turbulence Modeling 137

Table 1. Speed-up obtained for computations performed on P4×1

Method 1P 2P 4P 8P

No-optim. 1.00 (1.00) 1.28 (1.28) 1.44 (1.84) – –

Optimized 1.00 (1.00) 1.71 (1.71) 1.80 (3.07) – –

Table 2. Speed-up obtained for computations performed on P4×2

Method 1P 2P 4P 8P

No-optim. 1.00 (1.00) 1.42 (1.42) 1.56 (2.21) 1.40 (3.10)

Optimized 1.00 (1.00) 1.74 (1.74) 1.90 (3.31) 1.86 (6.14)

model considerably and agreement of the obtained results (not shown) with DNS

data is practically the same as for the Germano model. The presented results confirm

correctness of the numerical algorithm from the point of view of the discretization

method, subgrid modelling, time integration, etc., but also from the point of view

parallel implementation of the code. In order to test parallel efficiency, we performed

computations on two different PC clusters: one consisted of 4 nodes with two IA-64

Itanium 2 1.3GHz processors on each main board (results of which are denoted as

P4×2), the other – of 4 nodes with an Athlon 2.0GHz processor on each main board

(results denoted as P4×1). The results are reported in Tables 1 and 2 for the cases

when derivatives were computed successively, referred as No-optim., and according to

the proposed method, denoted as Optimized. In this case, we attempted to eliminate

idle time by performing computations of derivatives in the remaining directions, stress

tensor components and the subgrid viscosity: the procedure has increased efficiency by

about 5–7%, depending on the number of processors used. The presented comparisons

of the code’s efficiency concern computations performed with the Smagorinsky model.

Application of the Germano model was computationally more expensive, as this model

requires considerably more computations, but the speed-up was approximately the

same as per the Smagorinsky model. Hence, it can be assumed that the idle time was

eliminated and there was no more “free time” between forward and backward steps

to perform more computations.

The columns in Tables 1 and 2 show normalized speed-up when the number

of processors has been doubled and relative to computations on a single processor

(numbers in brackets). There is great difference between not optimized and optimized

computations for both clusters. When we compare computations using four processors

(4P ), the differences in speed-up relative to computations using one processor are

approximately 50% for both clusters. Better performance obtained on P4×2 (3.31

against 3.07) is due to a different type of the network connecting the computers. In the

case of computations on P4×2 with 2 or 4 processors, they were always selected from

different computers. Comparing computations of the not optimized and optimized

algorithm using eight processors (8P ) on P4×2, the difference is almost 100%. This

clearly shows the benefits resulting from proper ordering of parallel subtasks. It is

also interesting that worse speed-up considerably between computations on one and

two processors was obtained when doubling the number of processors. This is to

some extent in contradiction with previous considerations, where it was said that

upon increasing the number of processors the ratio of the number of computations

to the amount of sent/received data decreases and this negatively influences parallel

tq210q-e/137 11I2007 BOP s.c., http://www.bop.com.pl



138 A. Tyliszczak

performance. Obviously, the ratio is higher for two processors than for four. Therefore,

one should expect that seed-up between 2 processors → 1 processor will be greater

than between 4 processors → 2 processors. However, the presented tables suggest the

opposite conclusion. The reason for these discrepancies is that in parallel computations

data must be prepared to be sent (i.e. copied to a sending buffer) and recovered

(i.e. copied from a receiving buffer) and this consumes time. This is not the case in

one-processor computations where these operations are not executed and some of the

subroutines in the code are omitted. Therefore, while analyzing parallel efficiency, one

should perhaps make computations on two processors the basis of comparison. Then,

the relative speed-up decreases as one could expect: 1.90 on four processors and 1.86

on eight processors (see Table 2).

5. Conclusions

Technical issues of parallel implementation of the compact-pseudospectral

code used in computations of turbulent flows have been presented. Verification of

the algorithm, numerical discretization and correctness of implementation of the

Smagorinsky and Germano subgrid models has been confirmed by computations of

flow in a channel with periodic and non-slip boundary conditions. Thw proposed

algorithm of parallel implementation of the compact scheme has been shown to

reduce the idle time of processors and improve parallel performance considerably.

It has also been shown that a proper schedule of forward and backward steps of the

Thomas algorithm has considerable impact on idle time reduction. Additionally, code’s

efficiency can be increased by performing useful computations during the remaining

idle time of processors.

Acknowledgements

The Autor is grateful to Prof. Piotr Doerffer for strong motivation which was

helpful in preparing the presented work. Autor is also grateful to the TASK Computing

Center in Gdansk for granting access to the computing resources on their Holk PC

Cluster.

This work was performed as part of statutory research BS-1-103-301/2004/P

and EU WALLTURB Project No. AST4-CT-2005-516008.

References

[1] Lele S K 1992 J. Comp. Phys. 103 16

[2] Canuto C, Hussaini M Y, Quarteroni A and Zang T A 1988 Spectral Methods in Fluid

Dynamics, Springer-Verlag

[3] Smagorinsky J 1963 Month. Weather Rev. 91 99

[4] Germano M, Piomelli U, Moin P and Cabot W 1991 Physics of Fluids A 3 1760

[5] Moin P, Kim J and Moser R 1987 J. Fluid Mech. 177 133

tq210q-e/138 11I2007 BOP s.c., http://www.bop.com.pl


