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Abstract: We have calculated and discussed the probability density distributions of lengths of
fuzzy-end segments, i.e. segments the ends of which assume random positions. We performed our
calculations for several simple cases in 1, 2 and 3 dimensions: one end fixed, the other assuming
a random position, and both ends at random positions. The obtained statistical data may serve
as reference data for calculations of stochastic-geometrical properties of complex systems, such as
conformations of complicated bolted constructions with clearances (in structure mechanics) or energy
transfer processes between molecules in diluted systems (in physics).

Keywords: fuzzy-end segments, stochastic geometry

1. Introduction

Knowing the Cartesian coordinates of two points, one can readily calculate the
distance between them. The problem becomes non-trivial if the points’ coordinates
are known with an incertainity. Depending on the probability density of the points’
coordinates one obtains different probability densities, P (d), to find distance d
between the random points. It is not difficult to write general expressions for P (d),
but analytical calculations turn out to be rather camplicated even for the simplest
cases.

In the paper we calculate and discuss distributions of distances between the ends
of a fuzzy-end segment, i.e. a segment the ends of which assume random positions
around their ideal (unperturbed) locations. The probability densities of the ends’
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shifts have been assumed to be uniform within 1D, 2D and 3D spheres. In particular,
we consider in turn the following random displacements of the ends of a segment, say
AB, within:
– two segments situated along the segment itself, viz. along the x axis (1D case
described in Section 2),
– two co-planar circles in the 2D xy plane centred at points A and B, respectively
of radii rA and rB (2D case described in Section 3),
– two spheres in the 3D xyz space centred at points A and B, respectively of radii
rA and rB (3D case discussed in Section 4).
Whenever possible, the distance distributions are calculated analytically, oth-

erwise they are calculated numerically.
The 1D, 2D and 3D cases listed above are analysed in Sections 2-4. In Section 5

potential applications of the results are proposed and concluding remarks made.

2. The 1D case

Let us begin with a trivial 1D case and consider two situations: a segment with
one end fixed and the second at a random position (Subsection 2.1), and a segment
with both ends at random positions (Subsection 2.2).

2.1. Random position of one end

Let us assume that one end, A, of a segment remains fixed at x=0, while the
other, Brand, assumes random positions with a probability density ρB(x) in the interval
[L−r,L+r], r <L (L being the lenght of an “unperturbed” segment). Obviously, the
probability density of finding distance ABrand to be equal to d is:

P (d)= ρB(d)χ
[L−r,L+r]

(d), (1)

where χ
I
is the indicator function of set I. Let us note that the ρ∗B(x) = LρB(Lx)

function is also the probability density in the “normalized” interval, [1−r/L,1+r/L],
and thus we can proceed using one parameter only, r/L, viz. the relative perturbation
amplitude. The following scaling rules for central momenta can be easily obtained.
Let us indicate with d the average distance with respect to density P (d), and with d

∗

the average distance with respect to the corresponding density in the “normalized”
interval. We then have:

d=

L+r
∫

L−r

xρB(x)dx=L

1+r/L
∫

1−r/L

yρ∗B(y)dy=Ld
∗
. (2)

Similarly,

σ2=

L+r
∫

L−r

(x−d)2 ρB(x) dx=L2
1+r/L
∫

1−r/L

(y−d∗)2ρ∗B(y) dy=L2σ2
∗
, (3)

and then, as (x−d)/σ=(y−d∗)/σ∗ when x=Ly,

β=

L+r
∫

L−r

(

x−d
σ

)3

ρB(x) dx=

1+r/L
∫

1−r/L

(

y−d∗

σ∗

)3

ρ∗B(y) dy=β
∗, (4)
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K =

L+r
∫

L−r

(

x−d
σ

)4

ρB(x) dx=

1+r/L
∫

1−r/L

(

y−d∗

σ∗

)4

ρ∗B(y) dy=K
∗. (5)

Let us consider a uniform probability density ρB(x)= 1/2r of displacements of Brand
in interval [L−r,L+r] as a simple example. We obtain

d=L, σ= r/
√
3, β=0, K =9/5 (6)

or, using the relative perturbation amplitude, viz. the r/L ratio,

d
∗
=1, σ∗=

1√
3

r

L
, β∗=0, K∗=9/5. (7)

2.2. Random positions of both ends

Let us now consider a more complicated situation, where both ends of segment
AB can assume random positions along the segment itself, xA ∈ [−rA,rA], xB ∈
[L− rB,L+ rB], rA+ rB < L, with respective probability densities ρA(x) and ρB(x)
(assuming that rA≤ rB).

Let us fix xA. There is only one point in [L−rB,L+rB], xB=xA+d distanced
from xA by d. The probability density of finding distance d between xA and xB is:

P (d)=























































































0 for d<L−rA−rB,
rA
∫

L−rB−d

ρA(x) ρB(x+d) dx for L−rA−rB≤ d<L+rA−rB,

rA
∫

−rA

ρA(x) ρB(x+d) dx for L+rA−rB≤ d<L+rB−rA,

L+rB−d
∫

−rA

ρA(x) ρB(x+d) dx for L+rB−rA≤ d≤L+rA+rB,

0 for d>L+rA+rB.

(8)

ρ∗A(x) = LρA(Lx) is the probability density in the “normalized” interval [−rA/L,
rA/L] and ρ∗B(x) = LρB(Lx) is the probability density in the “normalized” interval
[1−rB/L,1+rB/L]. If we indicate with f∗(d) the corresponding probability density
of finding distance d between a point located in the normalized interval centred on the
origin and a point in the normalized interval centred on 1, it is easy to demonstrate
that Lf(Ld)= f∗(d), and then, like in the previous paragraph, we have

d=Ld
∗
, σ2=L2σ2

∗
, β=β∗, K =K∗. (9)

In a particular case of uniform probability densities of random positions within
the two intervals centred on 0 and 1, viz. ρA(x) = 1

2rA
χ
[−rA,rA]

(x) and ρB(x) =
1
2rB

χ
[L−rB,L+rB]

(x), one has:
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P (d)=P (d)=



















































0 for d<L−rA−rB,
rA+rB+d−L
4rArB

for L−rA−rB≤ d<L+rA−rB,
1
2rB

for L+rA−rB≤ d<L+rB−rA,
rA+rB+L−d
4rArB

for L+rB−rA≤ d≤L+rA+rB,

0 for d>L+rA+rB,

(10)

and

d=L, σ2=
r2A+r

2
B

3
, β=0, K =

9
5
+
12
5

(

rArB
r2A+r

2
B

)2

. (11)

The graph of (10) is a trapeze and then the probability density is not differentiable
in d at points L−rA−rB, L+rA−rB, L−rA+rB, L+rA+rB. The derivability of the
probability density at points L−rA−rB and L+rA+rB is generally obtained if ρA or
ρB(x) is 0 at these points, and the derivability at points L+rA−rB and L−rA+rB if
ρB(x) is derivable at any point of the [L−rB,L+rB] interval.

For rA= rB= r, the middle formula of (8) disappears and the graph of (10) is
triangular and symmetric with respect to d=L. Relations (11) are then simplified to:

d=L, σ=

√

2
3
r, β=0, K =

12
5

(12)

or, using normalized parameter r/L, to:

d
∗
=1, σ∗=

√

2
3

( r

L

)

, β∗=0, K∗=
12
5
. (13)

3. The 2D case

3.1. Random position of one end

Let us now consider a circle, C, of radius r and centre at (L,0), and a point A at
the origin (0,0) on a 2D plane (see Figure 1). Let us indicate with ρ(x,y) the density
of probability of finding a point, Prand, within circle C. The probability density of
finding point Prand in C at distance d from point A is:

P (d|A)=χ
[L−r,L+r]

(d) ·
yS
∫

−yS

d
√

d2−y2
ρ
(

√

d2−y2,y
)

dy , (14)

where yS is the ordinate of point S, given by

yS =

√

d2− (L
2−r2+d2)2
4L2

, (15)

and −yS is the ordinate of point s (see Figure 1).
Function ρ∗(x,y) = L2ρ(Lx,Ly) is the probability density in the normalized

circle C∗ of radius r/L centred at (1,0). If we indicate with P ∗(d|A) the corresponding
probability density of finding a point Prand within C∗ at distance d from A, then
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Figure 1. Point, A, at the origin of the axis and circle, C, of radius r, centred at point (L,0).
The solid line connecting points s and S represents the points of C at distance d from A

P ∗(d|A)=LP (Ld|A) and we obtain (9) again. In the case of a uniform distribution
on C, let

ξr(s,t)= 2s arcsin

(

√

(s2−(t−r)2)((t+r)2−s2)
2st

)

(16)

be the length of the arc being the intersection between a circle of radius r and the
circumference of a circle of radius s with a centre distant by t from the centre of C.
Then, the distances’ probability density is:

P (d)=P (d|A)=χ
[L−r,L+r]

(d)
2d
πr2
arcsin

(

√

((L+r)2−d2)(d2−(L−r)2)
2Ld

)

. (17)

Figure 2 shows the relative graphs for various values of r.

Figure 2. Probability densities P (d) (Equation (17)) for several values of r/L
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The central momenta, calculated numerically, obey the following empirical
relations:

d
∗
=1+0.125

( r

L

)2

, σ∗=
1
2
r

L
, β∗=−1

4
r

L
, K∗=2+0.165

( r

L

)2

(18)

or (see relations (9)):

d=L+
0.125
L

r2, σ=
1
2
r, β=−1

4
r

L
, K =2+0.165

( r

L

)2

. (19)

3.2. Random positions of both ends

Let us consider two circles, CA and CB, of radii rA and rB (rA≤ rB), respectively
centred at points A= (0,0) and B= (L,0), as shown in Figures 3 and 4. Let ρA(x,y)
and ρB(x,y) be the densities of probability of finding the segment’s ends in CA and
CB, respectively.

Figure 3. Two circles of different radii. The solid line connecting points s and S represents the
points of CB at distance d from the point of circle CA of coordinates (h,k)

The density of probability of finding a Prand in CB, distanced from the point
positioned at (h,k) in CA is expressed as follows:

P (d|(h,k))=χ
[
√
(L−h)2+k2−rB,

√
(L−h)2+k2+rB]

(d) ·
yS
∫

ys

ρB(h+
√

d2−(y−k)2,y) d
√

d2−(y−k)2
dy,

(20)

where ys and yS are the ordinates of s and S, which represent intersections between
the circumference of CB and of the circle centered in (h,k) and radius d (C(h,k) in
Figure 3). It is easy to obtain the expression for the density of probability to find two
Prand, one on CA and the other on CB, at distance d:

P (d)=
∫ ∫

Dd

P (d|(h,k))ρA(h,k) dh dk, (21)

where Dd:
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– for L−rA−rB ≤ d <L+rA−rB is the intersection between CA and the circle
of radius d, centered at (L−rB,0),
– for L+rA−rB≤ d<L−rA+rB coincides with CA,
– for L− rA + rB ≤ d ≤ L+ rA + rB is the intersection between CA and the
complementary of the circle of radius d, centered at (L+rB,0).

As in the previous section, ρ∗B(x,y)=L
2ρB(Lx,Ly) is the probability density in

the normalized circle C∗B of radius rB/L centred at (1,0) and ρ
∗
A(x,y)=L

2ρA(Lx,Ly)
is the probability density in the normalized circle C∗A of radius rA/L centred at (0,0).
Then P ∗(d|(h,k) = LP (Ld|(Lh,Lk)) and P ∗(d) = LP (Ld), so that relations (9) are
valid again.

If we assume that ρA and ρB are uniform, we can calculate P (d) in the following
way. Let us first fix point D= (h,0) on CA; all points of CB remaining at distance d
from D coincide with the intersection of circle CB with the circumference of the circle
of radius d centred in D (CD in Figure 4).

Figure 4. Two circles of different radii. The arc, intersection between circumference CD
of radius d and centre D and circle CB has the same length as the arc corresponding
to the circumference of radius d and centers D′, viz. CD′ . The same is true for all points
represented by the solid line of circumference C′B, of radius L−h centred at B

Then (see Equation (16)):

P (d|(h,0))=χ
H
(h,d)

ξrB(d,L−h)
πr2B

(22)

with

H ≡























(h,d) :











L−rB−d≤h≤ rA L−rA−rB≤ d<L+rA−rB
−rA≤h≤ rA L+rA−rB≤ d<L+rB−rA
−rA≤h≤L+rB−d L+rB−rA≤ d≤L+rA+rB
∅ otherwise























. (23)
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For every point D′ of the arc intersection between CA and the circumference
of C′B, there is a corresponding arc, of the same lengh as that corresponding to D, of
points on CB at distance d (see Figure 4). We then have:

P (d)=
1

π2r2Ar
2
B

rA
∫

−rA

χ
H
(h,d)ξrB(d,L−h)ξrA(L−h,L) dh. (24)

The integral in Equation (24) most problably cannot be calculated analytically or
approximated in any convenient way. The results of numerical integration (using the
Mathematica program [1]) for several values of rA = rB and L = 1, are shown in
Figure 5.

Figure 5. Probability densities (24) for several values of the r/L ratio

The following empirical relations concerning the central momenta are obeyed
with very good approximation:

d
∗
=1+

1
4

( r

L

)2

, σ∗=
1√
2

r

L
, β∗=−0.16 r

L
, K∗=2.5+

1
5

( r

L

)2

. (25)

4. The 3D case

4.1. Random position of one end

Let S be a sphere of radius r centred at (L,0,0) and let point A remain at the
origin (0,0,0) of a 3D space. Let us indicate with ρ(x,y,s) the density of probability
of finding a point, Prand, within S.

The density of probability of finding in S a point Prand at distance d from
point A is

P (d|A)=χ
[L−r,L+r]

(d) ·
∫ ∫

C

d
√

d2−s2−y2
ρ
(

√

d2−s2−y2,y,s
)

dy ds, (26)

where C is the circle centred (0,0) in the y,s coordinates and radius

r′=

√

d2− (d
2+L2−r2)2
4L2

. (27)
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Function ρ∗(x,y,s) = L3ρ(Lx,Ly,Ls) is the probability density in the normalized
sphere S∗ of radius r/L and centred at (1,0,0). If we indicate with P ∗(d|A) the
corresponding probability density of finding a point, Prand, within S∗ at distance d
from A, then P ∗(d|A)=LP (Ld|A) and relations (9) hold also in the present case.

The surface of the spherical bowl being the intersection between a sphere of
radius r and the surface of a sphere of radius w, distanced by d from the centres, is:

ψr(w,d)=
πw

d
(r2−(d−w)2). (28)

Thus, in the particular case of a uniform distribution on S, the probability density
for the distances is:

P (d)=P (d|A)=χ
[L−r,L+r]

(d)
3
4πr3

ψr(d,L)=χ
[L−r,L+r]

(d)
3d
4Lr3

(

r2−(L−d)2
)

.

(29)
We have shown the relative graphs for various values of r/L in Figure 6.

Figure 6. Probability densities according to Equation (29) for several values of the r/L ratio

The maximum of P (d|A) distribution is achieved at

dmax=
2+
√

1+3
(

r
L

)2

3
. (30)

The following exact formulae for central momenta can be obtained analytically:

d
∗
=1+

1
5

( r

L

)2

, (31)

σ∗=

√

1
5

( r

L

)2

−
(

1
5

( r

L

)2
)2

, (32)

β∗=
2r
7L

(

−15+7
(

r
L

)2
)

(

5−
(

r
L

)2
)3/2

, (33)
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K∗=
375−90

(

r
L

)2−21
(

r
L

)4

7
(

−5+
(

r
L

)2
)2 . (34)

4.2. Random positions of both ends

We now consider two spheres, SA and SB, of radii rA and rB (rA≤ rB) centred
at points A = (0,0,0) and B = (L,0,0), and let ρA(x,y,s) and ρB(x,y,s) be the
probabilities of finding a point Prand in SA and SB, respectively.

The density of probability of finding a point Prand in SB at distance d from
point (h,k,t) can be expressed as follows:

P (d|(h,k,t))=χ
[
√
(L−h)2+k2+t2−rB,

√
(L−h)2+k2+t2+rB]

(d) · (35)
∫ ∫

W

ρB(h+
√

d2−(y−k)2−(s− t)2,y,s) d
√

d2−(y−k)2−(s− t)2
dyds,

where W is the circle the circumference of which represents the extreme solutions of
intersections between SB and the sphere centred at (h,k,t) of radius d. Like in the 2D
case, it is easy to obtain the expression for the density of probability of finding two
Prand, one in SA and the other in SB, at distance d:

P (d)=
∫ ∫ ∫

Dz

P (d|(h,k,s))ρA(h,k,s) dh dk ds, (36)

where DZ:

– for L−rA−rB≤ d<L+rA−rB is the intersection between SA and the sphere
centred at (L−rB,0,0) of radius d,
– for L+rA−rB≤ d<L−rA+rB coincides with SA,
– for L− rA + rB ≤ d ≤ L+ rA + rB is the intersection between SA and the
complementary of the sphere centred at (L+rB,0,0) of radius d.

Like in the previous sections, ρ∗B(x,y,s) = L
3ρB(Lx,Ly,Ls) is the probability

density in the normalized sphere S∗B of radius rB/L and centred at (1,0,0), while
ρ∗A(x,y,s) =L

3ρA(Lx,Ly,Ls) is the probability density in the normalized sphere S∗A
of radius rA/L and centred at (0,0,0). Then P ∗(d|(h,k,t) =LP (Ld|(Lh,Lk,Lt)) and
P ∗(d)=LP (Ld), so that the scaling relations (9) remain valid.

If we assume, like in Section 3.2, that ρA and ρB are uniform, we can repeat
the same arguments where the arcs become spherical bowls. Then

P ((d)|(h,0,0))=χ
H
(h,d)

3
4(L−h)r3B

d (r2B−((L−h)−d)2) (37)

(see Equation (23)), and

P (d)=
3
4πr3A

3
4πr3B

rA
∫

−rA

χ
H
(h,d)ψrB(d,L−h)ψrA(L−h,L) dh. (38)
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We can calculate P (d) analitically and obtain:

P (d)=







































3d(s− t)3
(

20rArB−4s2+3st+ t2
)

160Lr3Ar
3
B

for L−rA−rB≤ d<L+rA−rB,

−3d
(

−4r2B−2rBs+s2+5t2
)

20Lr3B
for L+rA−rB≤ d<L−rA+rB,

3d(s+ t)3
(

20rArB−4s2−3st+ t2
)

160Lr3Ar
3
B

for L−rA+rB≤ d<L+rA+rB,

(39)

where s= rA+rB and t=L−d. The probability distributions given by Equations (39)
for several values of the r/L ratio are shown in Figure 7.

Figure 7. Probability densities, P (d), calculated with formulae (39)
for several values of the r/L ratio

The following exact results can be obtained analytically:

d
∗
=1+

1
5
s, (40)

σ∗=
1
5

√

(5−s)s, (41)

β∗=
14s3−30s2+60p
7(s(5−s))3/2 , (42)

K∗=
3
7
−7s4−30s3+125s2−80sp+100p

(s(5−s))2 , (43)

where s=
(

rA
L

)2
+
(

rB
L

)2
and p=

(

rA
L

)2( rB
L

)2
.

5. Possible applications and concluding remarks

In order to verify the correctness of the analytical and numerical results, all
the distributions of distances considered above have been calculated using the Monte
Carlo method. The Monte Carlo extracted distributions of distances obtained from 107

trials are smooth: the fluctuations amplitude does not exceed the line thickness in the

tq310i-e/301 11I2007 BOP s.c., http://www.bop.com.pl



302 S. Frigio et al.

plots of analytical results. The identity of our analytically calculated resultsand those
obtained with the Monte Carlo method suggests that our calculations are correct.

Basic statistical parameters, as defined in elementary descriptive statistics,
have been calculated for all the obtained distance distributions. In particular, the
arithmetic mean, d, standard deviation, σ, the Fischer asymmetry coefficient, β, and
the Pearson coefficient of curtosis, K, have been considered. The analytical results
for central momenta, simplified for rA = rB , are given in Table 1. The β parameter
assumes null value for symmetric distributions. The higher the absolute value of β,
the greater the degree of asymmetry. Positive and negative values of β respectively
correspond to distributions with right and left asymmetry. TheK parameter measures
the deviation of a given distribution from the normal distribution. For exactly normal
distributions one has K = 3. For 0<K < 3 the analyzed distribution is platicurtic,
i.e. flatter than the normal distribution, while it is leptocurtic for 3<K <∞, i.e.
more peaked than the normal distribution.

Table 1. Summary of the obtained analytical results: ρ= rL =
rA
L =

rB
L , f&r means one end fixed

and one at random position, r&r means both ends at random positions

1D 2D 3D

f&r r&r f&r r&r f&r r&r

d
∗

1 1 1+ 18ρ
2 1+ 14ρ

2 1+ 15ρ
2 1+ 25ρ

2

σ∗
√

1
3ρ

√

2
3ρ

1
2ρ

√

1
2ρ

1
5ρ
√

5−ρ2
√
2
5 ρ
√

5−2ρ2

β∗ 0 0 − 14ρ − 425ρ 2
7ρ
−15+7ρ2

(5−ρ2)3/2

√
2
7 ρ

−15+28ρ2

(5−2ρ2)3/2

K∗ 9
5

12
5 2+ .165ρ2 5

2 +
1
5ρ
2 3

7
125−30ρ2−7ρ4

(5−ρ2)2
6
7
75−50ρ2−14ρ4

(5−2ρ2)2

Fuzzy-end segment length distributions calculated in the present paper may find
applications in many various fields of applied and technical sciences, e.g. in analyzing
times of constant-speed propagation of signals when emitters and/or receivers occupy
random positions. End-to-end distributions are also of interest in macromolecular
physics, see for instance [2–6]. However, perhaps the most straightforward application
is in mechanics, in the analysis of slackened skeletal structures. Mathematical models
of building structures make allowance for more and more imperfections occurring in
real structures. The presence of gaps (clearances) in structural bolted connections is
another structural imperfection recently taken under consideration. The problem is
not entirely new, but few works are known to deal with the problem of slackened
systems. An important contribution in this research area has been that of Andrzej
Gawęcki [7–9], who published several works concerning elasto-plastic structures
slackened with intentionally created gaps at joints. The presence of clearances at
connections may induce geometric instability of the system. Under loading, relative
motion occurs between the structural and connecting elements of the slackened
structure. But after important geometry changes, the structure becomes kinematically
stable. The description of changes between the “ideal” and “real” structures poses a
real problem. They depend on many reasons: the number of connections in a structure,
the type of bolted connections (shear or tension connection), dimensional tolerances
of structural elements and the loading history. A general description of variation
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displacements is necessary to describe virtual motion of the connecting elements. The
known solutions of the problem concern only lap joints (shear connection) with a
possible displacement of bolts in drilled holes in the longitudinal direction. However,
in reality elements may move in any direction. Therefore, a probabilistic attitude to
the problem, as that discussed in the present work, may be very helpful.
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Appendix

Let us first list the needed integrals:
∫

1√
r2− t2

dt=arcsin(t/r),

∫

t2√
r2− t2

dt=
1
2

(

−t
√

r2− t2+r2arcsin
(

t

r

))

,

∫

t4√
r2− t2

dt= r4
∫

sin4y dy =
r4

8

(

−2cosy(sin3y+ 3
2
siny)+3y

)

(t= rsiny),

and thus the corresponding definite integrals will be:

S0≡
+r
∫

−r

1√
r2− t2

dt=π, S2≡
+r
∫

−r

t2√
r2− t2

dt=π
r2

2
, S4≡

+r
∫

−r

t4√
r2− t2

dt=
3
8
πr4.

Please note that

S2n−1≡
+r
∫

−r

t2n−1√
r2− t2

dt=0 ∀n∈N.

The following integrals can be calculated using the zt=1−2z substitution:
∫

1

(t+2)
√
r2− t2

dt=−
∫

1
√

−1+4z+(−4+r2) z2
dz

=(4−r2)− 12 arcsin
(

2+
(

−4+r2
)

z

r

)

,

∫

1

(t+2)2
√
r2− t2

dt=−
∫

z
√

−1+4z+(−4+r2) z2
dz=

=
(

4−r2
)−1√−1+4z+(−4+r2) z2+

(

4−r2
)− 3

2 2 arcsin

(

2+
(

−4+r2
)

z

r

)

,

∫

1

(t+2)3
√
r2− t2

dt=−
∫

z2
√

−1+4z+(−4+r2) z2
dz

=(4−r2)−2 1
2

(

6−
(

−4+r2
)

z
)
√

−1+4z+(−4+r2) z2+

(4−r2)− 52 1
2

(

8+r2
)

arcsin

(

2+
(

−4+r2
)

z

r

)

,
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so that the corresponding definite integrals are as follows:

I1≡
+r
∫

−r

1

(t+2)
√
r2− t2

dt=−

1
2+r
∫

1
2−r

1
√

−1+4z+(−4+r2) z2
dz=

π√
4−r2

=
π

2
+r2

π

16
+r4
3π
256
+r6

5π
2048
+O(r8),

I2≡
+r
∫

−r

1

(t+2)2
√
r2− t2

dt=−

1
2+r
∫

1
2−r

z
√

−1+4z+(−4+r2) z2
dz=

2π

(4−r2) 32

=
π

4
+r2
3π
32
+r4
15π
512
+O(r6),

I3≡
r
∫

−r

1

(t+2)3
√
r2− t2

dt=−

1
2+r
∫

1
2−r

z2
√

−1+4z+(−4+r2) z2
dz=

π
(

8+r2
)

2(4−r2) 52

=
π

8
+r2
3π
32
+r4
45π
1024
+O(r6).

Let us now consider the probability density,

fr(z)=

{

2
πr2 zarcsin

√

1− (1−r2+z2)24z2 1−r≤ z≤ 1+r,
0 elsewhere,

(A1)

and the following momenta:

M1(r)≡Er (ξ−1)=
∞
∫

−∞

(z−1)fr(z)dz=
2
πr2

1+r
∫

1−r

(z−1)zarcsin
√

1− (1−r
2+z2)2

4z2
dz,

M2(r)≡Er (ξ−1)2=
∞
∫

−∞

(z−1)2fr(z)dz=
2
πr2

1+r
∫

1−r

(z−1)2zarcsin
√

1− (1−r
2+z2)2

4z2
dz,

M3(r)≡Er (ξ−1)3=
∞
∫

−∞

(z−1)3fr(z)dz=
2
πr2

1+r
∫

1−r

(z−1)3zarcsin
√

1− (1−r
2+z2)2

4z2
dz,

M4(r)≡Er (ξ−1)4=
∞
∫

−∞

(z−1)4fr(z)dz=
2
πr2

1+r
∫

1−r

(z−1)4zarcsin
√

1− (1−r
2+z2)2

4z2
dz.

All of the above momenta can be expressed using:

gn(r)≡
1+r
∫

1−r

(z−1)nzarcsin
√

1− (1−r
2+z2)2

4z2
dz n=1,2,3,4.

In order to calculate them asymptotically for small r we may consider that gn(0)= 0
and write
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gn(r)=

r
∫

0

g′n(t)dt,g
′
n(r)= 2r

1+r
∫

1−r

z(z−1)n
√

(1+r−z)(1−r+z)(−1+r+z)(1+r+z)
dz

=2r

1+r
∫

1−r

z(z−1)n
√

(r2−(z−1)2)((z+1)2−r2)
dz=2r

r
∫

−r

(t+1)tn
√

(r2− t2)
1

√

(t+2)2−r2
dt.

Before considering the asymptotic behaviour of g′n(r) we note that for −r≤ t≤ r,
1

√

(t+2)2−r2
=
1

t+2
+
r2

2
1

(t+2)3
+O(r4) |O(r4)|<r4,

∣

∣

∣

∣

∣

∣

+r
∫

−r

(t+1)tn√
r2− t2

O(r4)dt

∣

∣

∣

∣

∣

∣

≤ r4
+r
∫

−r

∣

∣

∣

∣

(t+1)tn√
r2− t2

∣

∣

∣

∣

dt≤ r4+n4
r
∫

0

1√
r2− t2

dt= r4+n4
1
2
S0

=O(r4+n).

For g′1(r) we have:

g′1(r)= 2r





+r
∫

−r

(t+1)t√
r2− t2(t+2)

dt+
r2

2

+r
∫

−r

(t+1)t√
r2− t2(t+2)3

dt+

+r
∫

−r

(t+1)t√
r2− t2

O(r4)dt



.

Since (t+1)t=(t+2)2−3(t+2)+2,

g′1(r)= 2r

+r
∫

−r

(t+2)2−3(t+2)+2√
r2− t2(t+2)

dt+r3
+r
∫

−r

(t+2)2−3(t+2)+2√
r2− t2(t+2)3

dt+O(r6)

= 2r





+r
∫

−r

t√
r2− t2

dt−
+r
∫

−r

1√
r2− t2

dt+2

+r
∫

−r

1√
r2− t2(t+2)

dt



+

r3





+r
∫

−r

1√
r2− t2(t+2)

dt−3
+r
∫

−r

1√
r2− t2(t+2)2

dt+2

+r
∫

−r

1√
r2− t2(t+2)3

dt



+

O(r6),

and finally

g′1(r)= 2r(S1−S0+2I1)+r3 (I1−3I2+2I3)+O(r6)=

=2r
(

−π+π+r2π
8
+r4π

3
128
+O(r6)

)

+r3
(

π

2
+r2

π

16
+O(r4)−3π

4
−r2 9π
32
+

O(r4)+
π

4
+r2
3π
16
+O(r4)

)

+O(r6)

= r3π
(

1
4
+
1
2
− 3
4
+
1
4

)

+r5π
(

3
64
+
1
16
− 9
32
+
3
16

)

+O(r6)

= r3
π

4
+r5

π

64
+O(r6).
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For g′2(r) we have:

g′2(r)= 2r





+r
∫

−r

(t+1)t2√
r2− t2(t+2)

dt+
r2

2

+r
∫

−r

(t+1)t2√
r2− t2(t+2)3

dt+

+r
∫

−r

(t+1)t2√
r2− t2

O(r4)dt



.

Since (t+1)t2=(t+2)3−5(t+2)2+8(t+2)−4

g′2(r)= 2r

+r
∫

−r

(t+2)3−5(t+2)2+8(t+2)−4√
r2− t2(t+2)

dt+

r3
+r
∫

−r

(t+2)3−5(t+2)2+8(t+2)−4√
r2− t2(t+2)3

dt+O(r7)

= 2r





+r
∫

−r

t2√
r2− t2

dt

+r
∫

−r

t√
r2− t2

dt+2

+r
∫

−r

1√
r2− t2

dt−4
+r
∫

−r

1√
r2− t2(t+2)

dt



+

r3





+r
∫

−r

1√
r2− t2

dt−5
+r
∫

−r

1√
r2− t2(t+2)

dt+8

+r
∫

−r

1√
r2− t2(t+2)2

dt−

4

+r
∫

−r

1√
r2− t2(t+2)3

dt



+O(r7),

and thus

g′2(r)= 2r(S2−S1+2S0−4I1)+r3 (S0−5I1+8I2−4I3)+O(r7)

= 2r
(

π
r2

2
+2π−2π−r2π

4
−r4π 3

64
+O(r6)

)

+

r3
(

π−π 5
2
−r2π 5

16
+O(r4)+2π+r2π

3
4
+O(r4)− π

2
−r2π 3

8
+O(r4)

)

+O(r7)

= r3π
(

1− 1
2
+1− 5

2
+2− 1

2

)

+r5π
(

− 3
32
− 5
16
+
3
4
− 3
8

)

+O(r7)

r3
π

2
−r5 π
32
+O(r7)

Similarly, for g′3(r) we have:

g′3(r)= 2r





+r
∫

−r

(t+1)t3√
r2− t2(t+2)

dt+
r2

2

+r
∫

−r

(t+1)t3√
r2− t2(t+2)3

dt+

+r
∫

−r

(t+1)t3√
r2− t2

O(r4)dt



.

Since (t+1)t3=(t+2)4−7(t+2)3+18(t+2)2−20(t+2)+8,

g′3(r)= 2r

+r
∫

−r

(t+2)4−7(t+2)3+18(t+2)2−20(t+2)+8√
r2− t2(t+2)

dt+

r3
+r
∫

−r

(t+2)4−7(t+2)3+18(t+2)2−20(t+2)+8√
r2− t2(t+2)3

dt+O(r8)
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=2r





+r
∫

−r

t3√
r2− t2

dt−
+r
∫

−r

t2√
r2− t2

dt+2

+r
∫

−r

t√
r2− t2

dt−4
+r
∫

−r

1√
r2− t2

dt+

8

+r
∫

−r

1√
r2− t2(t+2)

dt



+r3





+r
∫

−r

t√
r2− t2

dt−5
+r
∫

−r

1√
r2− t2

dt+

18

+r
∫

−r

1√
r2− t2(t+2)

dt−20
+r
∫

−r

1√
r2− t2(t+2)2

dt+8

+r
∫

−r

1√
r2− t2(t+2)3

dt



+

O(r8)
and

g′3(r)= 2r(S3−S2+2S1−4S0+8I1)+r3 (S1−5S0+18I1−20I2+8I3)+O(r8)

= 2r
(

−r2π
2
−4π+4π+r2π

2
+r4
3π
32
+O(r6))

)

+

r3
(

−5π+9π+r2π 9
8
+O(r4)−5π−r2π 15

8
+O(r4)+π+r2π

3
4
+O(r4)

)

+O(r8)

= r3π (−1+1−5+9−5+1)+r5π
(

3
16
+
9
8
− 15
8
+
3
4

)

+O(r8)= r5π
3
16
+O(r7).

Finally, for g′4(r) we have:

g′4(r)= 2r





+r
∫

−r

(t+1)t4√
r2− t2(t+2)

dt+
r2

2

+r
∫

−r

(t+1)t4√
r2− t2(t+2)3

dt+

+r
∫

−r

(t+1)t4√
r2− t2

O(r4)dt



.

Here, since (t+1)t4=(t+2)5−9(t+2)4+32(t+2)3−56(t+2)2+48(t+2)−16,

g′4(r)= 2r

+r
∫

−r

(t+2)5−9(t+2)4+32(t+2)3−56(t+2)2+48(t+2)−16√
r2− t2(t+2)

dt+

r3
+r
∫

−r

(t+2)5−9(t+2)4+32(t+2)3−56(t+2)2+48(t+2)−16√
r2− t2(t+2)3

dt+O(r9)

= 2r





+r
∫

−r

t4√
r2− t2

dt−
+r
∫

−r

t3√
r2− t2

dt+2

+r
∫

−r

t2√
r2− t2

dt−4
+r
∫

−r

t√
r2− t2

dt+

8

+r
∫

−r

1√
r2− t2

dt−16
+r
∫

−r

1√
r2− t2(t+2)

dt



+

r3





+r
∫

−r

t2√
r2− t2

dt−5
+r
∫

−r

t√
r2− t2

dt+18

+r
∫

−r

1√
r2− t2

dt+
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56

+r
∫

−r

1√
r2− t2(t+2)

dt+48

+r
∫

−r

1√
r2− t2(t+2)2

dt−16
+r
∫

−r

1√
r2− t2(t+2)3

dt



+

O(r9)
and

g′4(r)= 2r(S4−S3+2S2−4S1+8S0−16I1)+r3 (S2−5S1+18S0−
56I1+48I2−16I3)+O(r9)

= 2r
(

r4π
3
8
+r2π+8π−8π−r2π−r4π 3

16
−r6π 5

128
+O(r8)

)

+

r3
(

r2
π

2
+18π−28π−r2π 7

2
−r4π 21

32
+O(r6)+

12π+r2π
9
2
+r4π

45
32
+O(r6)−2π−r2π 3

2
−r4π 45

64
+O(r6)

)

+O(r9)

= r3π (2−2+18−28+12−2)+r5π
(

3
4
− 3
8
+
1
2
− 7
2
+
9
2
− 3
2

)

+

r7π

(

− 5
64
− 21
32
+
45
32
− 45
64

)

+O(r9)

= r5π
3
8
−r7π 1

32
+O(r9).

Taking into account the above results, we have:

g1(r)=

r
∫

0

g′1(t)dt= r
4 π

16
+r6

π

384
+O(r7),

g2(r)=

r
∫

0

g′2(t)dt= r
4π

8
−r6 π

192
+O(r8),

g3(r)=

r
∫

0

g′3(t)dt= r
6 π

32
+O(r8),

g4(r)=

r
∫

0

g′4(t)dt= r
6 π

16
−r8π 1

256
+O(r10),

and
M1(r)=

2
πr2

g1(r)= r2
1
8
+r4

1
192
+O(r5),

M2(r)=
2
πr2

g2(r)= r2
1
4
−r4 1
96
+O(r6),

M3(r)=
2
πr2

g3(r)= r4
1
16
+O(r6),

M4(r)=
2
πr2

g4(r)= r4
1
8
−r6 1
128
+O(r8).

The mean value of probability density distribution is thus:

µ(r)≡Er(ξ)=M1(r)+1=1+r2
1
8
+O(r4),
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the variance is:

σ2(r)≡Er(ξ−1−M1(r))2=M2(r)−M21 (r)= r2
1
4
−r4 5
192
+O(r6),

so that
σ= r

1
2
+O(r3),

the skewness parameter is:

β(r)≡Er
(

ξ−1−M1(r)
σ

)3

=
1
σ3
(

Er(ξ−1)3−3M1(r)Er(ξ−1)2+3M21 (r)Er(ξ−1)−M31 (r)
)

=
1
σ3
(

M3(r)−3M1(r)M2(r)+2M31 (r)
)

=
r4 116+O(r

6)−r4 332+O(r6)+r6 1256+O(r8)
r3 18+O(r

5)

=
−r4 132+O(r6)
r3 18+O(r

5)
=−r1

4
+O(r3),

and the Pearson coefficient is:

K(r)≡Er
(

ξ−1−M1(r)
σ

)4

=
1
σ4
(

Er(ξ−1)4−4Er(ξ−1)3M1(r)+6M21 (r)Er(ξ−1)2 −

4M31 (r)Er(ξ−1)+M41 (r)
)

=
1
σ4
(

M4(r)−4M3(r)M1(r)+6M21 (r)M2(r)−3M41 (r)
)

=
r4 18−r6 1128+O(r8)−r6 132+O(r8)+r6 3128+O(r8)−r8 3642 +O(r10)

r4 116−r6 5384+O(r8)

=
r4 18−r6 164+O(r8)
r4 116−r6 5384+O(r8)

=
2−r2 14+O(r4)
1−r2 524+O(r4)

=
2
(

1−r2 524+O(r4)
)

+r2 512−r2 14+O(r4)
1−r2 524+O(r4)

= 2+r2
1
6
+O(r4).
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