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Abstract: The work’s aim has been to verify the suitability of commercial engineering software

for geometrically non-linear analysis of shell structures. The paper deals with static, geometrically

non-linear analysis of shells made of isotropic materials. The Finite Element Method (FEM) has been

chosen to solve the problem. The results of the ROBOBAT Robot Millennium v. 19.0 and MSC.Marc

v. 2005r2 commercial software are compared with the literature results.
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1. Introduction

The Finite Element Method (FEM) is an approximate method. Before detailed

numerical calculations of the structure are performed, it is necessary to assume

a proper division of construction of finite elements. Additionally, we have to be sure

that the applied type of finite element is error-free. One of the most common problems

in the description of finite elements is locking. A number of concepts have been

developed to define and explain this effect. The term reflects a graphical perception

that the structure locks itself against deformations. Thus, locking means the effect of

a reduced rate of convergence with reference to the critical parameter. Infinite growth

of the parameter may even make its convergence tend to zero.

2. Locking effects

It is possible to specify three types of locking: membrane, shear and volumetric

locking. It is worth pointing out that locking effects are of numerical background;

they are usually connected with a low interpolation rule of the Lagrange type (see

e.g. Chróścielewski et al. [1]). Volumetric locking is related to Poisson’s ratio, ν, and

so sometimes referred to as Poisson locking. The nature of the volumetric locking is

simple to explain if the bulk modulus is taken as the critical parameter:

κ=
E

3−6 ·ν
. (1)
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240 A. Ambroziak

We can see that this effect occurs only in the incompressible case, for ν=0.5, because

lim
ν→0.5

κ=∞. (2)

Thus the Poisson ratio of ν=0 gives no volumetric locking. The effect becomes more

pronounced when ν=0.5.

Various approaches have been developed to avoid volumetric locking. Nagte-

gaal et al. [2] used special crossed patch arrangements of linear triangular elements.

Hughes [3] proposed applying the B-bar approach to linear quadrilateral elements.

Simo and Rifai [4] applied the enhanced assumed strain approach. Rong and Lu [5]

described generalized mixed variation principles to solve ill-conditioned problems in

computational mechanics. Wells et al. [6] proposed a p-adaptive scheme to prevent

volumetric locking in low-order elements. Additionally, the selective reduced integra-

tion method (see e.g. Naylor [7], Malkus and Hughes [8]), the penalty method (see

e.g. Jankovich et al. [9], Oden and Kikuchi [10]) and mixed formulation methods (see

e.g. Taylor et al. [11], Argyris et al. [12], Simo et al. [13], Canga and Becker [14]) have

been used to counteract volumetric locking.

Plate and shell elements of shear-deformable beams are subjected to transverse

shear locking. This kind of locking occurs in three-dimensional solid elements and can

be observed in modelling of thin-walled structures. Transverse shear locking is one of

the most important locking effects (see e.g. Belytschko and Bachrach [15], Koh and

Kikuchi [16]), it slows down the rate of convergence and essentially precludes analysis

in practical applications with a reasonable amount of numerical effort. As the error

oscillates within an element, simple smoothing often helps to significantly improve

the stresses.

In the early 1970’s, reduced and selective reduced integration techniques were

proposed and investigated in order to prevent the shear locking problem (see e.g.

Zienkiewicz et al. [17], Pawsey and Clough [18] and Hughes et al. [19]). Alternative

techniques followed: Stolarski and Chiang [20] and Simo and Rifai [4] applied enhanced

assumed strain methods, Pinsky and Jasti [21] and Franca and Farhat [22] used bubble

function methods, while Bathe and Dvorkin [23] and Belytschko et al. [24] applied

hybrid-mixed methods.

A quadrature rule for an eight-node solid finite element was presented by Olovs-

son et al. [25]. The proposed method of averaging shear strains resulted in a reduction

of locking effects eliminating them completely in the analysis of rectangular elements.

It is worth pointing out that no zero-energy modes occurred in the proposed formula-

tion. Ozkul and Ture [26] presented two simple plate-bending elements based on the

Mindlin theory to analyse both moderately thick and thin plates. In order to test shear

locking, the results obtained from the Mindlin plate analysis using four- or eight-node

elements with full, reduced and selectively reduced integration were compared with

the exact classical thin plate solution. Vermeulen and Heppler [27] explained the

notion of shear locking in general terms, applying the B-spline field approximation

method to two forms of the Timoshenko beam model. Rong and Lu [28] applied the

generalized mixed variation principles to shear locking of the Reissner plate theory

and the Timoshenko beam theory. Laulusa and Reddy [29] developed a displacement

beam finite element model based on non-linear kinematics of a pre-twisted composite
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beam. The author used a reduced and selective integration technique to prevent the

shear and extensional locking. Chróścielewski et al. [30] proposed a 4-node C0 shell

element with the drilling degree of freedom. In order to avoid the locking phenomena,

the assumed natural strain technique and the enhanced assumed strain technique were

proposed for shear locking and membrane locking, respectively.

Membrane locking occurs in curved beam and shell elements. The term „mem-

brane locking” denotes a stiffening effect that occurs when pure bending deformations

(the so-called inextensional bending) are accompanied by parasitic membrane stresses.

It is sometimes misused with reference to shear locking and volumetric locking as these

affect the membrane part of shell elements.

Shell elements, especially considering nine-node quadrilaterals, which are free

from membrane locking, have been developed successfully on the basis of the assumed

natural strain method (see e.g. MacNeal [31], Park and Stanley [32]). The enhanced

assumed strain method is often used in the case of bilinear elements to improve

the membrane part of shell elements (see e.g. Simo and Rifai [4], Braess [33] and

Witkowski [34]). Koschnick et al. [35] focused on the application of the discrete

strain gap method to the problem of membrane locking in finite beam and shell

elements. Choi et al. [36] investigated the membrane locking problem in finite

element computations of thin shells. A refined triangular plate element non-linear was

developed for geometric non-linear analysis by Jufen and Wanji [37]. The membrane

locking phenomena were considered in their paper by introducing a special element

displacement function into the geometric stiffness matrix. In the context of beam

elements, shear locking and membrane locking were explained by Yunhua [38] in

the framework of the field consistence approach. Hakula et al. [39] demonstrated

some typical characteristics of linear shell problems (scale resolution and locking)

and presented, both theoretically and experimentally, the benefits of higher-order

finite elements in shell problems. Choi and Lee [40] presented an efficient scheme to

remove membrane locking of 4-node quadrilateral flat shell elements using various

non-conforming modes. Witkowski [34] developed a family of finite elements within

the framework of a non-linear 6-parameter shell theory, studied in the context of

locking phenomena.

3. The programs

A geometrically non-linear finite element analysis has been performed. The

MSC.Marc system and the Robot Millennium program were applied in the numerical

calculations.

The MSC.Marc is a non-linear finite element program. The system’s great

advantage is the possibility of introducing a large number of open, user-modifiable

subroutines. [41], [42] and [43] are examples of the use of UVSCPL subroutines to

implement the elasto-viscoplastic Chaboche and Bodner-Partom models into the

MSC.Marc system. At the present stage of research only standard procedures were

used.

The ROBOBAT Robot Millennium system (RM) is a computer program inte-

grated with the graphical environment designed for modelling, analysis and dimen-
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Figure 1. Initial geometry and boundary conditions for cantilever subjected to end shear force

Figure 2. Load-displecement curves for the cantilever subjected to end shear force

sioning of various structures. National versions of this software are elaborated in

several countries including national standards.

Geometrically non-linear analysis with the options of small strains and linear

isotropic elastic model has been selected in both of these commercial programs.

A group of reference results were taken from Sze et al. [44] (Test 1, Test 2 and Test 3)

and Chróścielewski [45] (Test 3). It should be noted that Sze et al. [44] worked in

the ABAQUS system with S4R reduced-integrated curved shell elements. The present

author used a bilinear thin-shell element (Element 139, see [46]) in the MSC.Marc

analysis and 4-node shell elements in the ROBOBAT Robot Millennium calculations.

4. Benchmark tests

4.1. Test 1 – A cantilever subjected to the end shear force

The first benchmark test was performed for a cantilever subjected to the end

shear force (see Figure 1). E=1.2MPa and ν=0.0 were as assumed parameters for the
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Table 1. Displacement of cantilever subjected to end shear force

2P MSC.Marc Robot Millennium Sze et al. [44]

[N/m] −UXtip [m] UZtip [m] −UXtip [m] UZtip [m] −UXtip [m] UZtip [m]

0.0 0.000 0.000 0.000 0.000 0.000 0.000
0.2 0.026 0.663 0.026 0.663 0.026 0.663
0.4 0.103 1.309 0.103 1.310 0.103 1.309
0.6 0.225 1.923 0.225 1.924 0.224 1.922
0.8 0.381 2.494 0.381 2.495 0.381 2.493
1.0 0.564 3.017 0.564 3.018 0.563 3.015
1.2 0.763 3.490 0.764 3.492 0.763 3.488
1.4 0.972 3.915 0.973 3.917 0.971 3.912
1.6 1.185 4.295 1.186 4.297 1.184 4.292
1.8 1.397 4.633 1.399 4.636 1.396 4.631
2.0 1.605 4.935 1.607 4.938 1.604 4.933
2.2 1.808 5.205 1.810 5.208 1.807 5.202
2.4 2.004 5.447 2.006 5.449 2.002 5.444
2.6 2.191 5.663 2.194 5.666 2.190 5.660
2.8 2.371 5.858 2.374 5.861 2.370 5.855
3.0 2.543 6.034 2.545 6.037 2.541 6.031
3.2 2.707 6.194 2.709 6.196 2.705 6.190
3.4 2.863 6.339 2.865 6.341 2.861 6.335
3.6 3.012 6.471 3.014 6.473 3.010 6.467
3.8 3.154 6.592 3.156 6.593 3.151 6.588
4.0 3.288 6.702 3.290 6.704 3.286 6.698

Figure 3. Undeformed (P =0, left) and deformed (P =0.5Pmax, right) configurations of the

cantilever subjected to end shear force – MSC.Marc results

isotropic elastic model: and the following dimensions: width b= 1m, length l= 10m

and thickness t=0.1m.

The curves of vertical and horizontal tip displacement versus end shear forces

are presented in Figure 2. The deformation process of a cantilever subjected to the end

shear force is shown in Figures 3 and 4. Good agreement of displacement versus end

shear force has been obtained from numerical and reference calculations (see Table 1).

4.2. Test 2 – A cantilever subjected to the end moment

In this example a cantilever has been subjected to the free end moment (see

Figure 5). The following parameters were assumed: E = 1.2MPa, ν = 0.0, b = 1m,

t=0.1m. The cantilever length was l=12.0m. The load-end moment diagram is shown

in Figure 6, while the deformation process is presented Figures 7–9. The numerical

results of tip displacements are listed in Table 2. The load-displacement functions
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Figure 4. Deformed configurations (P =Pmax) of the cantilever subjected to end shear force –

MSC.Marc results

Figure 5. Initial geometry and boundary for cantilever subjected to end bending moment

obtained from the two investigated computer programs have yielded similar results

in the considered range of loading.

In this example it is possible to calculate the exact solution (see Table 2) based

on the beam theory, assuming pure bending in the X –Z plane, constant stiffness

EJY and the initial configuration analysis of s=X. Thus, according to [45]:

1

ρX (s)
=
dϕ

ds
=
MY (s)

EIY (s)
= const

dZ

ds
=
1

ρX
dZ

dϕ
=sinϕ

dX

ds
=
1

ρX
dX

dϕ
=cosϕ


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⇒

{

Z (s)= ρX (1−cosϕ(s))

X (s)= ρX sinϕ(s)
(3)

4.3. Test 3 – A hemispherical shell subjected to alternating radial

forces

A hemispherical shell with an 18̊ circular cut-out at the pole has been in-

vestigated (see Figure 10). The shell was loaded by four alternating radial point

forces. The shell parameters were as follows: the elastic modulus of E = 68.25MPa,

Poisson’s ratio of ν=0.3, a mean radius of R=10m and the thickness of t=0.04m.
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Figure 6. Load-displecement curves for the cantilever subjected to end bending moment

Table 2. Displacement of cantilever subjected to end bending moment

M MSC.Marc Robot Millennium Sze et al. [44] Exact solution
[Nm] 16×1 16×1 16×1

−UXtip UZtip −UXtip UZtip −UXtip UZtip −UXtip UZtip
[m] [m] [m] [m] [m] [m] [m] [m]

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2.618 0.196 1.869 0.196 1.870 0.196 1.870 0.196 1.870
5.236 0.773 3.646 0.773 3.648 0.773 3.648 0.774 3.648
7.854 1.696 5.248 1.698 5.249 1.698 5.249 1.699 5.248
10.472 2.913 6.599 2.916 6.600 2.916 6.600 2.918 6.598
13.090 4.354 7.641 4.357 7.642 4.357 7.643 4.361 7.639
15.708 5.938 8.338 5.942 8.338 5.942 8.338 5.945 8.333
18.326 7.577 8.672 7.582 8.671 7.582 8.671 7.585 8.664
20.944 9.186 8.649 9.190 8.646 9.191 8.646 9.194 8.637
23.562 10.682 8.295 10.686 8.292 10.687 8.291 10.688 8.281
26.180 11.996 7.657 11.998 7.653 12.000 7.652 12.000 7.639
28.798 13.073 6.795 13.074 6.790 13.075 6.788 13.073 6.775
31.416 13.875 5.779 13.875 5.772 13.875 5.772 13.871 5.758
34.034 14.385 4.685 14.383 4.678 14.384 4.678 14.377 4.665
36.652 14.606 3.590 14.603 3.582 14.603 3.583 14.595 3.571
39.270 14.561 2.562 14.556 2.557 14.556 2.556 14.546 2.546
41.888 14.287 1.661 14.281 1.657 14.280 1.656 14.270 1.650
44.506 13.834 0.933 13.828 0.932 13.826 0.931 13.818 0.926
47.124 13.263 0.408 13.256 0.408 13.254 0.407 13.247 0.405
49.742 12.634 0.097 12.629 0.100 12.625 0.099 12.621 0.098
52.360 12.008 −0.004 12.005 0.001 12.000 0.000 12.000 0.000

The MSC.Marc and RM results are convergent and comparable with the results

obtained by Sze et al. [44] (cf. Figure 11 and Table 3). The shell deformation process

under radial point forces is shown in Figures 12–14.

5. Conclusions and final remarks

Common benchmark problems of geometric non-linear analysis of shells have

been presented in this study. Membrane, shear and volumetric locking phenomena
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Figure 7. Deformation process of the cantilever subjected to end bending moment

for M =0 (left) and M =0.25Mmax (right) – MSC.Marc results

Figure 8. Deformation process of the cantilever subjected to end bending moment

for M =0.5Mmax (left) and M =0.75Mmax (right) – MSC.Marc results

Figure 9. Deformation process of the cantilever subjected to end bending moment

for M =0.875Mmax (left) and M =Mmax (right) – MSC.Marc results
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Figure 10. Initial geometry and boundary conditions for the hemispherical shell

Figure 11. Load-deflection curves for the hemispherical shell subjected to radial forces

have been described and investigated. A geometrically non-linear analysis of shell

structures has been carried out, using two commercial software systems, theMSC.Marc

program and Robot Millennium.

This paper is an introduction to comprehensive investigation of geometrically

non-linear analysis of shells. For detailed studies of geometrically non-linear analysis

of shells the reader is referred to Chróścielewski et al. [1] and [47], Lubowiecka

[48], Lubowiecka and Chróścielewski [49], Chróścielewski and Witkowski [34], where

a family of finite elements is developed for static and dynamic problems, in the

framework of the non-linear 6-parameter shell theory.
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Table 3. Displacement of the hemispherical shell subjected to radial forces

P MSC.Marc Robot Millennium Sze et al. [44] Chróścielewski [45]
[N] 16×16 16×16 16×16 CAM 18×18

UXA −UYB UXA −UYB UXA −UYB UXA −UYB
[m] [m] [m] [m] [m] [m] [m] [m]

0 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.0000 0.0000
20 0.8489 0.9423 0.8530 0.9500 0.855 0.955 0.8550 0.9545
40 1.4845 1.8013 1.4950 1.8270 1.499 1.840 1.499 1.838
60 1.9443 2.5368 1.9620 2.5830 1.969 2.604 1.969 2.600
80 2.2883 3.1665 2.3120 3.2330 2.321 3.261 — —
100 2.5562 3.7133 2.5850 3.7990 2.596 3.833 2.596 3.827
120 2.7719 4.1946 2.8040 4.2970 2.819 4.339 — —
140 2.9500 4.6231 2.9850 4.7410 3.002 4.790 — —
160 3.1001 5.0080 3.1380 5.1390 3.158 5.196 3.157 5.188
180 3.2285 5.3563 3.2680 5.5000 3.291 5.565 — —
200 3.3398 5.6734 3.3810 5.8280 3.406 5.902 — —
220 3.4374 5.9635 3.4800 6.1280 3.508 6.212 — —
240 3.5237 6.2301 3.5680 6.4040 3.598 6.497 3.597 6.488
260 3.6007 6.4760 3.6460 6.6590 3.678 6.761 — —
280 3.6699 6.7038 3.7160 6.8940 3.750 7.006 — —
300 3.7324 6.9153 3.7800 7.1130 3.816 7.234 — —
320 3.7892 7.1124 3.8370 7.3170 3.875 7.448 3.874 7.439
340 3.8411 7.2966 3.8900 7.5070 3.929 7.647 — —
360 3.8888 7.4691 3.9380 7.6850 3.979 7.835 — —
380 3.9328 7.6312 3.9830 7.8520 4.0250 8.011 — —
400 3.9735 7.7838 4.0240 8.0100 4.067 8.178 — —

Figure 12. Deformation of the hemispherical shell – MSC.Marc results, P =0
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Figure 13. Deformation of the hemispherical shell – MSC.Marc results, P =0.5Pmax

Figure 14. Deformation of the hemispherical shell – MSC.Marc results, P =Pmax
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