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Abstract: In the numerical analysis of the eigen behaviour of large liquid and gas storage tanks, an
important role is played by initial pre-stressing of such thin-walled structures due to high fluid
pressure and gravity. In a majority of numerical simulations, the finite state of deformation is
first calculated, following which small, linear vibrations are superimposed on the finite state. This
paper is devoted to refinement and assessment of the basic Eckart superimposed eigencharacteristics
problem simultaneously stated in fluid and thin-walled structures. Eckart’s coupled approach leads
to variational structure-fluid coupling in the so-called acoustic approximation. In order to verify
the feasibility and correctness of the symmetrical Eckart approach, finite element discretization and
a calculation example of a rectangular tank are presented. The calculated results are compared with
literature ones.
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1. Introduction

Rectangular gas and liquid storage tanks are the main elements of many types
of engineering structures, ind. marine, aerospace, petrochemical, nuclear and power
generating, so their dynamic and vibration problems are important for the design
and operation of such structures. Therefore, a lot of research has been devoted
to the eigencharacteristics problem [1–4]. A separate fluid-solid modal analysis
technique called mass-adding has been widely discussed in the literature as means
to solve this problem [3, 5]. However, a coupled fluid-structure vibration analysis
approach has been developed recently [2–4, 6, 7], mainly based on the so-called
acoustic approximation, limited to fluid media. In the present paper we attempt to
extend a similar approach to a solid medium. This offers an opportunity to analyze
a tank which has been initially stressed, deformed due to stationary creep, etc.
A coupled structure-acoustic formulation is well-known to require symmetrization,
as it adequaly depends on which acoustic primary variable of the fluid has been taken
into consideration.
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The formulation of Zienkiewicz and Bettess [6] has been based on acoustic
pressure, while Chen [4] and Everstine [8] have considered the velocity potential.
However, both formulations are inherently bound to asymmetric or complex matrix
equations [9]. Everstine has suggested introducing the acoustic velocity potential,
in addition to sound pressure, as an independent variable in the fluid domain [8].
The effective coupled symmetric formulation, based on mixed acoustic pressure
and displacement potentials has been introduced by Morland and Ohayon [2] and
Sandberg and Goransson [10]. Nevertheless, the latter model cannot take excitation
of the acoustic source into account as conservation equations of mass and momentum
in the fluid domain have been introduced into their deducing course [7]. Extending
the above formulations, Chen and Taylor [11] used finite elements based on a kind of
displacement vectors in solid and fluid.

In this paper, starting from the Chen and Taylor approach, we intend to
introduce over-displacement vectors in solid and fluid media which describe small
superimposed motion on the finite state of the pre-stressed fluid-solid continuum. Such
superimposed small displacement is well-known in structural analysis of vibrational
acoustics and stability, however in this kind of fluid displacement was first proposed
and analytically motivated by Eckart [12]. The advantage of Eckart’s approach
is that small motion can be superimposed on an arbitrary finite state of fluid –
e.g. following, turbulent, under pressure and in phase transition. In spite of remarkable
advances in techniques of numerical analysis for fluid-structure interaction considering
the symmetry of superimposed small displacements, a test program is still needed
for coupled free-vibration study of fluid-filled tanks. In the present paper, coupled
free-vibration analysis has been examined and tested using our implementations into
the current commercial Finite Element Method software. The theoretical work and
the test program have been verified by comparison with the available numerical
solutions. The parametric study of the natural frequency has been examined in various
combinations of pre-stressed state of thin-walled structures and fluids.

Yet another problem is connected with fully symmetrical coupling in the
structure-fluid formulation, stamming from different mathematical modelling of the
motion of thin-walled, shell-like structures and that of fluid motion. The incompat-
ibility of traditional formulations is due to the difference between two-dimensional
shell modelling and three-dimensional fluid modelling. In numerous formulations of
the coupled symmetric structure-fluid problem, the free-vibration problem has been
approximated with degenerated 8 or 6-node 2D shell elements and 3D fluid elements
[7, 13]. Degenerated shell elements always require the application of the reduced inte-
gration technique to prevent the shear and membrane locking in statics [14–16] and
similar mass-locking effects in free-vibration [17]. In the case of fluid finite elements,
reduced integration is also required for elements of low approximation[5]. At the same
time, it follows from previous studies [15, 18, 19], that every pre-stressed background
finite state minimalizes the effect of reduced integration. Therefore, in the present pa-
per, 3D finite elements will be tested simultaneously for the solid and the fluid medium
and the effect of reduced integration will be verified. This approach has an additional
advantage of facilitating discretization of complicated fluid partially-filled structures
with several substructures of arbitrary shape. Additionally, in such 3D modelling there
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is no complexity connected with special treatment of two rotation components of the
mid-surface and a rotation component of the shell’s mid-surface [19].

2. Eckart’s approach to symmetrical structure-fluid

superimposed motions

Let us assume that a thin-walled tank filled with fluid in an arbitrary state
can, in general, undergo finite state deformation (elastic, creep, thermal, etc.). Initial
deformation is mainly due to from internal actions of the fluid: pressure of gas or
gravity of liquid. Another initial load is due to forces of inertia, centrifugal forces
and external loads, point supports, etc. Initially pre-stressed and deformed structures
are characterized by an additional stiffness and much higher frequencies than stress-
and deformation-free structures. Quite the same can be said about elastic fluids –
the influence of pressure and gravity forces can be observed in the so-called acoustic
characteristics of fluids. In the problem of modelling small perturbations superimposed
on a finite state of a solid/fluid continuum, it is assumed that the perturbations
will propagate as small amplitude elastic waves. Therefore, even if the finite state
consists of irreversible contributions, e.g. plastic deformations, viscous stresses and
turbulent losses, we omit any viscous and irreversible contributions when modelling
the superimposed motion. Similarly, small superimposed small perturbations such
as vibrational displacements or density and entropy fluctuations shall treated as
purely elastic. Then, the recoverable energy of superimposed motion in solid-fluid
coupled medium is defined as the difference between internal, kinetic and potential
energies [2, 3]:

L=Lfluid+Lsolid+Lcoupling, (1)

where:

Lfluid=
∫ ∫ ∫

Vf

ρf (εf −
1
2
gfijvivj+V (~x))dVf +D, (2)

Lsolid=
∫ ∫ ∫

Vs

ρs(εs−
1
2
gsij u̇iu̇j+V (~x))dVs, (3)

Lcoupling=
∫ ∫ ∫

surface

pfuinidA. (4)

In the above relations ρs and ρf respectively denote density of the solid and
the fluid, ~v= vi~ei= ~̇u – the superimposed fluid velocity, ~u= ui~ei – the superimposed
displacement of the solid, εf and εs – the solid’s and fluid’s specific densities of internal
energy in superimposed motion, V (~x) = zg – a specific body force potential at point
~x ∈ Vf or ~x ∈ Vs, pf – the superposed fluid pressure on the surface of a solid body,
and ~n=ni~ei – a normal vector orienting surface of ∂Vs. Finally, D is the dissipation
functional.

Calculating kinetic energy of small perturbations superimposed on a finite state
is not an obvious problem and, in some cases, cannot be reduced to half a square
of velocity, i.e. 1

2
vivi . In his analysis of acoustic vibration, Eckart [12] introduced

the so-called kinetic metric of acoustic fluid, gfij . Its mathematical interpretation is
a symmetric metric tensor that describes the dynamics of a fluid in a finite state. In
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the classical formulation of kinetic energy one has gfij = δij , what physically has the
same meaning as, for instance, the kinetic energy of a stone thrown into an empty
space. Following Eckart, we have to introduce a kinetic metric of a solid body, gsij .

Both objects, gfij and g
s
ij , are symmetrical, positively defined covariant metrics which

are entirely determined as a function of parameters of a finite, pre-stressed state.
Following the tradition, w shall denote these parameters by additional index, (.)0.
These are parameters like the state parameters: p0, T 0, v0, s0 in a fluid medium and
σ0ij , T

0
ij , ε

0
ij , s

0
ij in a solid medium.

From the solid body point of view, Lcoupling can be treated as the work of
external loading [4], due to a known fluctuation pressure, pf . In the case of a still fluid
on which small perturbations are superimposed, pf is identical to the fluctuations of
hydrostatic pressure (for a liquid) or fluctuations of gas pressure in a pre-stressed tank.
The specific internal energy of small perturbations of the finite state is described as
a small linear increment of internal energy defined as:

εs=
1
2
εijA

0
ijkmεkm+εijB

0
ijkmskm+

1
2
skmC

0
ijkmskm [J/kg], (5)

εs=
1
2
θA0θ+θB0s+

1
2
sC0s [J/kg]. (6)

As all coefficients of the A, B, C type in the above definitions are calculated on
the finite pre-stressed state, they are referred to as acoustic tensors and coefficients
of elasticity. With Kirchhoff’s assumption that temperature and entropy tensors in
solids are nearly spherical, the part with the B0ijkm coefficient in Equation (5) can be
approximated to:

εijB
0
ij(s1−s0) (7)

and the acoustical tensor of the entropy constant, C0ijkm, becomes a scalar, C
0. In

the above relations εij =1/2(ui,j+uj ,i ) is a tensor of small deformations defined on
the Cartesian metric as the metric gsij is meaningful only for kinetic energy. Here,
~u= ui~ei is a vector of small perturbations of the displacement field which is taken
from the pre-stressed state, sij is an increment of the entropy tensor (in solids only),
θ=div~u= εii is a small volumetric deformation produced be small perturbation and
s is a volumetric increment of entropy of the perturbed fluid.

The A0 coefficient in Equation (6) should be interpreted as a coefficient of
isenthalpic volumetric elasticity, which allows us to express small perturbated pressure
as follows:

pf =
∂εf
∂θ
|s=const =A0θ. (8)

It is assumed here that a state of small perturbations superimposed on a fully
non-linear, finite state of fluid in motion is further properly described by elastic ideal
fluid model that cannot include any shear deformation. It practically means that
the general form of Equation (5) including anisotropy induced by the finite state,
now takes the form of a classical Navier-Lamé constitutive relation describing linear
relation between stress and deformation in an isotropic medium:

σij =A0ijkmεkm+B
0δijs=λ0θδij+2µ0εij+B0δijs, (9)

which when fluid perturbations are transported only in the volumetric manner
(µ0≡ 0), leads to:

σij = pδij =
(

λ0θ+B0s
)

δij . (10)
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By comparison with Equation (8) the acoustic coefficient of volumetric elasticity
is found to be equal to A0=λ0, like the first Lame’s coefficient in a solid medium. We
shall call it the acoustic model of volumetric elasticity. It appears in the constitutive
equations of liquids and gasses connecting fluctuating pressure, pf , with volumetric
fluid deformation, θ=div~u= εii. It is also known as a volumetric form of the linear
Hooke’s equation. If increases of pressure, ∆p, and increases of volume are known
from experiment, the λ0 modulus may be obtained from the following equation:

λ0=−
∆p
∆V/V

. (11)

Under the action of pressure increase ∆p, any initial liquid volume V decreases
its volume by ∆V . As fluids cannot accumulate elastic shear deformations, the lateral
Lamé module will always equal zero, µ0=0. However, it is assumed for an ideal gas
[3] that the acoustic module of volumetric elasticity is equal to the actual gas pressure
in the finite state:

λ0= p0. (12)

For atmospheric air, the value of coefficients taken for numerical analysis have
been as follows: elasticity modulus λ0 = 0.1MPa, density ρ = 1.27kg/m3. However,
the acoustic modulus of volumetric elasticity for any working liquid that contains
an amount of the gaseous phase may vary significantly. If α denotes the volumetric
gas fraction dispersed in a liquid, then Equation (11) should be replaced by the
following [13]:

λ0m=
λ0c

1+α(λ0c/λg−1)
, (13)

where Vg/V = α is the volumetric fraction of gas in the mixture, index m meaning
mixture, c – liquid, g – gas. For pure water at atmospheric pressure and in ambient
temperature the acoustical modulus of volumetric elasticity has been taken as equal
to λ0=200MPa, with density ρ=1000kg/m3. It should be noted, that there is a lot of
diluted air in an actual liquid contained in a tank. Therefore, the acoustical modulus
of volumetric elasticity, even if calculated from Equation (13) is practically known
with some exactness, since parameter α can change drastically in operation. The
analytical form of acoustical tensor A0ijkm has been discussed in the literature [1, 15].
Actually, many commercial codes, in order to calculate the eigenvalue problem for
a structure undergoing finite state of stresses and deformation, must calculate the
tensor numerically.

3. Variational and finite element formulation

The energetical formulation presented above is appropriate for solving the prob-
lem of small perturbations propagating in a coupled fluid-solid system. Additionally,
the energetical formulation leads directly to the matrix approach used in the finite
element method. Using the Hamiltonian principle (see [2, 19]) which asserts that
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the difference between kinetic and potential energy is constant during virtual motion
taken between arbitrary temporial moments tn and tn+1 we obtain:

δH = δ

tn+1
∫

tn

Ldt≡ 0. (14)

With space discretization typical for the finite element method, the fluid and
structural domains can be divided into elements. Expanding wave displacement and
wave entropy using the following classical shape functions:

ui=Niq , s=Nsq , i=x, y, z, (15)

a set of finite element formulae can be deduced in a relatively straightforward way:

M 0q̈+C 0q̇+K 0q =F 0. (16)

It is a discrete form of the perturbed state, where particular matrices are interpreted
as mass, viscosity and acoustic stiffness matrices, while F 0 is the perturbed forces
vector:

M 0=
∫ ∫ ∫

Vα

N Ti g
α
ijNjdVα, α= f, s, (17)

C 0=
∫ ∫ ∫

Vf

N Ti D
T
iklD

0
klmnDjmnNjdVf , (18)

K 0=
∫ ∫ ∫

V s

N Ti D
T
iklA

0
klmnDjmnNjdVs

+
∫ ∫ ∫

Vs

(N Ti D
T
iklB

0
klNs+N

T
s B

0
mnDjmnNj)dVs

+
∫ ∫ ∫

Vs

(N sTC0N s)dVs

+
∫ ∫ ∫

Vf

N Ti D
T
iθA
0DjθNjdVf

+
∫ ∫ ∫

Vf

(N Ti D
T
iθB
0Ns+NsB0DjθNj)dVf

+
∫ ∫ ∫

Vf

(N Ts C
0Ns)dVf

+
∫ ∫

surf.

(N Tp DpDjNj+N
T
j DjDpNp)dA.

(19)

Let us note that in the above definition the form of mass matrix is set up
by a formula identical for solid and fluid domains. Matrices of the D type, which
have appeared in Equations (17)–(19), contain spatial derivatives of an acoustic
displacement vector, and acoustic constants of the A0, B0, C0 type are determined
by Equations (5)–(6). We shall now consider a motionless fluid and assume the
perturbation process to be isentropic (s=0), obtaining a simpler formula.
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4. Problem solution

If no external loads act on the fluid-structure system, then F 0(t)= 0 in Equa-
tion (16) and one obtains a matrix equation describing damped free perturbations:

M 0q̈(t)+C 0q̇(t)+K 0q(t)=0, (20)

which embrace simultaneously the solid and the fluid domains. The frequencies of
the system’s acoustic vibration are called eigenvalue frequencies. The solution of the
above equations independently for the solid or the fluid, assumes the following form of
q = qaeλt where qa and λ are complex constants. Combining algebraic Equation (20)
with the harmonic motion assumptions we arrive at a free-vibration matrix system
for fluid-structure problems:

(M 0λ2+C 0λ+K 0)qa=0. (21)

When vibrations occur in pre-stressed solid and fluid medium, the symmetric tan-
gent mass, damping and stiffness matrices in Equation (21) differ completely from
the well-known linear matrices of mass, damping and stiffness, M ,C ,K [9]. For un-
coupled free vibration the damping matrix equals zero and the problem leads to:

M 0q̈(t)+K 0q(t)=0, (22)

with the solution defined by q = qa sin(ωt), where qa is a vector of eigenvalue form,
ω – frequency [rad/s], f =ω/2π – frequency [Hz] and T =1/f – period [s]. After double
differentiation one obtains linearized free vibration for the structure-fluid coupled
problem in a symmetrical formulation. The problem describes small perturbations
(density, displacements and entropy) superimposed on the initial finite state of stresses
and deformations:

(

K 0−ω2M 0
)

qa=0. (23)

Owing to the symmetry, this matrix system does not require expensive compu-
tation and needs to be solved as the following classical eigenvalue problem:

det
∣

∣K 0−ω2M 0
∣

∣=0 (24)

The solution of Equation (24) is to be found numerically using standard procedures
developed in the Abaqus and Nastran commercial codes. It is known from algebra that
under the positive definite condition of matrixM all eignevalues are positive if matrix
K is positive definite and non-negative if matrix K is positive semi-definite [20]. In
general, matrixesM and K in Equation (24) do not satisfy the above conditions and
so non-negativity conditions of the system’s eigenvalues must be investigated. For
empty tanks, zero eigenvalues correspond to zero fluid pressure or constant acoustic
pressure with zero initial entropy.

5. The subject of numerical analysis

In order to verify the above presented model we have performed a parametrical
analysis of a rectangular fluid filled tank 1m high and wide, and 3m long. All the
wallboards consisted of steel plates 1cm thick. The tank was clamped at the bottom
to a rigid foundation. The material data of the steel were as follows: Young’s modulus
E=21000MPa, Poisson ratio v=0.3, density ρ=7800kg/m3.
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In order to verify the differences in eigenfrequencies for various filling fluids,
the following four cases were investigated numerically:

(1) an empty tank,
(2) an air-filled tank with various overpressures,
(3) a water-filled tank under atmospheric pressure, without the forces of gravity,
(4) a water-filled tank with hydrostatic pressure.

The first case, which corresponds to the classical eigenvalue problem for an
initially free structure (no pre-stressing or initial deformations), was used as reference
data. It is especially important in checking the correctness of the finite elements,
which, in some situations, may be indicative of the locking phenomenon. Therefore,
solutions based on 3D solid elements should be compared with those based on the
more consistent 2D shell elements that do not tend to lock in static and dynamic
analysis [15, 17, 18].

The second case was the same tank filled with air compressed under various
pressures. It should indicate how the eigenvalues of tanks increase with increasing air
pressure from 0.1MPa to 20MPa. In this case, the initial deformation and initial stress
state at the solid structure was neglected due to small air pressure and analysis was
focused on proper modelling of the acoustic bulk elastic modulus of the compressible,
isotropic fluid. The third case, with air replaced with nearly incompressible water was
quite similar.

6. The FEM model in space

The numerical model contains two types of documents from library of FEA
codes: MSC Nastran and HKS Abaqus. Two types of elements were used in the 2D
and the 3D model, respectively. 3D elements are often sensitive to locking problems [1].

Two ways of modelling cases were tested:

• the tank walls were modelled with 8-node plate elements while the fluid was
modelled with standard 20-node solid 3D element, see Figure 1a)
• the solid and the fluid were modelled with 20-node solid 3D elements, see
Figure 1b).

Model (a) shown in Figure 1 contains 3751 nodes. 1402 nodes describe the
tank walls. Model contains 9851 degrees of freedom, with 341 nodes (682 degrees of
freedom) fixed to the tank bottom.

(a) (b)

Figure 1. Tank model: (a) 3D elements (fluid) & 2D elements (solid);
(b) 3D elements (solid & fluid)
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Model (b), with the fluid and the tank walls modelled with 20-node elements
contains 26264 nodes (of which 18072 fluid). In this paper we have also compared
results obtained with 3D 8-node elements. In model containing 8-node elements the
number of nodes was 1054.

7. Numerical analysis of the virtual stiffness influence

7.1. Natural frequencies of empty and air-filled tank

Natural frequencies of the empty and air-filled tank are presented in Table 1.
In the latter case the pressure of air was about 0.1MPa.

Table 1. Natural frequencies of empty and air filled steel tank at p=0.1MPa

Empty tank Filled tank

Mode Shell 8-node
element

Solid 20-node
element

Shell 8-node
element

Solid 20-node
element

1 35.55 35.07 36.41 35.97
2 43.89 43.78 44.67 44.60
3 49.62 48.98 50.14 49.55
4 56.44 56.24 57.00 56.84
5 57.81 58.19 58.49 58.91
6 59.41 59.02 60.15 59.80
7 63.79 63.81 64.46 64.52
8 68.09 68.51 68.65 69.10
9 69.72 70.12 70.30 70.73
10 74.17 74.75 74.75 75.37

It follows from the results presented in Table 1 that the three dimensional
elements does not show the locking effect and yields results which are comparable
with those from the shell elements. The influence of air is very small. The differences
between eigenvalues are less than 1%. It is a result of small acoustic stiffnes of air.
In Section 7.4 below the dependence of gas pressure and the acoustic stiffness factor
is presented, so in calculations of gas-filled tanks at atmospheric pressure modelling
of fluid can be neglected. Calculations for highly stressed tank walls have shown that
locking of 3D elements is small. Similar results are presented in papers [1] and [2],
only linear states without high loads are susceptible to locking.

7.2. Frequencies of the tank filled with water

Natural frequencies of the water-filled tank were calculated by the second way
of modelling (3D elements only). The results are presented in Table 2. Two types
of elements were used, 8-node brick elements and face-centered second-order 20-node
elements. Calculations were performed for the following fluid parameters:

– acoustic modulus λ0=200MPa,
– density ρf =1000 kg/m3.

The twenty-node elements yielded results similar to those of the shell elements.
Eight-node elements were subject to locking, resulting from low-level shape functions.
In dynamic calculations and/or eigenvalue extractions it is advisable to use at least
second-order elements.
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Table 2. Natural frequencies of the water-filled tank in Hz

Nastran Abaqus

Mode 2D element
8 nodes

3D element
20 nodes

2D element
8 nodes

3D element
20 nodes

1 106.08 106.25 105.96 113.87
2 161.78 163.67 162.85 178.96
3 175.23 176.95 176.78 193.70
4 188.84 189.68 188.32 207.80
5 193.24 195.86 195.11 213.38
6 197.64 200.84 199.87 222.69
7 210.53 213.86 212.34 235.00
8 218.87 223.27 221.86 245.85
9 227.02 230.95 229.52 250.73
10 228.26 231.87 230.54 263.54

7.3. Comparison with air

Natural frequencies of the air- and water-filled tank are presented in Table 3.
Natural frequencies of the water-filled tank are higher than when filled with air, since
a fully filled tank vibrates like a solid beam. In an air-filled tank every wall vibrates
independently, as can bee seen in Figures 2–4. The empty tank modes have been
omitted as they are identical with those obtained for the air-filled tank at atmospheric
pressure.

Table 3. Natural frequencies of the air- and water-filled tank

Air-filled tank Water-filled tank

Mode 8-node
(2D elements)

20-node
(3D elements)

8-node
(2D elements)

20-node
(3D elements)

1 36.41 35.97 106.08 106.25
2 44.67 44.60 161.78 163.67
3 50.14 49.55 175.23 176.95
4 57.00 56.84 188.84 189.68
5 58.49 58.91 193.24 195.86
6 60.15 59.80 197.64 200.84
7 64.46 64.52 210.53 213.86
8 68.65 69.10 218.87 223.27
9 70.30 70.73 227.02 230.95
10 74.75 75.37 228.26 231.87

The result have shown that in this case fluid modelling can be neglected. As
a result of modelling the internal fluid its mass is added to the global mass matrix
and its acoustic stiffness to the global stiffness matrix, so that the fluid’s influence
and interactions of the tank walls with the fluid can be archived.

7.4. The first natural frequency versus λ0 (calculated for water)

The acoustic elastic modulus of water is a free model parameter that requires
calibration. In order to present the influence of λ0 on the tank’s vibrations, we
have carried out calculations in the high range of λ0 values, λ0 ∈ [50,1000]MPa.
The calculations included the influence of stresses from hydrostatic pressure. Table 4
presents the dependence of the first natural frequency on λ0.
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Figure 2. The first natural frequency of the water-filled tank (left, 106.08Hz)
and the air-filled one (right, 36.41Hz)

Figure 3. The second natural frequency of the water-filled tank (left, 161.78Hz)
and the air-filled one (right, 44.76Hz)

Figure 4. The third natural frequency of the water-filled tank (left, 175.23Hz)
and the air-filled one (right, 50.14Hz)

Table 4. The first natural frequency versus λ0, parameters for tap water in boldface

Acoustic modulus λ0 [MPa] 50 100 200 400 700 1000

First natural frequency [Hz] 70.4 87.3 108.0 129.6 154.96 174.96

tq410s-e/465 11I2007 BOP s.c., http://www.bop.com.pl



466 A. Wiśniewski and R. Kucharski

Figure 5. The first natural frequency versus λ0 calculated for the water-filled tank

A strong dependence of the first natural frequency on λ0 is noticable in
Figure 5. A small change of λ0 leads to large changes in the first natural frequency
values.

7.5. The first natural frequency of the tank versus air pressure

For air (gas) λ0 modulus equals pressure. Calculation data and the first
natural frequency of the air-filled tank at various pressures are presented in Table 5
and in Figure 6. The value of the first natural frequency increases with increasing
pressure.

Table 5. The first natural frequency versus λ0 for the air-filled tank

Pressure [MPa] Density [kg/m3] The first natural

≡λ0 at 20̊ C frequency [Hz]

0.1 1.196 36.42

0.3 3.558 38.08

0.5 5.938 39.66

0.7 8.318 41.16

1.0 11.892 43.28

1.5 17.853 46.52

2.0 23.822 49.47

5.0 59.8 63.05

10.0 120.42 76.53

When air pressure is very high, the density of air increases to the value of water
and the natural frequencies of the air-filled tank are close to those obtained for the
water-filled tank.
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Figure 6. The first natural frequency versus λ0 for air

8. Conclusions

The performed calculations have proven that the common fluid-and-solid mod-
elling technique is an effective way of calculating compressible and non-compressible
fluid-filled structures. Only liquid-filled structures require calibration of the acoustic
λ0 modulus, which equals 200MPa for tap water. Calculating the C0 matrix con-
nected with molecular viscosity of liquid remains an unsolved problem. The presented
method, in comparison with the standard “added mass method” enables full mod-
elling not only of the mass matrix but also of the stiffness matrix. Its cost is only an
increased number of degrees of freedom of the calculated structure.

The results presented in this paper have demonstrated that locking phenomena
can be neglected when calculations are performed with second order elements or when
the structure is loaded. 8-node brick elements have been shown to be subject to the
locking effect even in the low-stressed state so cannot be used in dynamic analysis or
eigenvalue extraction.
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