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Abstract: The two-equation level of turbulent heat flux modelling is considered for application in

film cooling instead of the turbulent Prandtl number concept. The investigations involve numerical

analysis of mean and fluctuating temperature fields near the coolant injection inlet. The results of the

implemented coupled v2-f -kθ-εθ model are compared with measurement data for a flat plate cooled

with compound angle orientation of discrete injection holes. The results of numerical analysis agree

very well with the experimental data. The coupled model offers a detailed picture of gas turbine

cooling problems without using time-consuming, inherently unsteady models.
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Nomenclature

vi – mean velocity components, i=x,y,z

v′2 – wall-normal stress

f – a variable related to the turbulent energy redistribution in the v′2 transport equation

k – turbulent kinetic energy

kθ – temperature variance

Prt – turbulent Prandtl number

Sij – strain rate tensor, i,j=x,y,z

T – mean temperature

I – momentum flux ratio

M – blowing ratio

VR – velocity ratio

Greeks

α, αt – molecular and turbulent heat diffusivity

ε – dissipation rate of k

εθ – destruction rate of kθ
η – film cooling effectiveness

ρ – fluid density

ν, νt – molecular and turbulent viscosity

σθ – a coefficient for turbulent diffusion of kθ and εθ

tq410m-e/377 11I2007 BOP s.c., http://www.bop.com.pl



378 M. Karcz

τ , τθ – turbulent velocity and temperature field time scales

θ′ – temperature fluctuations

Subscripts

∞ – freestream

c – coolant jet

1. Introduction

The need for cooling highly mechanically and thermally loaded gas turbine

elements is obvious. The temperature levels that occur in a modern gas turbine blade

path often exceed the melting point of available alloys. There are two common ways

to protect gas turbine elements from thermal overload, namely internal and external

cooling, shown in Figure 1. Internal cooling consists mainly of ribbed U-ducts located

inside the gas turbine blades [1, 2]. External cooling is connected with discrete jets

of coolant injected into a hot mainstream by a system of holes [3, 4]. Both cooling

systems involve many physical features that are not fully understood and which are

still very difficult to model, even with sophisticated closures.

(a)

(b)

Figure 1. Internal and external cooling systems of a gas turbine blade [5]

Most of the publications concerning external cooling of gas turbines have

employed two-equation turbulent momentum flux closures combined with the constant

or varying turbulent Prandtl number assumption for turbulent heat flux modelling

[6–8]. This approach is very robust but not always effective. A higher level of turbulent

heat flux modelling has been considered as a remedy for some of the existing models

tq410m-e/378 11I2007 BOP s.c., http://www.bop.com.pl



Mean and Turbulent Thermal Fields Due to Film Cooling. .. 379

deficiences [9–12]. In the framework of eddy diffusivity closure, this means that the

two-equation kθ-εθ turbulent heat flux model should be adopted. It not only uses

a time scale that is characteristic of the turbulent momentum field, but also an

additional time scale dedicated to the turbulent thermal field. An alternative coupled

v2-f -kθ-εθ model [13] is employed in this study for film cooling analysis. This model

is based on Durbin’s v2-f model [2, 14–17] and the two-equation kθ-εθ turbulent heat

transfer closure of Deng et al. [11].

Many experimental and numerical studies have been performed on various film

cooling arrangements [3, 4, 6–8]. Most of them have been focused on mean thermal

field measurements and predictions with the so-called cooling effectiveness as the

main parameters to be investigated. A paper of Gartshore et al. [6] is considered as

an example, where variously shaped holes are analysed for flat plate cooling purposes.

Only a few papers provide information on the turbulent thermal field’s behaviour in

the immediate vicinity of the coolant jet exit. Among these the experimental results

of Kohli and Bogard [4] appear to be the most interesting for the kθ-εθ type of closure

validation.

2. The v2-f-kθ-εθ model

Turbulence effects are usually taken into account using an eddy diffusivity

concept. Then the constitutive closures of turbulent momentum and heat fluxes are

as follows [14]:

−v′iv
′

j =2νt

(

Sij−
1

3

∂vk
∂xk
δij

)

−
2

3
kδij , (1)

−v′jθ
′=αt

∂T

∂xj
. (2)

Turbulent heat flux computations are usually simplified by introducing the

so-called Reynolds analogy, which directly links turbulent diffusivity of heat, αt, with

turbulent viscosity, νt, with the turbulent Prandtl number, Prt [18]:

Prt=
νt
αt
. (3)

Employing a constant value of Prt close to unity or using a Kays-Crawford

formula for Prt estimation [16, 18] yields quite satisfactory results for near-wall flows.

The eddy diffusivity of heat should nevertheless be represented as a function of

turbulent time scales for velocity and temperature fields. It is the main assumption

of the two-equation kθ-εθ level of turbulent heat flux modelling [10–12].

The derivation of the coupled v2-f -kθ-εθ model can be found in papers [19, 13].

It rests on the assumption that both turbulent momentum and heat transfer are

determined by the velocity fluctuations normal to the wall, v′2 [15]. In fact, variations

of v′2 in the close vicinity of the wall govern the wall-friction and heat transfer

coefficients [9].

In an analogy to the eddy viscosity formula of the v2-f model, in the following

form:

νt=Cµv′
2τ, (4)

eddy heat diffusivity has been proposed as [19, 13]:

αt=Cλv′
2τm. (5)
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When formula (5) is employed, a mixed time scale, τm, is used which includes

the dynamic time scale, τ , and the thermal field time scale, τθ:

αt=Cλv′
2

(

k

ε

)l(
kθ
εθ

)m

, l+m=1. (6)

The dynamic or turbulent time scale of a velocity field, τ , is usually defined

as a ratio of turbulent kinetic energy, k, and its dissipation rate, ε. The turbulent

thermal field time scale, τθ, is a ratio of the fluctuating temperature variance, kθ,

and its destruction rate, εθ. At the same time, when the standard turbulent Prandtl

number assumption is employed, only the time scale of the fluctuating velocity field,

τ , governs both turbulent momentum and heat transfer.

2.1. Model of the velocity field

Various complex flows have been successfully investigated with the aid of

Durbin’s v2-f model: a ribbed duct [2], impinging jets [16], blade passages [14], cooled

blades [7], etc. In all cases, the v2-f model appeared to be superior to the known

two-equation models, thanks to an introduction of elliptic relaxation to represent

non-local effects in near-wall turbulences [15].

The full set of governing equations of the v2-f model is as follows [2, 13, 16, 19]:

Dk

Dt
=
∂
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[(
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]

+Pk−ε, (7)
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Turbulent viscosity, νt, is defined with formula (4). The production of turbulent

kinetic energy, Pk, is given by:

Pk =2νtSijSij , (11)

where Sij is the strain-rate tensor defined as:

Sij =
1

2

(

∂vi
∂xj
+
∂vj
∂xi

)

. (12)

The time and length scales which appear in Equations (8) and (10) are as

follows:

τ =max

[

k

ε
,6

√

ν

ε

]

(13)

and

L=CLmax

[
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ε
,Cη
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ε
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1

4

]

. (14)
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Following the paper of Sveningsson and Davidson [17], any time scales bounding

as in [2, 7, 14, 16] are excluded from the model. Instead of these only bound on the

eddy viscosity (4), in the form proposed in [17], is employed:

νt=min

[

νt,
0.6k

√

6SijSij

]

. (15)

Such bounding prevents spurious growth of turbulence kinetic energy under

large rates of strain in the vicinity of stagnation points.

The v2-f model constants employed in the present analysis are the same as

those of [2, 13]:

Cµ=0.22, C1=0.4, C2=0.3, CL=0.25,

Cη =85, Cε2=1.9, σε=1.3,

Cε1=1.4

(

1+0045

√

k/v′2
)

.

(16)

The boundary conditions for solid walls (y→ 0) are:

k=0, ε→
2νk

y2
, v′2=0, f→−

20ν2v′2

εy4
. (17)

2.2. Model of the thermal field

A two-equation closure of turbulent heat flux was successfully implemented by

Nagano and Kim [10], followed by other versions of the kθ-εθ model [11, 12]. The

presented v2-f -kθ-εθ model is partly based on the assumptions given in [11, 12]. The

full set of governing equations for temperature variance and its destruction rate, in

the framework of the coupled model, is as follows [13]:

Dkθ
Dt
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∂

∂xj

[(
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αt
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)

∂kθ
∂xj

]

+Pθ−εθ, (18)

Dεθ
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∂
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αt
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∂εθ
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2

(

∂T
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εθ
kθ
−Cd2εθ

ε

k
.

(19)

The Pθ production term is modelled with the following equation:

Pθ =αt
∂T

∂xj

∂T

∂xj
. (20)

The eddy diffusivity of heat, αt, is given by formula (5). Following Deng et al.’s

proposition, a single production term is included in the transport Equation (19) of

the coupled model. The term is responsible for approximation of all the generation

sources of εθ [13] .
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The constants of the implemented two-equation model have been assumed as

follows [13]:
Cλ=0.2, Cp1=2.0, Cd1=1.0, Cd2=0.9,

l=1.5, m=−0.5, σθ =1.0.
(21)

The boundary conditions on the impermeable walls have been assumed to be

identical to other two-equation heat flux closures [11, 12]:

kθ =0, εθ→α
kθ
y2
. (22)

3. Computational results

The coupled model [19, 13] has been validated in two different experiments

involving flat plate cooling. The experiment of Gartshore et al. [6] has provided

results for flat plate cooling with variously shaped holes for three different values

of the velocity ratio, VR. At the same time, the measurements of Kohli and Bogard

[4] offer a unique possibility to compare not only mean but also fluctuating thermal

fields with the numerical predictions.

3.1. The flow configuration

Both analysed experiments involed a flat plate and film cooling. Their geomet-

rical configuration was typical, as shown in Figure 2.

(a)

(b)

Figure 2. Typical geometrical parameters of flat plate film cooling arrangements:

(a) general configuration of a cooling plate with discrete holes,

(b) detailed geometry of a hole in a plate’s cross-section
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The experiment of Gartshore et al. [6] was performed for two differently shaped

holes – one round d= 14.4mm, the other square d= 12.7mm – of the same angles

and aspect ratios typical for real gas turbine configuration, viz. P/d = 3, L/d = 4,

inclination angle α= 30̊ , lateral angle β = 45̊ and the angle of flaring of holes near

the exit δ1= δ2= 0̊ , as per Figure 2. Various velocity ratios of the coolant jet to the

mainstream, vc/v∞, were considered, VR=0.5, 1.0 and 1.5. The measurements were

performed for the low free-stream turbulence level ranging from Tu=1% for VR=0.5

to Tu=3% for VR=1.5.

The results of Kohli and Bogard’s measurements [4] were obtained for a similar

configuration with d=11.11mm, P/d=3, L/d=4, inclination angle α=35̊ , lateral

angle β = 0̊ and δ1 = δ2 = 0̊ . Their measurements were conducted for a momentum

flux ratio (ρcv
2

c)/(ρ∞v
2

∞
) of the coolant jet to the mainstream of I = 0.16, with the

corresponding blowing or mass flux ratio (ρcvc)/(ρ∞v∞) ofM =0.40 and the velocity

ratio of VR= 0.38. The free-stream velocity was fixed at v∞ =10 m/s and the inlet

turbulence level was assumed to equal Tu = 0.5%. The inlet temperature difference

between the mainstream and the jet was 15 K.

For numerical purposes, only a part of the flat plate with a single hole was

investigated with periodic boundary conditions imposed in the spanwise direction, as

shown in Figure 2.

3.2. The numerical procedure

A commercial CFD code, FLUENT 6.2.18 [20], based on the finite volume method

was used to solve the sets of Equations (7)–(10) for the turbulent momentum field and

Equations (18)–(19) for the turbulent thermal field, together with mean continuity,

momentum and energy equations.

The six differential equations of the coupled model were implemented into the

solver by an external subroutine [13, 19]. The second-order scheme was employed

to discretize convection terms of the mean momentum balance, energy balance

and the scalar evolution equations. The diffusion terms for all of equations were

central-differenced. The SIMPLE method was used for pressure-velocity coupling.

For both computational cases, structural and hexahedral multiblock grids were

built and tested with exponential near-wall refinement. For the first case, based

on the Gartshore et al. experiment, the total number of finite volumes was equal

to 241310 cells for a round-shaped hole and 219600 for a square one. For the

Kohli and Bogard experiment, 257025 cells were employed, sufficient for a v2-f

computation. The number of cells was determined on the basis of the grid sensitivity

studies.

The boundary conditions were related to appropriated experimental data. Full

turbulent flow was assumed at the mainstream inlets, with the k and ε profiles

estimated from the experimental turbulence level, Tu.

3.3. Flat plate cooling via round and square shaped holes

The most common way to analyse the film cooling effects is to investigate spatial

distribution of film cooling effectiveness, η. The dimensionless cooling effectiveness,

or normalised temperature, is defined to be [3, 4, 6, 8]:

tq410m-e/383 11I2007 BOP s.c., http://www.bop.com.pl



384 M. Karcz

Figure 3. Cooling effectiveness, η, for round shaped holes (VR=0.5)

Figure 4. Cooling effectiveness, η, for round shaped holes (VR=1.0)

Figure 5. Cooling effectiveness, η, for round shaped holes (VR=1.5)

η=
T −T∞
Tc−T∞

, (23)

where T represents local static temperature, Tc is the temperature of the coolant jet

and T∞ describes the mainstream temperature.

The results of spanwise distribution of the η coefficient for velocity ratios

VR=0.5, 1.0 and 1.5 will be presented in diagrams below, for four locations of duct

cross-sections from the cooling hole outlet, namely x/d=1, 3, 5 and 8. The numerical

predictions are compared with the Gartshore et al. data [6].

The results for the velocity ratio of VR = 0.5 for round-shaped holes are

presented in Figure 3. Good agreement can be observed between the computational

and the experimental data. Especially far from the hole exit, at the distances of
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Figure 6. Cooling effectiveness, η, for square shaped holes (VR=0.5)

Figure 7. Cooling effectiveness, η, for square shaped holes (VR=1.0)

Figure 8. Cooling effectiveness, η, for square shaped holes (VR=1.5)

x/d=5 and 8, the numerical results of the v2-f -kθ-εθ model show particularly good

agreement with the measurements.

Similar conclusions can be drawn for the velocity ratios VR=1.0 and VR=1.5

presented in Figures 4 and 5, respectively. For all cases, the discrepancies are clearly

visible for the x/d = 3 cross-section, where the η coefficient is overpredicted for

VR=0.5 and slightly underestimated at elevated velocity ratios.

Results obtained for square shaped holes are quite similar to those for round

ones. The best agreement has been obtained for the lowest VR= 0.5 (see Figure 6),

especially away from the hole exit. For the higher velocity ratios, i.e. VR = 1.0

and VR= 1.5 as respectively shown in Figures 7 and 8, the quantitative agreement

with experimental data is worse as square-shaped holes generate more complex flow

tq410m-e/385 11I2007 BOP s.c., http://www.bop.com.pl



386 M. Karcz

structures that are difficult to capture. At the same time, numerical predictions for

all the cases correlate quite well with the Gartshore et al. measurements [6].

3.4. Fluctuating thermal field near the hole exit

The experimental data of Kohli and Bogard [4] allow us to compare contours

of the cooling effectiveness coefficient, η, and the normalized rms temperature fluc-

tuations, θ′
rms
, at various spanwise cross-sections, x/d = −0.5, 1.0, 3.0, and in the

streamwise direction in the jet centre plane z/d= 0. The cooling effectiveness coef-

ficient has been defined above with formula (23). The values of θ′
rms
are obtained

directly from the temperature variance equation, remembering that kθ = θ′
2/2, by

proper normalization:

θ′
rms
=

√

θ′2

(Tc−T∞)
. (24)

The mean thermal fields in the form of the cooling effectiveness coefficient are

presented in Figures 9 and 10.

Unlike in the experiment, the modelled coolant jet is not attached to the wall

after injection but lifts off slightly. The core of the coolant flow is clearly visible

in Figure 10; the contours are symmetrical and the coolant jet maintains its shape

relatively far from the hole exit, x/d = 3. At the same time, the level of cooling

effectiveness, η, has been predicted quite well. The computed cooling effectiveness

distributions correlate very well with experimental data in streamwise x/d and

spanwise z/d directions.

Similar conclusions can be drawn for turbulent thermal fields, with even

better qualitative and quantitative agreement. The contour of the root-mean-square

temperature fluctuation, θ′
rms
, in the vicinity of the cooling air injection hole is

presented in Figure 11. The highest level of temperature fluctuations can be observed

in the region of the cooling hole’s leading edge and far at the interface between the

coolant jet and the mainstream, where the velocity and temperature gradients are the

greatest, and the turbulent mixing processes are the most intensive.

The maximum observed value of temperature fluctuations is θ′
rms
= 0.22. It is

close to the experimental data presented by Kohli et al. [4], where the measured level

of temperature fluctuations was estimated as high as θ′
rms
≥ 0.25, which indicated

strong fluctuations in the temperature field. Localizations of the maximum θ′
rms
are

(a) (b)

Figure 9. Cooling effectiveness, η, at the jet centre plane:

(a) experimental data [4], (b) the v2-f -kθ-εθ model
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(a)

(b)

(c)

Figure 10. Lateral cooling effectiveness, η, contours at various streamwise positions:

(a) x/D=−0.5, (b) x/D=1.0, (c) x/d=1.5 (the left column shows experimental data from [4],

the right column – the present results for the v2-f -kθ-εθ model)

(a) (b)

Figure 11. Temperature fluctuations, θ′
rms
, at the jet centre plane:

(a) experimental data [4], (b) the v2-f -kθ-εθ model

almost identical. In the spanwise direction (see Figure 12), only the vertical range of

θ′
rms
isolines is slightly overestimated.

The strong interactions at the interface between the cooling jet and the

mainstream shown in Figures 11 and 12 can be explained by instability of the shear
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(a)

(b)

(c)

Figure 12. Lateral temperature fluctuation, θ′
rms
, contours at various streamwise positions:

(a) x/D=−0.5, (b) x/D=1.0, (c) x/d=1.5 (the left column shows experimental data from [4],

the right column – the present results for the v2-f -kθ-εθ model)

layer that generates large-scale eddy structures [4]. These structures are responsible

for the rapid dilution of the coolant jet by the hot mainstream in the case of low

free-stream turbulence level. The rapid drop of cooling effectiveness is then observed

close to the injection hole: coefficient η loses over half of its value by x/D=5, as per

Figures 9 and 10. This problem was discussed by Kohli and Bogard [4] and in Lakehal

et al. [8].

4. Conclusions

Two-equation eddy heat diffusivity closures based on the temperature variation,

kθ, and its destruction rate, εθ, transport equations, have become a reliable alternative

to the standard constant or varying turbulent Prandtl number concept. So far,

such closures have been employed only for relatively simple flows in channels, pipes

or over backward-facing steps [11–13, 19], due to the inability of the existing

low-Re-number models for turbulent momentum transport to cope with more complex

flows.
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The v2-f model is known to produce better results than most of the low-Re-

number closures, especially for separation flows and flows with a favourable pressure

gradient [2, 7, 14–17]. The coupled v2-f -kθ-εθ model can be successfully adopted in the

case of mixing the coolant jet and the hot mainstream, as in film cooling arrangements.

Some disadvantages due to increasing the computational time, by employing two

transport equations for eddy heat diffusivity estimation are recompensed for by

additional insights into the flow structure.

The coupled model predicts very well the mean thermal fields of various film

cooling configurations and for a wide range of flow parameters. The results concern

the distribution of normalized temperature fluctuations, θ′
rms
, calculated on the basis

of the temperature variance Equation (18), are very encouraging. Good agreement

has been achieved with the experimental results of Kohli et al. [4], both in the level

of θ′
rms
and its spatial distribution.
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