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Abstract: Results of Finite Element Method (FEM) simulations of a strain localization in concrete
specimens are presented. Two different continuum approaches have been used to model to behaviour
of concrete: (i) an elasto-plastic constitutive law with the Drucker-Prager criterion in the compression
regime and the Rankine criterion in the tensile regime, with isotropic hardening and softening and
(ii) an isotropic continuum damage model with the equivalent strain corresponding to the Rankine
failure criterion and modified Huber-Mises criterion in terms of strains, with exponential softening.
Both constitutive models were enriched by non-local terms to describe strain localization properly,
ensure mesh-independence in the softening regime and capture the deterministic size effect. The
constitutive models were used to simulate strain localization in concrete in two boundary value
problems under plane strain conditions, viz. uniaxial tension and three-point bending. The effect of
the characteristic length on load-displacement curves and widths of strain localization is discussed.

Keywords: characteristic length, concrete, damage mechanics, elasto-plasticity, FEM, non-local
model, strain localization

1. Introduction

Elasto-plastic analysis of concrete elements is a complex task due to occur-
rences of strain localization, a fundamental phenomenon under quasi-static and dy-
namic conditions [1–5]. It may occur in the form of cracks (if cohesive properties are
dominant) or shear zones (if frictional properties prevail). Determination of the width
and spacing of strain localization is crucial for evaluation of the material strength
at the peak and in the post-peak regime. The concrete’s behaviour can be modelled
in continuum mechanical models using non-linear elasticity [6], fracture mechanics
[7, 8], the endochronic theory [9, 10], the micro-plane theory [11, 12], elasto-plasticity
[13–16], damage mechanics [17–20] and coupled plastic-damage approach [21–24], dis-
crete models using a lattice approach [25–29] and Discrete Element Method (DEM)
[30–32], etc. A description of strain localization requires that constitutive models must
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to include strain softening. In order to describe strain localization properly in the
framework of continuum mechanics, the models with softening can be enhanced with
a characteristic length of the micro-structure [5]. There are several approaches within
continuum mechanics to include characteristic length and regularize the ill-posedness
of the underlying incremental boundary value problem [33] due to strain-softening
material behaviour and localization formation (viz. differential equations of motion
not changing their elliptic type during quasi-static calculations and their hyperbolic
type during dynamic calculations), as well as avoid a pathological mesh-sensitivity
of numerical solutions for quasi-brittle materials such as second-gradient [5, 18, 34],
non-local [2, 16, 19, 35, 36] and viscous ones [37, 38]. Thanks to these, objective
and properly convergent numerical solutions for localized deformation are achieved
(a mesh-insensitive load-displacement diagram and a mesh-insensitive deformation
pattern). Otherwise, FEM results are completely controlled by the size and orienta-
tion of the mesh and thus produce unreliable results, i.e. strain localization is nar-
rowed upon mesh refinement (element size becomes the characteristic length) and
computed force-displacement curves change considerably depending on the width of
the calculated localization. Additionally, premature divergence of incremental FEM
calculations occurs. The presence of a characteristic length also allows one to take
into account the microscopic inhomogeneities triggering shear localization (e.g. grain
size, size of micro-defects) and to capture the deterministic size effect of a specimen
(i.e. the dependence of strength and other mechanical properties on the specimen’s
size) observed experimentally in softening granular and brittle specimens [2]. This is
possible as the lc/D ratio governs the model’s response (lc – characteristic length, D
– specimen size).

The aim of the present paper is to compare results of FEM calculations
of strain localization in notched concrete specimens under plane strain conditions
during uniaxial tension and three-point bending. Two simple isotropic continuum
models enhanced with characteristic length of microstructure were used to simulate
specimens’ behaviour: the elasto-plastic model and the damage model, both with
non-local softening. The FEM results were quantitatively compared with laboratory
experiments with respect to load-displacement curves and qualitatively – with other
numerical solutions.

2. Constitutive models for concrete

2.1. The isotropic elasto-plastic model

An elasto-plastic model with isotropic hardening and softening using two yield
conditions was assumed. In the compression regime, the Drucker-Prager criterion with
a non-associated flow rule was defined as follows [39]:

f1= q+ptanϕ−
(

1− 1
3
tanϕ
)

σc (κ1), (1)

where q was the Huber-Mises equivalent stress, p – mean stress, ϕ – the internal
friction angle, σc – uniaxial compression yield stress, and κ1 – the hardening
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(softening) parameter equal to plastic strain in uniaxial compression, εp11. Invariants
p and q are defined to be [40]:

p=
1
3
σkk and q=

√

3
2
sijsji, (2)

where σij was the stress tensor and sij – the deviator of the stress tensor σij . The
slope of the yield surface has been described by the tanϕ parameter [39]:

tanϕ=
3(1−rσbc)
1−2rσbc

, (3)

wherein rσbc was the ratio of strengths during biaxial and uniaxial compression
(1.1≤ rσbc≤ 1.2). The flow potential function was taken as:

g1= q+ptanψ, (4)

where ψ was the dilatancy angle (ψ 6=ϕ).
In the tensile regime, the Rankine criterion was assumed with the following

yield function:
f2=max{σ1, σ2, σ3}−σt (κ2) , (5)

where σ1, σ2 and σ3 were principal stresses, σt – the tensile yield stress, and κ2 –
the softening parameter (equal to the maximum principal plastic strain, εp1). The
associated flow rule was assumed [41].

This simple constitutive isotropic elasto-plastic model for concrete, Equa-
tions (1)–(5), required two elastic parameters (viz. Young modulus of elasticity, E,
and the Poisson ratio, υ), a compression plastic function, σc= f(κ1), a tensile plastic
function, σt = f(κ2), internal friction angle, ϕ, and dilatancy angle, ψ. The model’s
disadvantage was that the shape of the failure surface in the principal stress space was
linear and not paraboloidal, as it is in reality. In deviatoric planes, the shape was circu-
lar (during compression) and triangular (during tension); thus, it did not change from
a curvilinear triangle with smoothly rounded corners to a near circle with increasing
pressure. The strength was similar for triaxial compression and extension, while the
stiffness degradation due to strain localization and non-linear volume changes during
loading were neglected.

2.2. The isotropic damage model

The damage variable associated with a material’s degradation due to the
propagation and coalescence of micro-cracks and micro-voids is defined as the ratio
of the damage area to the material’s overall area [40, 42, 43]. The simplest isotropic
damage continuum model describes the degradation with the aid of a single scalar
damage parameter, D, increasing monotonically from zero (for undamaged material)
to one (for completely damaged material). The stress-strain function is represented
by the following relationship:

σij =(1−D)Ceijklεkl, (6)

where Ceijkl is the linear elastic material stiffness matrix and εkl – the strain tensor.
The damage parameter, D, acts as a stiffness reduction factor (the Poisson ratio, ν,
is not affected by damage). A general isotropic damage model should deal with two
scalar parameters corresponding to two independent elastic constants. The increase
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of the damage variable, D, is controlled by a damage threshold parameter, κ, defined
as a maximum of the equivalent strain measure, ε̃, obtained during the load history
up to time t. The loading function of damage is:

f (ε̃,κ)= ε̃−max{κ, κ0}, (7)

where κ0 is the initial value of κ. If the loading function, f , is negative, damage does
not develop. Parameter κ increases during monotonic loading (coincidentally with ε̃)
and remains constant during unloading and reloading.

Two criteria were assumed to define the equivalent strain measure, ε̃: (i) the
Huber-Mises failure criterion in terms of strains [18] and (ii) the Rankine failure-type
criterion [44].

With the former, the equivalent strain measure, ε̃, was [18]:

ε̃=
k−1

2k(1−2ν)I1+
1
2k

√

(k−1)2

(1−2ν)2
I21 +

12k

(1+ν)2
J2, (8)

where ν was the Poisson ratio, while I1 and J2 were respectively the first invariant of
the strain tensor and the second invariant of the deviatoric strain tensor:

I1= ε11+ε22+ε33, J2=
1
2
εijεij−

1
6
I21 . (9)

The k parameter of Equation (8) denotes the material’s compressive/tensile strength
ratio.

In the latter case, the equivalent strain measure, ε̃, was defined as the maximum
principal effective stress scaled by the modulus of elasticity [44]:

ε̃=
1
E
max
{

σeffi
}

, (10)

where E denoted the modulus of elasticity and σeffi were the principal values of the
effective stress,

σeffij =C
e
ijklεkl. (11)

An exponential softening law was used to describe the evolution of the damage
parameter, D [18]:

D=1− κ

κ0

(

1−α+αe−β(κ−κ0)
)

, (12)

where α and β were material parameters.
The constitutive isotropic damage model for concrete requires the following

parameters: E, υ, κ0, α, β, k (Equation (8)) and E, υ, κ0, α, β (Equation (10)). The
model is suitable for tensile failure and cannot describe irreversible deformations.
Neither can it realistically describe volume changes [45].

3. Non-local approach

An integral-type non-local theory was used as a regularization technique [35,
46–49] in order to describe strain localization properly, preserve the well-posedness of
the boundary value problem, obtain FEM results free from spurious discretization
sensitivity and capture the deterministic size effect (dependence of the nominal
strength on the structure size). It was achieved with weighted spatial averaging over
the neighbourhood of each material point of a suitable state variable. Thus, stress at
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a certain material point depended not only on the state variable at that point, but also
on the distribution of state variables in a finite neighbourhood of the point considered.
(The principle of local action did not hold – non-local interaction took place between
any two points). Elasto-plastic models of this kind were developed by Bazant and
Lin [47], Brinkgreve [48] and others. Damage models of this kind were first proposed
by Pijaudier-Cabot and Bazant [35]. It is usually sufficient to treat non-locally only
one variable controlling material softening or degradation [35], whereas stresses and
strains remain local.

It was assumed in our elasto-plastic model that the softening parameter, κi,
was non-local only:

κ̄i (xk)=
1
A

∫

ω (r)κi (xk+r)dV , (13)

where xk were the coordinates of the considered (actual) point, r – distance measured
from point xk to other material points, ω – the weighting function, and A – weighted
volume. The Gauss distribution function was used as the weighting function, ω (which
is usually non-negative and normalized):

ω (r)=
1

lc
√
π
e−(

r

lc
)2 , (14)

where lc denoted a characteristic (internal) length controlling the spread of the
non-local weight function. The averaging in Equation (13) is restricted to a small
representative area around each material point. The influence of the points at the
distance of r = 3lc is merely about 0.1%. Characteristic length can be related
to the material’s micro-structure (e.g. aggregate size in concrete). According to
Pijaudier-Cabot and Bazant [35] and Bazant and Oh [49], it is approximately 3×da
in concrete, where da is the maximum aggregate size. It is usually determined in an
inverse identification process of experimental data [50, 51] since it cannot be measured
directly. Le Bellego et al. [52] have recently presented a calibration method of non-local
models including characteristic length on the basis of 3 size effect bending tests.
However, to determine one representative characteristic length of a micro-structure
is very difficult in concrete, where strain localization can include a mixed mode
(cracks and shear zones [42]) and characteristic length, although one-dimensional,
is related to the fracture process zone of a certain area or volume [42] which
increases during deformation (e.g. on the basis of acoustic emission measurements
of Pijaudier-Cabot et al. [53]). Other researchers have concluded that characteristic
length is not a constant and it depends on the type of the boundary value problem
and the current level of damage [54]. Thus, a determination of lc requires further
numerical analyses and measurements, e.g. using a differential interference contrast
DIC technique [55]. Measurements of load-displacement curves and width of the
fracture process zone in experiments with the same concrete for different boundary
value problems and specimen sizes are particularly important [56].

The softening rates, dκi, Equations (1) and (5), were assumed to be a linear
combination of the local and non-local values (independently for both yield surfaces)
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according to the modified Brinkreve formula [48] (the so-called over-non-local formu-
lation):

dκ̄i (xk)= (1−m)dκi (xk)+
m

A

∫

ω (r)dκi (xk+r)dV, (15)

where m was the non-local parameter, which should be greater than 1 to obtain
mesh-independent results [16, 57]. Equation (15) can be rewritten as follows [48]:

dκ̄i (xk)= dκi (xk)+m
(

1
A

∫

ω (r)dκi (xk+r)dV −dκi (xk)
)

. (16)

Since the rate of the hardening parameter was unknown at the beginning of each
iteration, additional sub-iterations are required to solve Equation (16). To simplify
the calculations, the non-local rates were replaced with their approximations, dκesti ,
calculated on the basis of the known total strain rates [16]:

dκ̄i (xk)≈ dκi (xk)+m
(

1
A

∫

ω (r)dκesti (xk+r)dV −dκesti (xk)
)

. (17)

In the damage mechanics model, the equivalent strain measure, ε̃, of Equations (8)
and (10) was replaced with its non-local definition, ε̄ (the response was local in the
elastic range):

ε̄(xk)=
1
A

∫

ω (r) ε̃(xk+r)dV. (18)

4. Implementation

Both models, enhanced by non-local terms, were implemented in the Abaqus
commercial finite element code [39] for efficient computations. Such implementation
can be performed with two methods.

In one method, two identical overlapping meshes are used. One mesh enables
obtaining information about coordinates of integration points in the entire specimen,
area of all finite elements and total strain rates in each element. The elements in this
mesh are defined by the user in the UEL procedure. As they have no stiffness, they have
no influence on the stress results for the specimen’s body. The stored information is
needed to calculate non-local variables with the aid of the other mesh, which includes
standard elements from the Abaqus library. The constitutive law is defined by the
UMAT procedure. During odd iterations, information is gathered in the elements of
the first mesh. During even iterations, the stresses in the elements of the second mesh
(including standard elements) are determined taking into account non-local variables
and a non-linear finite element equation is solved. Between odd and even iterations,
the same element configuration is imposed.

In the other method, only one mesh is used, which contains the user’s elements
(defined by the UEL procedure). Information about elements is stored during odd
iterations and stresses within a non-local theory are determined during even iterations.
This method consumes less time, but it is not so user-friendly as it requires defining
the stiffness matrix and out-of-balance load vector in finite elements.

A modified Newton-Raphson scheme was used to solve the non-linear equation
of motion governing the response of a system of finite elements. The calculations
were performed with a symmetric elastic global stiffness matrix. Calculations with
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a full Newton-Raphson method resulted in poor convergence in the softening regime,
as determination of a tangent stiffness matrix within a non-local theory is virtually
impossible. The following convergence criteria were assumed [39]:

rmax≤ 0.01q̃ and cmax≤ 0.01∆umax, (19)

where rmax was the largest residual out-of-balance force, q̃ – the spatial force averaged
over the entire body, cmax – the greatest correction of the displacement, and ∆umax –
the greatest change of displacement in an increment. The procedure yielded sufficiently
accurate and fast convergence. The magnitude of the maximum out-of-balance force
at the end of each calculation step was less than 1% of the calculated total vertical
force at the specimen’s top. Calculations with smaller tolerances (see Equation (19))
did not influence the FEM results. Integration was performed in one sample point of
each element (centroid).

To satisfy the consistency condition, f =0, the trial stress method (linearized
expansion of the yield condition about the trial stress point) using an elastic predictor
and a plastic corrector with return mapping algorithm (see [58]) was applied with the
following criterion:

rλ/σ
max
y ≤ 10−6, (20)

where rλ was the residual plastic multiplier and σmaxy denoted the maximum cohesion
yield stress in each increment.

The calculations were carried out using large-displacement analysis available in
the Abaqus finite element code [39]. In this method, the body’s actual configuration
was taken into account. The Cauchy stress was taken as the stress measure. The
conjugate strain rate was the rate of deformation. Rotation of the stress and strain
tensor was calculated with the Hughes-Winget [59] method. Non-local averaging was
performed in the current configuration.

5. FEM simulations

5.1. Uniaxial tension

The problem of a symmetric double-notched concrete specimen under uniaxial
tension was experimentally investigated by Hordijk [60]. The geometry of his concrete
specimen (width b=60mm, height h=125mm, thickness in the out-of-plane direction
t=50mm) and boundary conditions are presented in Figure 1. Two symmetric notches

Figure 1. Geometry and boundary conditions of a specimen with a notch under uniaxial tension
(dimensions given in mm)
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(a) (b) (c)

Figure 2. FE meshes used for calculations of uniaxial tension: (a) coarse, (b) medium, (c) fine

Figure 3. Assumed σt= f(κ2) curve in the tensile regime/elasto-plastic model for uniaxial
tension with softening modulus Ht=2300MPa (σt – tensile plastic stress,

κ2 – softening parameter)

5×5mm2 each were located at the mid-point of both of the specimen’s sides. Three
different FE meshes were used: coarse (1192 triangular elements), medium (1912
triangular elements) and fine (4168 triangular elements), see Figure 2. The so-called
„shading effect” was considered when calculating non-local quantities close to the
notch (i.e. the averaging procedure considered the notch as an internal barrier shading
non-local interaction [61]).

The modulus of elasticity was equal to E=18.0GPa, Poisson’s ratio was υ=0.2
and the tensile strength was ft=3.2MPa in both models.

The elasto-plastic calculations were carried out with 3 different diagrams
describing the tensile plastic stress, σt, versus the softening parameter, κ2. A linear
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(a) (b)

(c) (d)

(e)

Figure 4. Calculated stress-elongation diagrams for a specimen under uniaxial tension with
various FE meshes compared with the experimental diagram [60]: (a) the elasto-plastic model with
non-local linear softening (softening modulus Ht=1300MPa), (b) the elasto-plastic model with
non-local linear softening Ht=2300MPa), (c) the elasto-plastic model with non-local exponential
softening with Equation (21), (d) the damage model with non-local softening, Equation (8),

(e) the damage model with non-local softening, Equation (10)

and non-linear σt= f(κ2) relationship was assumed in the softening tensile regime. In
the case of linear softening, two softening modules were used: Ht=3.2/(2.4 ·10−3)≈
1300MPa (Figure 3) and Ht=3.2/(1.5 ·10−3)≈ 2100MPa. Additionally, a curvilinear
exponential softening curve proposed by Hordijk [60] was taken into account in the
tensile regime:
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(A)

(B)

(C)

(a) (b) (c)

Figure 5. Calculated contours of non-local parameter κ̄2 in a specimen under uniaxial tension for
(a) coarse, (b) medium and (c) fine mesh: (A) the elasto-plastic model with non-local softening
(softening modulus Ht=1300MPa), (B) the damage model with non-local softening, Equation (8),

(C) the damage model with non-local softening, Equation (10)
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σt (κ2)= ft

{[

1+
(

c1
κ2
κu

)3
]

exp
(

−c2
κ2
κu

)

− κ2
κu

(

1+c31
)

exp(−c2)
}

, (21)

where κu was the ultimate value of the softening parameter (κu = 0.007) and c1,
c2 were constants equal to 3 and 6.93, respectively [60]. The non-locality parameter
m=2 was chosen on the basis of initial own FE studies [16] and studies presented in
[57]. Higher values of m resulted in unrealistically large strain localization widths.

The following parameters were chosen for the damage models: κ0 = 2.2 ·10−4,
α= 0.96, β = 600 and k = 10 (Equations (8) and (12)) and κ0 = 1.7 ·10−4, α= 0.96
and β=900 (Equations (10) and (12)).

The characteristic length, lc, was assumed to be 5mm in both models, on the
basis of initial calculations with non-local models [16, 22, 62].

The nominal stress-elongation tensile curves for all the meshes, are shown in
Figure 4 in comparison with the experimental curve [60]. The elongation δ of Figure 4
denotes the specimen’s elongation above and below both notches at the height of
35mm (cf. Figure 1). It was measured experimentally by 4 pairs of extensometers with
a gauge length of 35mm [60]. The vertical normal stress was calculated by dividing
the calculated resultant vertical force by the specimen cross-section of 50×50mm2.
The calculated load-displacement curves of Figure 4 practically coincide for the
different meshes and models (in particular for damage models). They are also in
satisfactory agreement with the experimental curve (especially the damage curves
and the elasto-plastic curve with linear softening under Ht = 2100MPa), although
a small deviation between the theory and the experiment has occurred (cf. [60]).

The calculated contours of the κ̄2 non-local parameter in the specimen are
shown in Figure 5 in the residual state for δ=0.05mm. The width of the localization
zone between two notches (wlz, determined from the distribution of κ̄2) is similar
for both damage models, wlz =25mm (5.0× lc). In elasto-plasticity, the width of the
localization zone is approximately 25mm for the coarse mesh, 20mm for the medium
mesh and 15mm (3.0× lc) for the fine mesh and is not influenced by the rate of
softening (Figure 6).

Additionally, the influence of the micro-structure’s characteristic length, lc, on
the specimen’s behaviour was investigated. FEM calculations were performed with lc in
the range from 2.5mm to 10.0mm using the mesh shown in Figure 2c. The obtained
load-displacement curves are presented in Figure 7. The greater the characteristic
length (up to lc=7.5mm), the higher the maximum tensile stress. The slope to the
horizontal of all curves after the peak decreases with increasing lc (the material
becomes more ductile with increasing lc). The calculated contours of the non-local
parameter κ in the specimen are shown in Figure 8 in the residual state for a fine mesh
shown in Figure 2c. In general, the width of the localized zone, wlz, increased with
increasing lc; it was 10mm (4.0× lc for lc=2.5mm) or 15mm (3.0× lc for lc=5mm,
2.0× lc for lc=7.5mm and 1.5× lc for lc=10mm) using the elasto-plastic model, and
15mm (6.0× lc for lc =2.5mm), 25mm (5.0× lc for lc =5mm) or 35mm (4.7× lc for
lc=7.5mm and 3.7× lc for lc=10mm) using the damage model, Equation (8).

The results are in good qualitative accordance with the FEM results obtained by
Gutierrez and de Borst [63] with the second-gradient elasto-plastic model and those
of Peerlings et al. [18] and Pamin [64], using the second-gradient damage model, with
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(a) (b) (c)

Figure 6. Calculated contours of non-local parameter κ̄2 in a specimen under uniaxial tension
for fine mesh in elasto-plasticity with non-local softening: (a) linear softening Ht=1300MPa,

(b) linear softening Ht=2300MPa, (c) curvilinear softening with Equation (21)

(a) (b)

Figure 7. Calculated vertical stress-elongation diagrams using various characteristic lengths, lc,
for a specimen under uniaxial tension using a fine mesh: (a) the elasto-plastic model with non-local

softening Ht=1300MPa, (b) the damage model with non-local softening, Equation (8)

respect to the effect of characteristic length on the width of strain localization and
the load-displacement curve.

5.2. Three-point bending

The behaviour of a symmetric concrete beam with a notch at the bottom at
mid-span and free ends during three-point bending was simulated. It was experimen-
tally investigated by Le Bellego et al. [52] and later numerically simulated by Le
Bellego et al. [52] and Rodriguez-Ferran et al. [65] in a non-local damage approach.
Three beams were used in laboratory tests: small (h=8cm), medium (h=16cm) and
large (h= 32cm). The beam span was L= 3h. The beam’s geometry and boundary
conditions are presented in Figure 9. The loading was prescribed at the top edge’s
mid-span through vertical displacement.
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(A)

(B)

(a) (b) (c) (d)

Figure 8. Calculated contours of damage parameter κ̄2 in a specimen under uniaxial tension for
a fine mesh of (a) lc=2.5mm, (b) lc=5mm, (c) lc=7.5mm, (d) lc=10mm: (A) the elasto-plastic
model with non-local softening, (B) the damage model with non-local softening, Equation (8)

Figure 9. Geometry of the beam and boundary conditions [52]

Three FE meshes were assumed, with 1534, 2478 and 4566 triangular elements
respectively for the small, medium and large specimens (see Figure 10). Due to the
the problem’s symmetry, only the left half of the beam was modelled.

The modulus of elasticity was assumed as E=38.5 GPa and the Poisson ratio
as ν = 0.2. In the tensile regime of the elasto-plastic model, the Rankine criterion
with Hordijk’s exponential curve was assumed with c1 = 3 and c2 = 6.93 (see [52],
Equation (21)). Two internal lengths were chosen for the FE analysis: lc = 5mm
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(a)

(b)

(c)

Figure 10. FE meshes used for bending calculations: (a) coarse, (b) medium, (c) fine
(the damage model with non-local softening)

and lc = 10mm. With two different values of lc, two sets of material parameters
were chosen for Equation (21) (with m= 2), ft = 3.6MPa, κu = 0.005 for lc = 5mm
and ft = 3.3MPa, κu = 0.003 for lc = 10mm, in order to obtain the best agreement
between the load-displacement diagrams from FE analyses and laboratory tests [52].
The internal friction angle equalled ϕ=10̊ , Equation (3), and the dilatancy angle –
ψ= 5̊ . The compressive strength was equal to fc=40MPa. A linear softening modulus
under compression wasHc=0.8MPa. However, the effect of material parameters under
compression on the FEM results was insignificant.

In the damage model, Equation (10), two sets of material parameters were again
chosen for two different values of lc: κ0=7 ·10−5, α=0.99, β=600 for lc=5mm and
κ0=6.25 ·10−5, α=0.99, β=1000 for lc=10mm.

Load-displacement curves for all beams obtained from FEM calculations using
the internal lengths of lc = 5mm and lc = 10mm are compared with experiments
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(A)
(a) (b)

(B)

Figure 11. Load-displacement curves from experiments [52] and FEM simulations for
(a) lc=5mm, (b) lc=10mm: (A) the elasto-plastic model with non-local softening, (B) the

damage model with non-local softening, Equation (10)

in Figure 11. Satisfactory agreement with experiment has been achieved. The FEM
results slightly overestimate the load bearing capacity of the small and medium beam
and underestimate the maximum load for the large beam. The large to medium beam
specimen strength ratio is similar to the medium to small one. The same numerical
results were obtained by Le Bellego et al. [52] and Rodriguez-Ferran et al. [65],
though they used different definitions of equivalent strain ε̃ and evolution laws. Other
calculations demonstrate that the greater the characteristic length, the strober the
beam, in particular in damage mechanics [20, 41].

The distribution of the κ̄2 non-local parameter above the notch is shown in
Figures 12 and 13. The width of the localization zone, wlz, in the residual state in
elasto-plasticity was about 25mm (5× lc) for lc=5mm (all beams), or 50mm (5× lc,
small and medium beams), and 45mm (4.5× lc, large beam) for lc = 10mm. In the
damage model, it equalled 40mm (8× lc) for lc = 5mm, or 65mm (6.5× lc, small
beam), 75mm (7.5× lc, medium beam) and 90mm (9× lc, large beam) for lc=10mm.
It was independent of the mesh size.

The localized zone’s evolution during deformation is shown in Figure 14. The
width of the localized zone increases in the early stages of deformation after the peak
and remains almost unaltered during advanced deformation in elasto-plasticity. How-
ever, it increases continuously in damage mechanics. This outcome is in accordance
with the FEM calculations of Pamin [64, 66], who used second-gradient elasto-plastic
and damage models.
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(A)

(B)

(C)

(a) (b)

Figure 12. Calculated contours of non-local parameter κ̄2 along the beam’s height at the left side
of notch: (a) lc=5mm, (b) lc=10mm; (A) h=80mm, (B) h=160mm, (C) h=320mm

(the elasto-plastic model with non-local softening)

Finally, the influence of parameters α, β and κ0 on the force-displacement curve
is shown in Figure 15 for the damage model, Equation (10). Parameter κ0 strongly
influences the peak on the load-displacement curve. The β parameter affects the slope
of the curve in the softening regime while the α parameter has a considerable effect
on the residual value.

6. The size effect

The size effect is the dependence of structural strength on the structure’s
size. The maximum normalized loads obtained from FEM simulations for notched
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(A)

(B)

(C)

(a) (b)

Figure 13. Calculated contours of non-local parameter κ̄2 along the beam’s height at the left side
of notch: (a) lc=5mm, (b) lc=10mm; (A) h=80mm, (B) h=160mm, (C) h=320mm

(the damage model with non-local softening, Equation (10))

concrete specimens in the damage and elasto-plastic approaches (uniaxial tension
and three-point bending) were compared with a deterministic (energetic) size effect
law given by Bazant for structures with pre-existing notches or large stress-free cracks
growing in a stable manner prior to the maximum load [2]:

σ=
Bft

√

1−D/D0
, (22)

where σ was nominal strength, B – a dimensionless geometry-dependent parameter
(dependent on the geometry of the structure and the crack), D – specimen size and
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(A)

(B)

Figure 14. Evolution of non-local parameter κ̄2 and damage parameter D above the notch (the
right side of the beam, lc=10mm, h=160mm): (A) the elasto-plastic model with non-local

softening, (B) the damage model with non-local softening, Equation (10)

D0 – a size-dependent parameter referred-to as transitional size. Equation (22) can
be rewritten as:

1
σ2
=αD+c with α= c/D0 and Bff =1/

√
c. (23)

Linear regression was used in order to find parameters B and D0 from FE analyses. A
comparison of FEM results and Bazant’s size effect law [2] is presented in Figure 16:
good agreement has been obtained. The normalized strength decreases almost linearly
in the considered range with the increasing h/lc size ratio.

7. Final remarks

The FEM calculations have shown that both simple isotropic constitutive
models, elasto-plastic and damage with non-local softening, are capable of properly
capturing the localization of strain and the related size effect in concrete. The obtained
FEM results are unaffected by mesh sensitivity as the width of strain localization
is determined by a characteristic length incorporated in the model. Satisfactory
agreement between numerical simulations and laboratory experiments for notched
concrete specimens during uniaxial tension and three-point bending has been achieved
with respect to load-displacement curves.
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(a)

(b)

(c)

Figure 15. Influence of parameters α, β and κ0 on the load-displacement curve
in the damage model (lc=5mm, h=160mm, Equation (10))

The greater the ratio between the micro-structure’s characteristic length and
the specimen’s size, the higher the specimen’s strength and the ductility tend to be.

The width of the localized strain zone in concrete specimens increases with the
increasing ratio of the micro-structure’s characteristic length to the specimen’s size.
The increase is more pronounced in damage mechanics.

The localized zone is wider in FE analyses with the damage model than with
the elasto-plastic model of similar lc. For uniaxial tension, the width of the localized
strain zone is about (1.5− 4.0)× lc in the elasto-plastic model and (3.7− 6.0)× lc
in damage mechanics. For bending, the width of the localized strain zone is about
(4.5−5.0)× lc in elasto-plasticity and (6.5−9.0)× lc in damage mechanics. The width
of the localized zone is independent of the rate of softening in elasto-plasticity.
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(a) (b)

(A)

(B)

Figure 16. Relationship between calculated normalized loads (A) P/(Eκ0bt) and P/(ftbt) during
uniaxial tension and (B) (PL)/(Eκ0h2t) and (PL)/(fth2t) during bending (with lc=5mm)

and the h/lc ratio compared with Bazant’s size effect law [2] in:
(a) damage mechanics and (b) elasto-plasticity

The width of the localized zone increases throughout the deformation process
in damage mechanics, whereas it is almost constant in elasto-plasticity.

The calculated deterministic size effect in notched concrete elements during
tension and bending is in agreement with the corresponding size effect law of Ba-
zant [2].

In order to identify the characteristic length of a micro-structure, FEM simula-
tions of different laboratory experiments with the same concrete are necessary, wherein
the load-displacement curve and the displacement field are measured simultaneously.

Our calculations on strain localization in concrete will be continued. The dam-
age model with non-local softening will be combined with an elasto-plastic hardening
model to include plastic deformations [56, 57], first using the Drucker-Prager failure
criterion, Equation (1), and then the Menetrey and Willam criterion [15]. Afterwards,
anisotropy will be included in the model [67]. Spatially correlated distribution of the
tensile strength will be assumed in order to describe an effect of statistical size [68, 69].
Additionally, laboratory tests will be performed wherein the width of the fracture pro-
cess zone will be measured using a DIC technique [70].
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