
TASK QUARTERLY 11 No 1–2, 169–179

DIFFERENTIAL EVOLUTION

WITH COMPETITIVE SETTING OF CONTROL

PARAMETERS

JOSEF TVRDÍK

University of Ostrava, Department of Computer Science,

30. dubna 22, 701 03 Ostrava, Czech Republic

Josef.Tvrdik@osu.cz

(Received 21 December 2006; revised manuscript received 25 January 2007)

Abstract: This paper is focused on the adaptation of control parameters in differential evolution.

Competition of various control parameter settings was proposed in order to ensure self-adaptation

of parameter values in the search process. Several variants of such algorithm were tested on six

functions at four levels of the search-space dimension. The competitive variants of differential

evolution have proved to be more reliable and less time-consuming than the standard differential

evolution. The competitive variants have also outperformed other tested algorithms in their reliability

and convergence rate.

Keywords: global optimization, differential evolution, self-adaptation, numerical comparison

1. Introduction

We will deal with the global optimization problem: for a given objective

function:

f :S→R, S⊂R
D .

There is point ~x∗ to be found such that ~x∗ =argmin~x∈S f(~x). Point ~x
∗ is called the

global minimum point, while S is the search space. We focus on the problems wherein

the objective function is continuous and the search space is a closed compact set,

S=
∏D
d=1[ad,bd], ad<bd, d=1, 2,. . ., D (box constrains).

The problem of the global optimization is a difficult one and numerous stochas-

tic algorithms have been proposed for its solution, see e.g. [1, 2]. The authors of

many of these stochastic algorithms make claims about their efficiency and reliabil-

ity in searching for the global minimum. Reliability means that the point with the

minimal function’s value found in the search process is sufficiently close to the global

minimum point, while the measure of efficiency is the algorithm’s finding a point suf-

ficiently close to the global minimum point in reasonable time. However, when using

such algorithms, one is faced with the problem of setting their control parameters. The

efficiency and the reliability of many algorithms is strongly dependent on the values

of their control parameters, but authors’ recommendations in this respect are often

170 J. Tvrd́ık

vague, see e.g. [3, 4]. The user is supposed to be able to adjust the parameter values

according to the results of preliminary trial-and-error experiments with the search

process. Such approach is not practicable in tasks, where global optimization is just

one step on the way to solve the user’s problem or when the user has no experience

in the fine art of control parameter tuning.

Adaptive robust algorithms have been studied in recent years that are reliable

enough at reasonable time-consumption without the necessity of fine tuning their

input parameters. A proposal of an adaptive generator of robust algorithms was

put forward in Deb [5]. Winter et al. [6] proposed a flexible evolutionary agent

for real-coded genetic algorithms. Theoretical analysis of Wolpert and Macready [7]

implies that no search algorithm can outperform others for all objective functions. In

spite of this, there is empirical evidence that some algorithms can outperform others

for relatively wide classes of problems both in the convergence rate and the reliability

of finding the global minimum point. Thus, adaptive algorithms are likely to be found

through experimental research rather than a purely theoretical approach.

The paper is a presentation of an adaptive procedure of setting control pa-

rameters in the algorithm of differential evolution in order to propose a self-adaptive

algorithm for the box-constrained global optimization problem performing well for

a wide range of problems without tuning control parameters. The following section

is devoted to the algorithm of differential evolution and its control parameters. Com-

petition of several control-parameter settings and its implementation into differential

evolution are described in Section 3. The design of numerical experiments, the test

functions used as benchmarks and the results are given in Section 4. In Section 5,

summary results are presented and discussed for all the tested algorithms. Conclud-

ing remarks are made in the final section.

2. Differential Evolution and its control parameters

Differential Evolution (DE), as introduced by Storn and Price [3], is a simple

but powerful evolutionary algorithm for global optimization over a box-constrained

search space. The DE algorithm is written in pseudo-code as Algorithm 1. The basic

idea of the differential evolution consists in alternating two populations, P and Q,

of the same size, NP . A new trial point, ~y, is composed of the current point, ~xi, of

the old population and point ~u obtained by using mutation. If f(~y)< f(~xi), point

~y is inserted into the new population, Q, instead of ~xi. After completion of the new

population, Q, the old population, P , is replaced by Q and the search continues until

the stopping condition is fulfilled.

Algorithm 1. Differential evolution

1 generate P =(~x1,~x2, . .. ,~xNP); (NP points in S)

2 repeat

3 for i := 1 to NP do

4 compute a mutant vector ~u;

5 create ~y by the crossover of ~u and ~xi;

6 if f(~y)<f(~xi) then insert ~y into Q

7 else insert ~xi into Q

8 endif;

Differential Evolution with Competitive Setting of Control Parameters 171

9 endfor;

10 P :=Q;

11 until stopping condition;

There are several strategies to generate the mutant point ~u. One of the most

popular variants – called DE/rand/1/bin in the literature [8, 9, 3] and hereinafter

denoted as DER – generates point ~u by adding the weighted difference of two points:

~u=~r1+F (~r2−~r3), (1)

where ~r1, ~r2 and ~r3 are three distinct points taken randomly from P (not coincident

with the current ~xi) and F > 0 is an input parameter. Another variant, called

DE/best/2/bin and hereinafter denoted as DEBEST, generates point ~u according to

the following formula:

~u= ~xmin+F (~r1+~r2−~r3−~r4) , (2)

where ~r1, ~r2, ~r3, ~r4 are four distinct points taken randomly from P (not coincident

with the current ~xi), ~xmin is the point of P with the minimal function value, and

F > 0 is an input parameter.

In both the above mentioned strategies , the elements yd, d=1, 2,. . ., D of trial

point ~y are built up by the crossover of its parents, ~xi and ~u, using the following rule:

yd=

{

ud if Ud≤CR or d= l
xid if Ud>CR and d 6= l , (3)

where l is a randomly chosen integer from {1, 2, .. . , D}, U1, U2, .. . , UD are independent
random variables uniformly distributed in [0, 1), and CR ∈ [0,1] is an input parameter
influencing the number of elements to be exchanged in the crossover. Equation (3)

ensures that at least one element xid of ~xi is replaced with ud, even if CR=0.

Differential evolution has recently become one of the most popular algorithms

for continuous global optimization problems [10, 9]. However, its search efficiency is

known to be very sensitive to setting the F and CR values. The recommended values

are F =0.8 and CR=0.5, but even Storn and Price used 0.5≤F ≤ 1 and 0≤CR≤ 1
in their principal paper [3], depending on the results of preliminary tuning. They also

set the population size below the recommended NP =10D in many of their test tasks.

Many papers have dealt with setting the control parameters for differential

evolution. Ali and Törn [11] suggested to adapt the value of the scaling factor, F , in

the search process according to the following equation:

F =

{

max(Fmin,1−| fmaxfmin
|) if| fmax

fmin
|< 1

max(Fmin,1−| fminfmax
|) otherwise ,

(4)

where fmin, fmax are respectively the minimum and maximum function values in the

population, while Fmin is an input parameter ensuring that F ∈ [Fmin,1]. According
to [11] this calculation of F reflects the demand to make the search more diversified

at an early stage and more intensified at later stages, i.e. to produce larger values of

F for large fmax−fmin, differences and smaller values of F otherwise. Rule (4) works
properly only for fmin > 0. When fmax > 0 and fmin < 0, especially if |fmax|< |fmin|,
the values of F fluctuate very rapidly in [Fmin,1] even if the changes in fmax or fmin
are small. However, from a practical point of view, this occurs only as a brief episode

172 J. Tvrd́ık

in the search process for most optimization tasks. Moreover, the values of F calculated

using Equation (4) are not invariant to the shift of the objective function f values

by a constant, although such a shift should not affect the search process, because the

shape of the function is not changed by the shift. Nevertheless, the proposal (4) is an

acceptable compromise between simplicity and performance.

Zaharie [12] derived the critical interval for DE control parameters, ensuring

that the mean of population variance would not decrease, which resulted in the

following relationship:

2pF 2− 2p
NP
+
p2

NP
> 0, (5)

where p=max(1/D,CR) is the probability of “differential perturbation” according

to Equation (3). Relationship (5) implies that the mean of population variance does

not decrease if F >
√

1/NP , but practical reason for such result are very limited, as

it brings no new information compared with the minimal value of F =0.5 used in [3]

and in other applications of differential evolution.

Other attempts at adaptating DE control parameters have appeared as well (see

e.g. [13–16]). A recent state of adaptive parameter control in differential evolution

has been summarized by Liu and Lampinen [17].

A new idea of self-adaptation of control parameters F and CR in differential

evolution has been presented by Brest et al. [8]. The values of F and CR can be

changed in each generation with respective probabilities τ1, τ2. New values of F are

distributed uniformly in [Fl, Fu] and new CR values are also uniform random values

∈ [0, 1].

3. Competition in Differential Evolution

Control parameters can be set adaptively by implementing competition into

the algorithm. This idea, similar to that of competition of local-search heuristics in

evolutionary algorithms [18] or in controlled random search [19], has been proposed

recently [20].

Let us have H settings (different values of F and CR used in the statements

in line 4 and 5 of Algorithm 1) and choose among them at random with probability

qh, h=1, 2, . .. , H. The probabilities can be adjusted according to the success rate of

setting in the preceding steps of the search process. The hth setting is successful if

it generates such a trial point ~y that f(~y)< f(~xi). When nh is the current number

of the hth setting successes, probability qh can be evaluated simply as the relative

frequency:

qh=
nh+n0

∑H
j=1(nj+n0)

, (6)

where n0> 0 is a constant. The setting of n0≥ 1 prevents a dramatic change in qh by
one random successful use of the hth parameter setting. In order to avoid the process’s

degeneration, the current values of qh are reset to their starting values (qh=1/H) if

any probability qh decreases below a given limit δ > 0.

It is supposed that such competition of various settings will prefer the successful

ones. It provides a self-adaptive mechanism of setting control parameters at values

appropriate for the problem being solved.

Differential Evolution with Competitive Setting of Control Parameters 173

4. Experiments and results

Four variants of such competitive differential evolution were implemented and

tested:

– DER9 – mutant vector ~u was generated according to Equation (1), nine settings

of control parameters were all the combinations of three F values (F = 0.5,

F =0.8, and F =1) with three values of CR,

– DEBEST9 – mutant vector ~u generated according to Equation (2), nine settings

of control parameters F and CR as in DER9,

– DERADP3 – mutant vector ~u generated according to Equation (1), F adaptive

according to Equation (4), three settings of CR,

– DEBR18 – 18 settings, aggregation of settings used in DER9 and DEBEST9,

implemented due to the good performance of DER9 and DEBEST9 in the test

tasks.

Three values of control parameter CR were used in all the variants, namely

CR=0, CR=0.5, and CR=1. The population’s size was set at NP =max(20,2D),

and parameters for competition control were set to n0=2, and δ=1/(5H) in all the

tasks.

The above variants of competitive differential evolution were compared with

four other algorithms. One of them was the standard DER with recommended values

F = 0.8 and CR = 0.5, and the same population size as in the competitive variants

of differential evolution. The second algorithm was self-adaptive differential evolution

(SADE) as proposed by Brest et al., with values of its control parameters recommended

in [8], i.e. population size NP = 10D and input parameters for self-adaptation set

as follows: τ1 = τ2 = 0.1, Fl = 0.1, and Fu = 0.9. The third algorithm was that of

controlled random search with eight competing local-search heuristics (CRS8HC),

described in [19] including the setting of its control parameters. The last algorithm

was SOMA (the all-to-one variant, see [21] and [4]). Its control parameters were set at

NP = 5D, mass = 3, step = 0.11, and prt = 0.1, as recommended by Ivan Zelinka in

a private communication.

The search for the global minimum was stopped if fmax− fmin < 10−7 or
the number of objective function evaluations exceeded the input’s upper limit of

20000D. The algorithms were tested on six functions commonly used as benchmarks

(cf. [11, 9, 3]):

– Ackley’s function (multimodal, separable)

f(~x)=−20exp



−0.02

√

√

√

√

1

D

D
∑

d=1

x2d



−exp
(

1

D

D
∑

d=1

cos2πxd

)

+20+exp(1)

xd ∈ [−30,30], ~x∗=(0,0, . .. ,0), f(~x∗)= 0,

– the First De Jong function (sphere model, unimodal, continuous, convex)

f(~x)=

D
∑

d=1

x2d

xd ∈ [−5.12,5.12], ~x∗=(0,0,. . .,0), f(~x∗)= 0,

174 J. Tvrd́ık

– Griewank’s function (multimodal, nonseparable)

f(~x)=

D
∑

d=1

xd
2

4000
−
D
∏

d=1

cos

(

xd√
d

)

+1

xd ∈ [−400,400], ~x∗=(0,0,. . .,0), f(~x∗)= 0,

– Rastrigin’s function (multimodal, separable)

f(~x)= 10D+
D
∑

d=1

[xd
2−10cos(2πxd)]

xd ∈ [−5.12,5.12], ~x∗=(0,0, . .. ,0), f(~x∗)= 0,

– Rosenbrock’s function (banana valley, unimodal, nonseparable)

f(~x)=

D−1
∑

d=1

[

100(x2d−xd+1)2+(1−xd)2
]

xd ∈ [−2048,2048], ~x∗=(1,1, . .. ,1), f(~x∗)= 0 and

– Schwefel’s function (multimodal, the global minimum distant from the next

best local minima)

f(~x)=

D
∑

d=1

xd sin(
√

|xd |)

xd ∈ [−500,500], ~x∗=(s,s,...,s), s=420.9687, f(~x∗)=−418.9829D.

The tests were preformed for all the functions at four levels of dimension D of

the search spaces, namely D=2, D=5, D=10 and D=30. A hundred independent

runs were carried out for each function and level of D.

The accuracy of result obtained in the search for the global minimum was

evaluated according to the number of duplicated digits compared with the correct

result. The number of duplicated digits, λ, can be calculated via log relative error [22]:

– if c 6=0, λ is evaluated as:

λ=















0 if |m−c||c| ≥ 1
11 if |m−c||c| < 1×10−11

−log10
(

|m−c|
|c|

)

otherwise ,

(7)

where c denotes the correct value and m denotes the value obtained by the

search;

– if c=0, λ is evaluated as:

λ=







0 if |m| ≥ 1
11 if |m|< 1×10−11

−log10 (|m |) otherwise .
(8)

Two values of the number of duplicated digits are given in the results: λf
for the function value and λm, being the minimal λ for the global minimum point

(x1, x2, . .. , xD) found by the search.

Differential Evolution with Competitive Setting of Control Parameters 175

Table 1. Differential evolution with competing parameter settings

Algorithm DERB18 DER9 DEBEST9 DERADP3

Function D λf λm ne R λf λm rne R λf λm rne R λf λm rne R

ackley 2 7.1 6.8 2409 100 7.2 6.9 −9 100 7.1 6.7 10 100 7.2 6.8 3 100

dejong1 2 8.4 3.7 1162 100 8.4 3.7 −8 100 8.4 3.7 7 100 8.4 3.7 14 100

griewank 2 8.5 3.5 2876 100 8.3 3.4 −12 100 8.5 3.5 21 100 8.0 3.2 7 93

rastrig 2 8.5 4.9 1778 100 8.4 4.9 −11 100 8.5 4.9 11 100 8.5 5.0 1 100

rosen 2 8.3 4.6 1956 100 8.2 4.5 −5 100 8.1 4.7 11 100 8.0 4.5 27 100

schwefel 2 7.5 5.5 1640 100 7.5 5.5 −7 100 7.5 5.5 8 100 7.5 5.5 -21 100

ackley 5 6.4 6.2 6401 100 6.5 6.2 −11 100 6.5 6.2 17 100 6.5 6.3 -6 100

dejong1 5 7.2 3.2 3176 100 7.2 3.2 −11 100 7.2 3.2 14 100 7.4 3.3 15 100

griewank 5 7.2 2.5 8686 100 7.2 2.5 −15 99 7.2 2.6 40 100 6.5 2.3 7 85

rastrig 5 7.2 4.4 4989 100 7.2 4.4 −13 100 7.2 4.4 18 100 6.9 4.2 4 94

rosen 5 6.9 4.2 6256 100 6.7 4.1 47 97 6.8 4.2 14 99 2.1 1.4 128 30

schwefel 5 7.4 5.4 4564 98 7.4 5.4 −12 98 7.4 5.4 12 99 7.4 5.4 -28 99

ackley 10 6.1 5.9 13569 100 6.1 5.9 −15 100 6.1 5.9 24 100 5.5 5.4 -26 90

dejong1 10 6.7 3.0 6973 100 6.6 3.0 −14 100 6.7 3.1 22 100 6.8 3.1 7 100

griewank 10 6.6 2.1 13153 99 6.6 2.1 −18 100 6.8 2.2 37 100 6.3 2.0 -10 91

rastrig 10 6.7 4.2 10711 100 6.7 4.2 −13 100 6.6 4.2 25 99 6.5 4.1 1 96

rosen 10 6.3 4.0 20524 100 5.8 3.5 110 95 6.4 4.2 15 100 0.0 0.0 66 0

schwefel 10 7.4 5.4 9964 99 7.3 5.3 −14 97 7.4 5.4 21 98 6.9 4.9 -33 90

ackley 30 5.9 5.8 142208 100 5.8 5.8 −13 100 6.0 5.9 21 100 5.8 5.8 -40 100

dejong1 30 6.4 3.0 78664 100 6.3 3.0 −13 100 6.5 3.1 21 100 6.4 3.1 -3 100

griewank 30 6.4 1.6 103095 100 6.3 1.6 −13 100 6.5 1.7 24 100 6.4 1.7 -7 100

rastrig 30 6.4 4.1 110071 100 6.3 4.2 −12 100 6.5 4.2 25 100 6.4 4.2 -2 100

rosen 30 6.3 4.3 381972 100 6.2 4.2 1 100 6.4 4.3 28 100 0.0 0.0 57 0

schwefel 30 7.5 5.4 108050 100 7.5 5.4 −12 100 7.5 5.5 20 100 7.5 5.4 -37 100

The results of competitive DE are presented in Table 1. Time consumption is

expressed as the average number, ne, of the objective function’s evaluations required to

attain the stopping condition. In order to facilitate a comparison of the algorithms, the

ne values are given only for the DEBR18 algorithm, while the percentage change of ne

relative to DEBR18 is presented for the other algorithms in the tables columns marked

rne. Accordingly, negative values of rne mean less and positive values mean more time

consumed compared with DEBR18. For example, the value of rne =−50 means half the
ne, while the value of rne =100 means that ne is twice that in DEBR18. The number of

objective function evaluations can be easily recalculated as ne=ne0×(1+rne/100),
where ne0 is the appropriate number of objective function evaluations for DEBR18 in

Table 1.

The search’s reliability is given in the columns of λf , λm and R, the average

values of λf and λm in a hundred runs. R is the percentage of runs with λf > 4.

The results for the other algorithms, i.e. the non-competitive standard DER, SADE,

CRS8HC and SOMA, are presented in Table 2.

5. Discussion

It follows from Tables 1 and 2 and the summary of Table 3 that three

competitive variants of DE (DEBR18, DER9, and DEBEST9) are capable of finding the

global minimum significantly more reliably than the other algorithms. They have also

outperformed the other algorithms in the convergence rate (except for DERADP3 and

CRS8HC in several test tasks, but these algorithms are less reliable). The performance

176 J. Tvrd́ık

Table 2. Standard differential evolution and other algorithms

Algorithm DER SADE CRS8HC SOMA

Function D λf λm rne R λf λm rne R λf λm rne R λf λm rne R

ackley 2 7.3 6.9 −2 100 7.3 6.9 −18 100 6.7 6.3 −49 100 2.7 2.5 386 27

dejong1 2 8.4 3.7 −1 100 8.5 3.8 −19 100 7.6 3.3 −50 100 6.7 3.1 707 80

griewank 2 6.8 2.7 25 78 8.3 3.5 8 95 7.3 2.8 −51 95 5.9 2.4 1116 74

rastrig 2 8.5 4.9 −2 99 8.5 4.9 −18 99 7.5 4.4 −47 98 3.9 2.6 454 38

rosen 2 8.3 4.7 105 100 9.0 5.0 71 100 7.6 4.3 −51 100 3.4 2.1 1936 30

schwefel 2 7.5 5.5 −3 100 7.4 5.4 −18 98 7.4 5.4 −51 98 4.0 2.6 544 51

ackley 5 6.3 6.1 1 99 6.8 6.5 91 100 6.3 6.1 −12 100 3.4 3.0 1021 30

dejong1 5 7.1 3.2 −3 100 7.7 3.5 90 100 7.0 3.1 −13 100 9.5 4.8 1445 99

griewank 5 5.2 1.7 14 70 7.8 2.9 127 100 5.0 1.7 −20 68 6.1 2.2 1057 73

rastrig 5 6.7 4.1 16 95 7.8 4.7 117 100 6.5 4.0 7 93 6.4 4.0 1099 72

rosen 5 7.2 4.4 528 100 8.1 4.9 511 100 7.2 4.3 −15 100 0.8 0.8 1506 0

schwefel 5 7.4 5.4 −3 98 7.5 5.5 91 100 7.4 5.4 −13 99 5.9 3.8 1275 81

ackley 10 5.9 5.7 14 99 6.5 6.3 248 100 6.3 6.1 0 100 4.3 4.0 1325 46

dejong1 10 6.5 3.0 6 100 7.2 3.3 252 100 6.9 3.2 4 100 10.7 6.2 1952 100

griewank 10 5.3 1.6 18 78 7.2 2.4 260 100 6.6 2.1 −8 94 9.3 4.1 1429 95

rastrig 10 5.3 3.4 104 82 7.2 4.5 414 100 6.8 4.3 166 99 8.7 5.3 1509 93

rosen 10 6.7 4.3 429 100 7.4 4.7 729 100 6.8 4.3 −7 100 0.0 0.0 880 0

schwefel 10 7.3 5.2 9 96 7.5 5.5 264 100 7.5 5.5 30 100 6.8 4.6 1666 92

ackley 30 5.6 5.6 164 100 6.1 6.1 179 100 5.7 5.7 −68 95 1.6 1.4 324 0

dejong1 30 6.1 2.9 141 100 6.7 3.2 182 100 6.5 3.1 −66 100 5.8 2.7 667 100

griewank 30 6.0 1.5 174 100 6.7 1.8 191 100 5.8 1.5 −67 87 3.6 0.3 485 19

rastrig 30 0.0 0.0 445 0 0.0 0.0 445 0 2.4 1.6 222 37 1.3 1.3 448 0

rosen 30 0.0 0.0 57 0 0.0 0.0 57 0 5.1 3.3 −20 98 0.0 0.0 58 0

schwefel 30 7.5 5.4 206 100 7.5 5.5 246 100 7.5 5.5 12 100 6.0 3.3 459 78

of DEBR18, DER9 and DEBEST9 has been apparently better than that of the standard

DER. DERADP3 has usually been less reliable than the other competitive variants of

differential evolution, quite significantly in the case of Rosenbrock’s function (see

Table 1).

The SADE algorithm was highly reliable in all the tasks at the middle level

of D (D = 5 and D = 10), but has had significantly higher time requirements than

DEBR18. In the case of Rastrigin’s and Rosenbrock’s functions with D = 30, the

SADE algorithm stopped due to the limit of maximal ne=600000 without finding an

acceptable approximation of the global minimum point. The same happened in the

case of the DER algorithm. When we compare SADE and the standard differential

evolution (DER), the former offered no improvement in the tasks with D=30.

Compared with DEBR18, CRS8HC searched for the global minimum with lower

reliability and higher time requirements in the case of Rastrigin’s function (especially

for D = 30). In most other tasks its reliability was the same or slightly lower, but

mostly with less time consumed.

SOMA performed the worst of all the algorithms in these test tasks. Its

reliability was low except for the easiest De Jong1 function, even at time consumption

significantly higher than that of the other tested algorithms.

A summary comparison of the algorithms is shown in Figure 1. The required

property of the algorithm has been to find a good approximation of the global

minimum with high reliability and low time consumption. From this point of view,

three competitive variants of DE (DEBR18, DER9, and DEBEST9) have outperformed

Differential Evolution with Competitive Setting of Control Parameters 177

Table 3. Summary of results – averages of λf , λm, rne and R for all the test tasks

Algorithm λf λm rne R

DEBR18 7.1 4.3 0 99.8

DER9 7.0 4.3 −4 99.4
DEBEST9 7.1 4.4 19 99.8

DERADP3 6.2 3.8 5 86.2

DER 6.2 3.8 102 87.3

SADE 6.9 4.2 187 91.3

CRS8HC 6.6 4.1 −7 94.2
SOMA 4.9 2.8 990 53.3

Figure 1. Comparison of algorithms – box plots of R and rne

the other algorithms significantly in that either their reliability is higher or the number

of objective function evaluations required to reach the stopping condition is lower.

They also have much less variability of R and rne, an indication of their robustness.

6. Conclusions

Among the three most reliable algorithms, the reliability of DEBR18 is the

highest, though not significantly different from the reliability of DEBEST9 or DER9.

The time required by DERBR18 has been less than that required by DEBEST9 in

all the test tasks. Compared with DER9, DEBR18 worked significantly faster in

two instances of the most time-consuming Rosenbrock function, was comparable in

the other two instances of this function and only slightly slower in the remaining

tasks. DEBR18 and DER9 can be recommended for cautious application in practical

tasks of global optimization over continuous search spaces. The source codes of

DEBR18 and DER9 in Matlab [23] are included in the program library of self-adaptive

178 J. Tvrd́ık

stochastic algorithms (Stochastic Algorithms for Global Optimization – MATLAB

Library, http://albert.osu.cz/oukip/optimization), freely accessible subject to the

conditions of the GNU license.

The proposed competitive setting of control parameters F and CR has proved

to be a useful tool for self-adaptation of differential evolution, helpful in solving global

optimization tasks without the necessity for fine control-parameter tuning. However,

further research of self-adaptive differential evolution will proceed. Further analysis

of relative frequencies of various parameter settings may shed more light on adaptive

features of the competitive DE algorithm and it be instrumental in finding a subset

of settings capable of outperforming the algorithm’s variants described in this paper.

Acknowledgements

This research was supported by the grant 201/05/0284 of the Czech Grant

Agency and by the research scheme MSM 6198898701 of the Institute for Research

and Applications of Fuzzy Modeling.

References

[1] Bäck T 1996 Evolutionary Algorithms in Theory and Practice, Oxford University Press, New

York

[2] Spall J C 2003 Introduction to Stochastic Search and Optimization, Wiley-Intersience

[3] Storn R and Price K 1997 J. Global Optimization 11 341

[4] Zelinka I 2002 Artificial Intelligence in Global Optimization Problems, BEN, Praha (in Czech)

[5] Deb K 2005 Soft Computing 9 236

[6] Winter G, Galvan B, Alonso S, Gonzales B, Jimenez J I and Greimer D 2005 Soft Computing

9 299

[7] Wolpert D H and Macready W G 1997 IEEE Trans. on Evolutionary Computation 1 67

[8] Brest J, Greimer S, Boškovič B and Mernik M 2006 IEEE Trans. on Evolutionary Computation

10 (6) 646

[9] Price K V, Storn R and Lampinen J 2005 Differential Evolution: A Practical Approach to

Global Optimization, Springer-Verlag

[10] Lampinen J 2002 A Bibliography of Differential Evolution Algorithm. Technical Report,

Lappeenranta University of Technology, Department of Information Technology,

http://www.lut.fi/∼jlampine/debiblio.htm
[11] Ali M M and Törn A 2004 Comput. Operations Res. 31 1703

[12] Zaharie D 2002MENDEL 2002, 8 th Int. Conf. on Soft Computing, (Matoušek R and Ošmera P,

Eds), University of Technology, Brno, pp. 62–67

[13] Liu J and Lampinen J 2002 MENDEL 2002, 8 th Int. Conf. on Soft Computing, (Matoušek R

and Ošmera P, Eds), University of Technology, Brno, pp. 11–18

[14] Liu J and Lampinen J 2002 MENDEL 2002, 8 th Int. Conf. on Soft Computing, (Matoušek R

and Ošmera P, Eds), University of Technology, Brno, pp. 19–26

[15] Šmuc T 2002 MENDEL 2002, 8 th Int. Conf. on Soft Computing, (Matoušek R and Ošmera P,

Eds), University of Technology, Brno, pp. 80–86

[16] Zaharie D 2003MENDEL 2003, 9 th Int. Conf. on Soft Computing, (Matoušek R and Ošmera P,

Eds), University of Technology, Brno, pp. 41–46

[17] Liu J and Lampinen J 2005 Soft Computing 9 448

[18] Tvrd́ık J, Mǐśık L and Křivý I 2002 2nd Euro-ISCI, Intelligent Technologies – Theory and

Applications, (Sinčák P et al., Eds), IOS Press, Amsterdam, pp. 159–165

[19] Tvrd́ık J 2004MENDEL 2004, 10 th Int. Conf. on Soft Computing, (Matoušek R and Ošmera P,

Eds), University of Technology, Brno, pp. 228–233

[20] Tvrd́ık J 2006MENDEL 2006, 12 th Int. Conf. on Soft Computing, (Matoušek R and Ošmera P,

Eds), University of Technology, Brno, pp. 7–12

Differential Evolution with Competitive Setting of Control Parameters 179

[21] Zelinka I and Lampinen J 2000 MENDEL 2000, 6 th Int. Conf. on Soft Computing, University

of Technology, Brno, pp. 177–187

[22] McCullough B D and Wilson B 2005 Comput. Statist. and Data Anal. 49 1244

[23] 2006 MATLAB, version 7 (R2006a), The MathWorks, Inc.

180 TASK QUARTERLY 11 No 1–2

