
TASK QUARTERLY 11 No 1–2, 151–167

POLISH TAGGER TaKIPI:

RULE BASED CONSTRUCTION

AND OPTIMISATION

MACIEJ PIASECKI

Institute of Applied Informatics, Wroclaw University of Technology,

Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland

maciej.piasecki@pwr.wroc.pl

(Received 27 December 2006; revised manuscript received 27 January 2007)

Abstract: A large number of different tags, limited corpora and the free word order are the main

causes of low accuracy of tagging in Polish (automatic disambiguation of morphological descriptions)

by applying commonly used techniques based on stochastic modelling. In the paper the rule-based

architecture of the TaKIPI Polish tagger combining handwritten and automatically extracted rules is

presented. The possibilities of optimisation of its parameters and component are discussed, including

the possibility of using different methods of rules extraction, than C4.5 Decision Trees applied

initially. The main goal of this paper is to explore a range of promising rule-based classifiers and

investigate their impact on the accuracy of tagging. Simple techniques of combing classifiers are also

tested. The performed experiments have shown that even a simple combination of different classifiers

can increase the tagger’s accuracy by almost one percent.

Keywords: morphosyntactic tagging, Polish, rule based tagging, decission trees

1. Introduction

In inflectional languages like Polish, Czech or Russian, the form of a word carries

information not only about its Part of Speech (POS), but also about morphological

categories characterizing the word, like: number, gender or case. POS and the values

of the morphological categories determine to a large extent the possible grammatical

relations of a given word in a text (an utterance). Thus, we will henceforth refer to POS

and the morphological categories asmorphosyntactic features a word form. Identifying

the values of morphosyntactic features appropriate for an occurrence of a word

in a text may be valuable for many applications in Natural Language Processing.

However, it cannot be based on a dictionary only – many words are ambiguous with

respect to the values of the features, e.g. the Polish word nie is ambiguous between

a particle (English adverb not) and different forms of the personal pronoun ∼he (all

forms in the accusative case). As a result, nie possesses 10 possible descriptions with

different combinations of features.

It is typical for inflectional languages that possible morphosyntactic descriptions

are first assigned to a word, independently of the context, by the morphological

152 M. Piasecki

analyzer, and only then a tagger1 selects a description appropriate for the given

context. The name tagger comes from the practice of describing words by attaching

tags representing morphosyntactic descriptions; the process is called tagging .

The main idea of assessing the accuracy of tagging is to compare taggers’

decisions with decisions made by a linguist for the same text. Technically, the accuracy

may be measured in several ways. Mostly, the percentage of proper decisions in relation

to all tokens in a text is given. A token is a word-level segment of text identified

according to some assumed rules, e.g. a word, a punctuation mark, a suffix, a number,

a symbol, etc. According to the rules of segmentation proposed for the largest corpus

of Polish, namely IPI PAN Corpus (henceforth IPIC, see [1]), some word forms are

not separated by two spaces, e.g. chciałbym (∼I would like to) is divided into three

segments, called in [1] tokens: chciał + by + m (∼ like sg,1st per,past + a particle

+ a form of to be). Henceforth, following the standard of IPIC, we will refer to the

basic text segments as tokens. Some of them possess morphological descriptions, while

others do not. The latter are assigned a special POS label written ign in IPIC.

The problem of tagging is almost solved for many natural languages as taggers

typically achieve accuracy in excess of 95% (in relation to all tokens, see [2]). However,

this is not the case with tagging in Polish. The task is substantially more difficult

and there is much less available training data. There are 4179 theoretically possible

tags in IPIC, but only 1642 of them occur in the manually disambiguated part of IPIC

(henceforthMIPIC) i.e. 885669 tokens [3]. The lower accuracy of Dębowski’s statistical

tagger [4] constructed on the basis of MIPIC was mainly attributable to sparseness of

the data. For English, the number of tags is between 45 and 197 in different corpora,

while the learning corpus usually in exceeds a million tokens (e.g. see [2]).

Taking into account the relatively small size of MIPIC, the free word order in

Polish and the existing successful approaches to tagging of Czech utilizing tagging

rules, we have assumed that the architecture of a Polish tagger should be based on

rule-like representation of knowledge.

A tagger based on handwritten rules can achieve very good accuracy, e.g.

EngCG [5], adopted for some languages, but manual construction of rules can be

extremely laborious, as in the case of 134 rules to disambiguate the particle se

in Czech [6]. Thus, our main goal has been to explore possibilities of automatic

extraction of disambiguation rules and their combination with handwritten rules.

We have attempted to reduce the workload, whilst maintaining a relatively high level

of accuracy.

The problem of tagging can be perceived as a classification problem, e.g. [7]:

tokens are objects, different tags (representing different descriptions) – categories, and

a tagger classifies words into categories by assigning tags to them [8]. Thus, a tagger is

a classifier, i.e. an implementation of a classification method. From the classification

point of view, tagging of Polish is a very difficult task according to the number

of categories – different tags, and the unfavorable proportion between the number

of possible tags and the size of MIPIC. A possible way of tackling both problems

1. A distinction is sometimes made between morphosyntactic disambiguators, choosing appro-

priate descriptions, and taggers, performing the whole process including morphological analysis.

Polish Tagger TaKIPI: Rule Based Construction and Optimisation 153

may be to decompose the overall classification problem into a collection of separable

sub-problems for which the number of categories is smaller and the proportion is more

favorable.

Thus, in order to solve the problem we need to:

• define the architecture allowing for combination of different types of rules,

• select a Machine Learning (ML) method of building a classifier (or classifiers),

• decompose the overall problem and define a way of combining classifiers, and

• optimize the system’s parameters – learning and working.

The present paper is focused on the second and the third task, ML method

selection and combining, as the others have already been discussed in previous

papers [9–12]. However, a general review of the research performed so far is included

as well.

2. Ideas

As handwritten rules are carefully tested on a corpus, their accuracy is usually

very high and close to 100%. Thus, we have assumed that they can be initially applied

as a filter deleting some contextually inappropriate tags, as was the case in [13].

A positional tag of IPIC [1] is a sequence of symbols describing various

morphosyntactic features of a token. A tag is a record of attributes representing these

features. Combinations of attribute values occur in MIPIC more frequently than whole

tags. We can naturally decompose the general problem into sub-problems of partial

disambiguation of subsets of attributes [11]. Obviously, the attributes are not mutually

independent in that combinations of their values determine the structural relations

of a token. However, a human performing manual disambiguation appears to do so

in steps. He or she defines the POS of a token first, only then – the values of other

attributes. We have assumed decomposition of the tagging process into three phases

of partial disambiguation of POS, number together with gender, and case. According

to experiments, the person category seems dependend on these four [11]. Moreover,

from the twelve grammatical categories used in IPIC [1], the only ones independent

of the four appeared to be:

• non-past forms of verbs in the present tense and the third person morphologi-

cally described as ambiguous in aspect, e.g. razi (dazzles or offends), pozostaje

(stays, remains), napotyka (encounters), and

• accentability and post-prepositionality of personal pronouns in the third per-

son, e.g. on (he), possessing four different combinations of values {accented,

non-accented}×{post-prepositional, non-post-prepositional}.

The values of these categories remain ambiguous to TaKIPI, i.e. more than

one tag can be left for a token if the tags differ only in values of these categories.

This simplifies the tagging problem as not all 1642 tags are distinguished from each

other by TaKIPI. The lowest bound of the number of tags distinguished in MIPIC by

TaKIPI according to the four attributes is 437, with additional simplification discussed

in Section 3. However, the exact number is greater after adding person and other

‘dependent’ categories.

During each phase, tagging is based on automatically extracted rules. The

proposed architecture of a tagger, called TaKIPI [11], is open for any types of classifiers

154 M. Piasecki

used in the subsequent phases. The phases’ results are combined on the basis of

probabilities of tags: each classifier updates the probabilities and some tags are

eliminated at the end of each phase according to their probabilities. Many tags may

remain for a token, but with different probabilities.

TaKIPI only uses the C4.5 [14] algorithm as an ML method and C4.5 Decision

Trees as classifiers. However, TaKIPI initially achieved only 92.55% of accuracy. Many

proposed ML algorithms have claimed better properties than C4.5. The goal of this

work has been to analyze the possibility of applying other algorithms of rule extraction

to the problem of tagging in Polish. As none of them had appeared to be superior,

we performed preliminary experiments on the possibilities created by combining

classifiers.

In each phase of partial disambiguation, the tagger has to classify a token

into a small set of categories. The largest is the set of the first phase, in which 32

grammatical classes of IPIC [1] are used for a finer grained description than that of

traditional POSs. For each phase, we could implement the tagger as one classifier.

However, not all grammatical classes are possible for each token. Moreover, after

analyzing MIPIC, we have identified about 200 different classes of ambiguity [15] for

the first phase. A class of ambiguity (CoA) is a set of tokens such that each token

is ambiguous among the same values of some tag attributes, in the case of the first

phase, e.g. a token can be ambiguous among the grammatical classes of { adj, subst}

(adjective and noun, the mnemonics coming from IPIC) or {adj, conj, pred, qub,

subst} (qub=particle-adverb, conj=conjunction, pred=predicative), in the second

phase, e.g. {sg, m1, m2, m3} (singular number, but all possible male genders). CoAs are

disjoint and all tokens from a CoA express similar morphosyntactic features. A natural

solution is to construct a separate classifier for each CoA. Such classifier can exploit

specific features of tokens belonging to the given CoA in its decisions.

3. Architecture of the TaKIPI tagger

The algorithm of TaKIPI is outlined below (see [11] for details):

1. Morphological analysis based on the Morfeusz morphological analyzer [16],

recognition of abbreviations and preliminary division into sentences

→ each token is assigned a set of all possible tags.

2. Application of the set of handwritten rules

→ elimination of some contextually inappropriate tags.

3. Assigning initial probabilities to tags on the basis of the unigram dictionary

(i.e. statistics 〈token, tag〉 collected from MIPIC).

4. Partial disambiguation – repeated for subsequent phases:

(a) application of classifiers to tokens according to their CoA

→ probabilities of the tags are updated;

(b) elimination of tags with the lowest probability.

5. Annotation of tokens in the output text by tags with the highest probability

→ all tags for a token are restored, some chosen as appropriate.

6. Final segmentation into sentences.

Polish Tagger TaKIPI: Rule Based Construction and Optimisation 155

The final decision concerning sentence boundaries cannot be made in step 2

but must be postponed to step 6 due to the ambiguity of some abbreviations (a full

stop can be a part of an abbreviation).

Handwritten rules express general necessary morphosyntactic constraints and

eliminate all tags that do not fulfill them [10]. The language of the rules, called

JOSKIPI, and the set of 24 rules used in TaKIPI are discussed in details in [10]. In

summary, each rule consist of a condition of application and a condition of elimination.

Both conditions may be applicable to all tokens and their tags in a sentence,

but the condition of elimination is applied iteratively to all tags of a token being

disambiguated, and only one tag of this token is visible to the condition during a single

iteration (all tags of other tokens are visible), e.g. a rule eliminating two subsequent

non-past forms of verb:

delete(equal(pos[0],{fin})) # 140 :-

and(inter(pos[0],{fin}),

equal(pos[-1],{fin}),

not(and(in(orth[-1],{"jest","znaczy"}),

equal(orth[-2],{"to"}))

and(equal(orth[-1],{"wydaje"})

equal(orth[0],{"może"}))))

The condition of elimination (delete) deletes a tag of a non-past verb form (fin),

only if the preceding token (pos[-1]=the set of grammatical classes from the tags of

the first token to the left) is unambiguously fin. The not sub-condition expresses some

exceptions found in MIPIC. In addition to simple operators of reading tag attributes

and logical conjunctions, there are also simple means of defining iteration (search

across a sentence), variables, and operators checking the potential morphosyntactic

agreement of the selected attributes in JOSKIPI.

In step 3, probabilities for pairs not observed in the learning data but possible

according to Morfeusz are calculated by smoothing based on Lidstone’s law (inspired

by [15]). Thus, probabilities of tags are associated with word forms. The method is

efficient, but too simple. We hoped that further processing would compensate for its

simplicity, but it did only to some extent.

In step 4, the processing is repeated for each of the phases defined in Section 1.

During each phase, an ambiguous token belongs univocally to a CoA defined with

respect to the attributes disambiguated in the given phase. Only tokens that are

ambiguous with respect to these attributes are processed during the given phase.

A classifier is constructed for each CoA (see Section 4). Generally, a token is processed

by a classifier corresponding to its present CoA. (If there is no classifier constructed for

a given class, see Section 4, several other classifiers can be applied). The probabilities

of tags are updated. During each phase, tags are distinguished only on the basis of

values of attributes disambiguated in that phase. A subset of tags of a token such that

all of its members have identical values of attributes disambiguated in the given phase

is called a package of tags. During each phase, the tagger chooses the best package

according to the updated probabilities of tags and eliminates all packages except the

best one. At the end of step 4, the probabilities of tags in a token are normalized to 1.

156 M. Piasecki

The architecture allows many types of classifiers, the only constraint being that

a classifier should update the probabilities of tags. There are no restrictions on the

ways of calculating probabilities. In the first version of TaKIPI [11] only classifiers

based on the C4.5 algorithm of Induction of Decision Trees (DT) [14] were used.

A DT classifier was converted to a classifier returning the probability of a positive

decision, selection of values for disambiguated attributes, and a negative decision,

a smoothed non-zero probability of other possible selections, in a way similar to that

found in [15]. For each DT leaf, the probability of its decision is calculated on the basis

of the number of examples attached to this leaf during the tree’s construction. Each

DT multiplies the probabilities of tags in a token by the probability of a decision.

In step 5, all morphologically possible tags for the token are restored and the

XML attribute dissamb is set to 1 for the tags with the highest final probability.

There can be more than one tag set appropriate for a token as probabilities of several

tags may happen to be identical and TaKIPI does not distinguish certain types of

tags (see Section 2). Besides the categories discussed in Section 2, TaKIPI does not

disambiguate the subst (noun) and ger (gerund) grammatical classes. The difference

between subst and ger seems to be of more semantic than syntactic nature in MIPIC

and we have decided to keep it ambiguous if it is not solved by disambiguation of

grammatical categories (i.e. gender, number, case). As a result of the simplifications,

TaKIPI leaves an average of 1.03 tags per token (2.87 before disambiguation).

There are several parameters in the algorithm, including the number of addi-

tional internal iterations in step 4 and the cut-off level for tags’ probabilities used after

each iteration [9, 11]. Optimization of these parameters will be discussed together with

optimization of the learning parameters in Section 4.

4. Learning and optimization of parameters

According to the assumed division of the tagging process into three phases and

to the natural disjoint division of tokens into CoAs, we have decided to construct

a separate classifier for CoA. Such classifiers process only tokens of the corresponding

CoA and are applied during the appropriate phase. Each classifier was constructed

on the basis of ML and examples collected from MIPIC. It appeared that not all CoAs

included enough instances (i.e. corresponding tokens in MIPIC) to construct classifiers

for them, e.g. C4.5 will not build a DT on the basis of only several learning examples.

We selected some CoAs, called supported classes, that were sufficiently supported by

examples (a heuristic criterion of having the size of about 100 examples) or were

necessary as there was no other similar CoA. The notion of CoA similarity should

be based on a careful linguistic analysis, which would be very laborious. Instead,

following [15], we simplified CoA similarity to the inclusion of one CoA’s description

in the description of another CoA, e.g. {adj fin} and {adj subst} being both

similar to {adj fin subst}. The most similar CoA is the smallest similar CoA (as

there can be several). From the linguistic point of view, such similarity is very weak,

but at least it expresses the similarity of decisions made by hypothetical classifiers

of both CoAs.

DTs are constructed (as classifiers) only for the supported CoAs. The construc-

tion of a DT for a particular CoA enables accurate choice of components of learning

Polish Tagger TaKIPI: Rule Based Construction and Optimisation 157

examples for the DT. Tokens from non-supported CoAs are processed by a number of

DTs built for similar CoAs, the selection of DTs being controlled by a parameter, as

explained below.

Sets of learning examples are generated only for supported classes, but accord-

ing to CoA similarity, each token belonging to one of the non-supported classes is

a source of learning examples added to the sets of examples of a number of similar

CoAs. A learning example is a sequence of values produced by a sequence of operators

expressed in JOSKIPI, the same language as for the handwritten rules. The operators

can be all predefined, e.g. pos[-2], cas[2] – reading, respectively, a set of grammat-

ical classes and a set of case values from the tags of specified tokens, or compound ,

defined as JOSKIPI expressions testing morphosyntactic constraints on the context,

e.g. an operator checking whether there is an adjectival token agreeing in number,

gender and case, and located to the right:

!AdjPRight

or(and(inter(pos[1],{adj,pas,pact}),

agrpp(0,1,{cas, gnd, nmb}, 3)),

and(rlook (2,end,$Adj,

inter(pos [$Adj], {adj, ppas, pact})),

agrpp(0, $Adj, {cas, gnd, nmb},3),

only(1,$-1Adj,$Q,inter(pos[$Q],{adv, qub}))))

The first and verifies the existence of an adjectival token in the first position to

the right. If it is not found, we look at the sentence’s end (rlook) searching for a token

expressing agreement (agrpp) and separated only by tokens of certain grammatical

classes (only). $Adj and $Q are variables.

During learning, values of all operators are computed for ambiguous tokens

and stored as vectors in sets corresponding to CoAs. The sets are then used in the

construction of C4.5 DTs for CoAs. During tagging, our own implementation of C4.5

DT reads the operators’ identifiers and requests the application of a certain operator

in the context by the tagger. A decision is made in a DT node on the basis of the

value returned by the applied operator.

A set of operators is specified for each DT. Its core consists of simple operators

that read values of various tag attributes, e.g. grammatical class, case, number,

aspect, etc. (the values being sets, as tokens can be ambiguous). However, compound

operators can deliver more abstract information specific to the given linguistic problem

to DTs, e.g. the !AdjPRight operator, presented above, is a part of the specification

of learning examples for the {fin, subst} CoA: the presence of an agreed adjective is

an important indication for choosing a noun’s grammatical class. Compound operators

guides the decision process performed by DTs (classifiers); the accuracy of compound

operators does not need to be very high, as they are building blocks from which

automatically extracted rules are constructed.

During tagging, DTs used in the second phase (or classifiers in general) are

applied to partially disambiguated tokens. During learning, we have to create a similar

situation, achieved by learning partial taggers for subsequences of phases till the

‘full tagger’. Before learning examples are prepared for the phase k, a partial tagger

for phase k− 1 is applied and the appropriate attributes are disambiguated. Such

158 M. Piasecki

gradual learning appeared to be superior to an ‘ideal’ disambiguation based on manual

disambiguation of MIPIC.

In total, TaKIPI utilizes 143 classifiers during three subsequent phases. Thus,

classifiers of one phase depend during training (in description of learning examples)

and tagging (in combinations of attribute values) on classifiers of the previous

phase, which complicates analyzing the influence of a particular classifier on the

final accuracy. The classifiers are rule-based but they must produce probabilities of

decisions. They do so on the basis of statistics collected during learning.

The performed tests [10], with the total result of 92.55% accuracy for all

tokens, and 84.75% for ambiguous ones, have demonstrated positive influence of the

24 handwritten rules, without which the accuracy for all tokens was 91.60%, and

the presence of compound operators in DTs (91.75%). However, mutual relations

between the rules and the compound operators are more complex: without both

the accuracy was 91.43%. Moreover, recent tests with an extended set of 29 rules

(including one eliminating several hundred thousands of tags as tested on MIPIC)

have produced an increase in accuracy to 93.3%. However, a similar result of 93.44%

has been achieved with the ‘old’ set of rules by optimization of the learning and tagging

parameters with the application of Genetic Algorithms (GA). With the extended set

of rules, the optimization did not lead to any progress and the final accuracy after

optimization was about 93.4%. It seems that, when using compound operators in DTs,

we can automatically extract tagging rules of accuracy similar to that of manually

constructed rules.

In GA-based optimization of TaKIPI [9], a chromosome encoded the values of

parameters of TaKIPI architecture and the learning process. A specimen was an

instance of the learning process and a complete tagger. The fitness functions of

a specimen was equal to the tagger’s accuracy measured in tests on MIPIC with the

tagger parameters and learning parameters set to the values from the chromosome.

The Cut-off Level, CoA Similarity Level for learning and tagging and Pruning

Confidence Levels for DT appeared to be important parameters. The Cut-off Level

defines the threshold of probability for removing tags after a phase of tagging. The

CoA Similarity Level for tagging , in [9] referred to as the inheritance level, defines how

many DTs are used in processing one token. The 0 value means that only the DT of the

CoA of a given token is applied if this CoA is supported; otherwise DTs of the most

similar CoAs are used. Each value greater than 0 increases the number of DTs used;

it is correlated with the distance in similarity of CoAs. Similarly, the Similarity Level

for learning defines in how many CoAs (i.e. appropriate sets of learning examples)

a given learning example generated for a token will be included. For values greater

than 0, a given learning example will be added to several sets corresponding to similar

CoAs. During optimization, the Similarity Levels were set to the values of 0 or 1 for

different phases. Lastly, the Pruning Confidence Level is a parameter of the C4.5

algorithm determining the depth of DT pruning [8, 14]. During optimization, we

assigned a separate Pruning Confidence Level to each of the 141 DTs.

Full GA optimization of TaKIPI took about 3 days, but it increased the accuracy

to 93.44% for all tokens (86.3% for ambiguous tokens). We repeated it several times,

achieving almost identical results (or differences without statistical significance).

Polish Tagger TaKIPI: Rule Based Construction and Optimisation 159

The repeated results of optimization demonstrate that the maximum accuracy

of the present TaKIPI architecture had been reached. One of the possible modifications

is to change the type of classifiers used; in the rest of the paper we will investigate how

a simple replacement of the C4.5 algorithm with another ML algorithm may influence

the tagger’s accuracy and what would be the results of combining various classifiers.

5. Selected single classifiers

The first implementation of the TaKIPI architecture incorporated only classifiers

based on the C4.5 DT, but as the architecture was open to other types of classifiers, we

looked for classifiers that could offer better accuracy of tagging than C4.5. A version

of TaKIPI utilizing only classifiers of one type will be referred to as a single classifier

tagger.

Learning sets produced by various CoAs differ in size, balance and noise.

Therefore, the selection of a type of classifier for the whole tagger cannot be based

on any specific feature of the learning sets. Actually, the classifier should learn well

on different types of learning sets. For reasons given in Section 1 above, we have

limited ourselves to rule-based classifiers and further focused on the types of classifiers

reported in the literature to be competitive with C4.5. We have also considered the

technical constraints of classifiers so that they are able to process the largest learning

sets used in TaKIPI during training. Finally, two rule-based ML algorithms have been

selected: RIPPER [17] and PART [18]. The C4.5 rules algorithm has been intentionally

omitted, in an effort to distance ourselves further from the C4.5 idea.

However, as the probability of a decision is required from a classifier, we have

also interested in (non-binary) classifiers combining directly rule extraction with

probability estimation. The Logistic Model Trees algorithm (LMT) [19] fulfils these

criteria. LMT is a decision tree with logistic models in its leaves, and logistic models

define probability estimates directly.

RIPPER and PART had to be altered to return probabilistic estimates, too. It

has been achieved by simply getting the number of positive (or negative) examples

covered by a rule and dividing this number by the total number of examples in the

learning set [12]. However, an additional assumption has been made that there always

exist two bogus examples: one covered by all of the rules and the other not covered

by any of the rules. It is an idea slightly similar to the smoothing used earlier for C4.5

trees2. We have to avoid returning zero probability; we cannot be sure that a decision

is impossible and zero probability nullifies other decisions, for example made by the

unigram classifier (as their probabilities are multiplied).

The training of the selected single classifiers was based on slightly modified

implementations of PART, RIPPER and LMT from the WEKA system [20]. The

WEKA output files were read and used in classification. We constructed our own

implementations of the classifiers to be incorporated into the probabilistic TaKIPI

architecture (written in C++).

2. In fact, the idea of smoothing as used in C4.5 was tested on PART and proved to result in

slightly lower accuracy of tagging than the method described here. Therefore, the type of smoothing

used in C4.5 was not used with PART or RIPPER.

160 M. Piasecki

All versions of single classifier taggers were tested using 10-fold cross validation

on the MIPIC. Also the original C4.5-based architecture was tested in order to

establish a reliable baseline in relation to the modified implementation and the applied

parameters of learning and tagging.

The results are shown in Table 1. The tagging accuracy is presented in relation

to all tokens (all) and ambiguous ones only (amb). Besides the average results

calculated on 10 folds (avg), the minimum and maximum (min and max) across

the folds is presented to give an impression of the variance of the results.

Table 1. Results of testing single classifiers [12]

Phase 1 (≈ POS)

all amb

Classifier avg min max avg min max

C4.5 98.72 98.65 98.76 91.12 90.66 91.39

LMT 98.78 98.71 98.84 91.54 91.01 91.84

RIPPER 98.73 98.63 98.79 91.17 90.48 91.46

PART 98.74 98.63 98.78 91.23 90.51 91.46

Phase 2 (L1 + number. gender)

all amb

Classifier avg min max avg min max

C4.5 96.09 95.88 96.26 87.92 87.33 88.36

LMT (& C4.5) 95.02 94.70 95.24 84.62 83.71 85.17

RIPPER 95.82 95.61 95.96 87.08 86.50 87.55

PART 96.11 96.00 96.24 88.01 87.70 88.30

Phase 3 (L2 + case)

all amb

Classifier avg min max avg min max

C4.5 93.11 92.94 93.40 85.71 85.40 86.23

LMT (& C4.5) 92.05 91.79 92.29 83.52 83.02 83.92

RIPPER 92.45 92.11 92.79 84.34 83.68 85.02

PART 93.08 92.87 93.34 85.64 85.26 86.16

The tagging errors made in the first phase, roughly corresponding to parts

of speech, are the most important for practical applications. In relation to the first

phase, the best single classifier tagger was LMT-based. The statistical significance of

improvement was greater than 99.9% according to the T-test applied to the mean

difference computed for the results of the 10-folds (cf. [21]). The significances of all

other results in this paper were calculated in the same way.

Unfortunately, LMT was extremely slow in training (weeks of computer work).

For some of the largest learning sets, training could not be completed due to technical

limitations – the memory needed for a Java Virtual Machine cannot exceed 1.5GB and

this was insufficient. There were many CoAs in the second phase for which we were

unsuccessful with training LMT; C4.5 was used for these classes in the LMT-based

Polish Tagger TaKIPI: Rule Based Construction and Optimisation 161

tagger. As a result, we did not apply LMT for the third phase at all. Consequently,

the results described in Table 1 as LMT are results achieved by a tagger in which LMT

classifiers were applied to some CoAs, while C4.5 classifiers were used for others.

Neverthless, preliminary experiments have shown that LMT classifiers perform very

poorly in the third phase. Moreover, the LMT performance for the second phase

(supplemented by C4.5) decreases and is exceeded by other classifiers (> 99.9% of

significance in comparison to C4.5 alone). A test case can have attributes with values

not seen and, therefore, not predicted on the basis of learning. LMT seems to be more

sensitive to this problem than the other classifiers. LMT is a DT with logistic models

in the leaves and if an attribute with an unseen value occurs in a leaf, an inaccurate

estimate of probability is generated by the model3. This is probably the reason why

LMT accuracy is lower for the second and third phases. Accidental combinations of

attributes may appear after partial disambiguation during the first phase. However,

LMT is still the best classifier for the first phase for which the conditions are stable

between learning and testing.

The other classifiers are more suitable for the situation in which unseen values

are encountered in data. Rules focus on values of attributes seen in the learning data

and, at worst, the last most generic rule is applied, the one covering all examples that

are not covered by the previous rules (both RIPPER and PART produce ordered sets

of rules, where rules are applied one by one in a sequence). However, there is still

a notion, that if the disambiguation during the previous phase is stronger, i.e. less

tags are left for a token in a learning set, it is more difficult to train the classifiers

for the next phase on the basis of these sets. PART seems to cope best with this

problem and it seems to be the best classifier from the tested ones, as it outruns C4.5

during the first and the second phase and is only slightly worse during the third phase.

However, the significance of the PART results is low, about 90% in comparison to C4.5.

Moreover, C4.5 still yields the best result for all three phases, but on the same level

as PART for the third phase – the better result of C4.5 is statistically insignificant.

The overall good result of C4.5 has been obtained in inspite of its inferiority in the

first phase, the most important one from the practical point of view.

RIPPER also seems to have better accuracy for the first phase in comparison to

the C4.5 baseline, but without statistical significance. PART is slightly better when

used alone. The authors of PART claim that their approach can be better than RIPPER

because PART avoids what they refer to as hasty generalization, which is actually

overpruning of RIPPER’s rules. These results suggest that both classifiers can perform

better than C4.5 for some CoAs (or even some cases).

We should bear in mind that no optimization of learning parameters has been

performed. Adjusting the parameters may lead to improvements, so a tuned classifier

other than C4.5 may be better for all phases when used as a single classifier. Some

general tests were performed for the first phase. In C4.5, we changed the pruning

level and in RIPPER – the number of optimization iterations (from 2 to 10). In LMT,

there is heuristics that controls the number of optimizations by setting it to a value

3. If an attribute with an unseen value is used as a test in a decision node, we can forfeit the

classification which probably has lesser impact than disrupting the model in a leaf.

162 M. Piasecki

computed only for the root. The heuristics is used by default; when it is turned off,

the learning is much slower (because the computation of the best number of iterations

is performed for every node) but the accuracy of classification can be improved. LMTs

with the heuristics turned off were also tested. All the above mentioned changes to

C4.5, RIPPER and LMT offered better overall results. This proves that optimization

is applicable with good results, and possibly the best way would be actually tuning

the parameters for each CoA separately (we optimized globally by setting the same

parameters for all classifiers of all classes).

Verification of the results of disambiguation demonstrated that various classi-

fiers perform differently for different CoAs. For a selected CoA, a tagger based on a sin-

gle type of classifiers disambiguates some tokens correctly, while an other tagger, based

on a different classifier, fails to disambiguate them properly. At the same time, this

tagger can disambiguate other tokens better, even for the same selected CoA. When

such situation occurs, we say that taggers (or classifiers) are complementary.

The fact that the application of possibly complementary classifiers can improve

the ultimate accuracy is well known in literature. However, as we observed many

times in the case of TaKIPI architecture, formulating predictions concerning the

results of the process is always risky. It is worth emphasizing here that classifiers

calculate the probability of a decision in relation to the learning data and other

possible decisions, not in relation to the current context of a word. The computation

of probability depends also on the structure of a classifier. Thus, a comparison in

TaKIPI of probabilities produced by classifiers (even of the same type) for the same

word is difficult. Therefore, the secondary goal of this work is to test the idea of

simultaneous combination of different classifiers in a given architecture. We wanted

to start with simple combination methods (e.g. in comparison to [22]) for which the

results are easier to be analyzed in relation to the TaKIPI architecture4, hoping that

the collected results would help in defining the direction of further developments.

6. The multiclassifier approach

The idea of a combination of classifiers of the same type was already tested in

a limited scope in [15, 23], where C4.5 trees were used in an ensemble for selected

CoAs. However, we preferred to use different types of classifiers and our goal was to

test simple ways of joining them.

In one of the most obvious approaches, which can be called OneShot, one has

to simply select a classifier for a given CoA that expressed the highest accuracy for

this class in tests. It seems quite natural that this approach leads to better results.

Unfortunately, it is difficult obtain results comparable with other approaches and with

single classifier taggers. Therefore, we chose first to test approaches that work without

reference to previous tests. This means that they should be based only on probabilities

returned by classifiers during the disambiguation process. All approaches were tested

using the same 10-fold cross validation approach as single classifier taggers, so that

the results are comparable. We used previously learned classifiers to speed up testing

4. It is worth mentioning here that training a complete set of classifiers for TaKIPI can take

even several weeks of continuous computer work.

Polish Tagger TaKIPI: Rule Based Construction and Optimisation 163

process. However, the tagging during the first phase is now different, as a combination

of classifiers is used. So, new data is produced for the second and the same goes for

the third phase. With more ample resources, one could try to train all single classifiers

from new data, although this would be a lengthy process of several weeks. Fortunately,

the usage of already learned classifiers appeared to be successful (at least for the

preliminary tests).

Another natural way to use a number of single classifiers simultaneously is to

apply them one by one. This corresponds to multiplying returned probabilities, so the

order of the classifiers application is actually irrelevant. This also fits nicely the TaKIPI

architecture, in which the probabilities calculated for the tags of a token according to

the classifiers used in the subsequent phases are multiplied (starting with the unigram

classifier). An approach in which probabilities returned by classifiers of different types

(assigned to the same CoA) are simply multiplied is here called the Bag approach.

Another tested approach is a version of theWinner Takes All (WTA) approach.

InWTA we apply all classifiers for a selected token, but use only the highest probability

returned in updating the probabilities of tags. This approach attempts to mimic

OneShot by assuming that the highest probability returned is the right one. Of course

this assumption is not expected to be always right, mainly because it is difficult to

compare probabilities returned by classifiers (see Section 3 above).

Other two simple approaches are attempts to produce mutual agreement

between the classifiers applied to a token. This is done by either computing the

arithmetic average, hereinafter referred to as AVN, or geometric average, AVG. The

average of positive and negative decisions is computed from probabilities returned

by all classifiers for a given token and these values are used for updating the tags’

probabilities.

The results of 10-fold testing of multiclassifier taggers based on algorithms

described above are shown in Table 2 (identical in form to Table 1).

Comparing the results with the results of single classifier taggers, we can

clearly see that any multiclassifier tagger is better in the first phase than any of

the single classifier ones (with significance > 99.9%). This suggests that even simple

ways of combining classifiers in the TaKIPI architecture increase its accuracy and is

worth further effort to developing more sophisticated algorithms. However, in the

next phases the accuracy of WTA and AVN taggers is lower than that of single

classifier taggers (with significance > 99.9%). These approaches may lack the ability

to cope with the differences in processing the input data by different classifiers. The

possibly mistaken decisions of individual classifiers have great impact on the whole

combination. The influence of the most extreme decisions must be more balanced.

Moreover, as argued in Section 3, different classifiers have a different sensitivity to

the differences between learning and tagging. Especially WTA proves that taking into

account only the highest probability is no good, most notably because of differences

among the ways of producing the estimates. Additionally, WTA tends to ignore

classifiers other than the selected one. AVN is only slightly better (significantly in

comparison to WTA), as it attempts to produce common data from the returned

probabilities for all of the classifiers used, but the calculation of a simple average

seems to exert too much strength on the extreme values of probability.

164 M. Piasecki

Table 2. Results of testing multiclassifier approaches [12]

Phase 1 (≈ POS)

all amb

Classifier avg min max avg min max

Bag 98.83 98.72 98.89 91.86 91.08 92.15

WTA 98.83 98.73 98.88 91.86 91.18 92.24

AVN 98.83 98.73 98.88 91.88 91.18 92.16

AVG 98.88 98.78 98.92 92.19 91.54 92.41

Phase 2 (L1 + number. gender)

all amb

Classifier avg min max avg min max

Bag 96.27 96.12 96.46 88.48 88.11 88.98

WTA 94.79 94.54 95.00 83.90 83.23 84.43

AVN 95.64 95.46 95.80 86.54 86.11 86.97

AVG 96.39 96.25 96.54 88.86 88.46 89.18

Phase 3 (L2 + case)

all amb

Classifier avg min max avg min max

Bag 93.40 93.25 93.69 86.30 86.03 86.82

WTA 91.48 91.19 91.85 82.32 81.78 83.06

AVN 92.35 92.04 92.74 84.13 83.54 84.90

AVG 93.53 93.36 93.76 86.57 86.28 86.98

The implicit assumption is that the probabilities returned by different classifiers

are directly comparable, while we know that it is not always true.

The Bag approach appears to be quite successful (with significance > 99.9% in

all three phases). In this approach, every classifier simply does what it is supposed to

do, basing on its own learning examples and its own estimation, and does not interfere

directly with other classifiers. Combining classifiers follows directly the procedure used

while combining subsequent phases in the TaKIPI architecture. The Bag tagger offers

better accuracy than any of the single classifier taggers for all phases. Thus, very good

agreement is produced in a rather indirect fashion.

The AVG approach appears to be even better. The use of AVG is possible,

as the probabilities of a token’s tags are normalized after each phase. In general,

AVG follows the Bag approach and fits the TaKIPI architecture, as computing the

geometric average is after all based on multiplication of the values. Obviously, AVG

has no probabilistic sense, but as it sometimes yields better results [2], it is used as

a kind of heuristics. Unlike Bag, AVG tries to directly produce agreement between

classifiers. AVG is the best of the tested approaches. It is also significantly better than

Bag: > 99.9% of significance for all three phases. Moreover, the obtained result of

93.53% accuracy on all tags for all phases (86.57% for ambiguous ones) is currently

the best result obtained for Polish.

Polish Tagger TaKIPI: Rule Based Construction and Optimisation 165

Having established that AVG offers the best results, we returned for a while to

the OneShot idea. We could then consider merely replacing AVG with classifier had

it been proven to be better than AVG for a given CoA. However, in a test for the

first phase, AVG produced average results comparable with the best single classifier

tagger for a given CoA. Only sometimes the Bag approach gave considerably better

results for selected CoA. So, we could still consider replacing AVG with Bag, but in

the end this approach was abandoned in tests, as the test should have been changed to

produce trustworthy and comparable values without seeing any of the testing data in

the learning phase before the ultimate test. However, it is our intuition that replacing

AVG with Bag for some CoAs, on the basis of tests, should yield slightly better results

for real-world applications than using AVG alone at all times.

7. Conclusions

Experiments with handwritten rules and automatically extracted rules based

on JOSKIPI and compound operators have demonstrated that these two sources of

knowledge can be combined. In comparison to statistical approaches to tagging,

TaKIPI lacks information concerning particular tokens in DTs. The unigram dictionary

is too simple a method for expressing lexical information.

Experiments with single-classifier and multi-classifier taggers have demon-

strated the possibilities of extending the TaKIPI architecture. Different CoAs present

different classification problems. Thus, contrary to our preliminary expectations, a

simple replacement of one rule-based classifier with a ‘better’ one will not solve the

problem. The initially applied, well-known C4.5 algorithm appeared to be more suc-

cessful than we had expected when used in the overall problem of tagging at all three

levels. Some bias in supporting C4.5 may be due to the TaKIPI architecture being

open and general, but it had been developed and modified on the basis of experienced

gained in experiments with the application of C4.5 as the only type of classifier. How-

ever, even a simple modification of the algorithms’ parameters has shown that there

are possibilities of improvement to be achieved only at the cost of extreme complexity

of optimization.

A comparison of results achieved by various classifiers has shown that their

performance can be very different in relation to various CoAs and various tagging

phases, where the learning conditions (i.e. the degree of match between learning and

tagging) are changeable. The differences in the classifiers’ accuracy have been explored

successfully even with application of simple techniques of classifier combination. For

the best technique of AVG, the tagging error calculated for ambiguous tokens has been

reduced by almost one percent, which is a significant number. The multi-classifier ap-

proach should be further extended to different types of classifiers, e.g. memory-based

ones, but especially by application of more sophisticated techniques of classifier en-

sembles. The achieved results support efforts being put into the very costly process

of learning of partial multi-classifier taggers in order to reduce the difference between

the environments of learning and tagging. Efforts should also be made to unify the

calculation of decision probabilities between different classifiers.

The final accuracy of the modified TaKIPI, viz. 93.53% for all tags and 86.57%

for ambiguous ones, is still much below the results obtained for Czech [13] (95.16%

166 M. Piasecki

for all tokens) and English [2] (more than 97%). This means that TaKIPI makes an

average of one mistake per sentence, but the error in grammatical classes is much

lower. The accuracy of TaKIPI may be insufficient for precise, deep syntactic analysis,

e.g. for Machine Translation. However, TaKIPI is very efficient (4000 words per second

on a PC of 512MB RAM, 2.41GHz.) and may be very useful in tasks requiring shallow

processing of large amounts of text, e.g. in Information Extraction [21]. TaKIPI has

been successfully applied to identify base forms for the purposes of constructing

a semantic similarity function for Polish nouns [24]. TaKIPI has also been used in

automatic disambiguation of the present version of IPIC [1].

Acknowledgements

This work was financed by the Ministry of Education and Science project No

T11C 018 29.

References

[1] Przepiórkowski A 2004 The IPI PAN Corpus. Preliminary Version, Institute of Computer

Science PAS

[2] Manning Ch. D and Schütze H 1999 Foundations of Statistical Natural Language Processing,

The MIT Press

[3] Przepiórkowski A 2006 The Potential of the IPI PAN Corpus. Poznań Studies in Contemporary

Linguistics 41 31

[4] Dębowski Ł 2004 Proc. Int. Conf. on Intelligent Information Processing and Web Mining,

Zakopane, Poland (Kłopotek M A, Wierzchoń S T and Trojanowski K, Eds), Springer Verlag,

pp. 409–413

[5] Voutilainen A 1997 EngCG tagger, Version 2 (Bronsted T and Lytje I, Eds), Sprog og

Multimedier, Aalborg Universitetsforlag

[6] Oliva K 2003 Contributions 4 th Eur. Conf. on Formal Description of Slavic Languages

(Kosta P et al., Eds), Peter Lang, pp. 299–314

[7] Dębowski Ł 2001 Internal Report IPI PAN, Instytut Podstaw Informatyki PAN, 934

www.ipipan.waw.pl/staff/l.debowski/raporty/kropka934.pdf

[8] Mitchell T M 1997 Machine Learning, WCB/McGraw-Hill

[9] Godlewski G and Piasecki M 2006 Proc. Artificial Intelligence Studies (Kłopotek M

and Tchórzewski J, Eds), Publishing House of University of Podlasie, pp. 157–164

[10] Piasecki M 2006 Text, Speech Dialogue. Proc. 9 th Int. Conf., Brno, Czech Republic (Sojka P,

Kopeček I and Pala K, Eds), Springer Verlag, LNAI4188, pp. 205–212

[11] Piasecki M and Godlewski G 2006 Text, Speech Dialogue. Proc. 9 th Int. Conf., Brno, Czech

Republic (Sojka P, Kopeček I and Pala K, Eds), Springer Verlag, LNAI4188, pp. 213–220

[12] Piasecki M andWardyński A 2006 Proc. 1st Int. Symposium Advances in Artificial Intelligence

and Applications, Wisła, Poland, pp. 169–178

[13] Hajič J, Krbec P, Květoň P, Oliva K, Petkevič V 2001 Proc. 39 th Annual Meeting of ACL,

Morgan Kaufmann Publishers, pp. 260–267

[14] Quinlan J R 1993 C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo

[15] Márquez L 1999 Part-of-speech Tagging: A Machine Learning Approach based on Decision

Trees, PhD Thesis, Universitat Politècnica de Catalunya

[16] Woliński M 2006 Proc. Int. Conf. Intelligent Information Processing and Web Mining,

Ustroń, Poland (Kłopotek M A, Wierzchoń S T and Trojanowski K, Eds), Springer Verlag,

pp. 511–520

[17] Cohen W W 1995 Machine Learning: Proc. 12 th Int. Conf., Lake Tahoe, California, Morgan

Kaufmann, pp. 115–123

[18] Frank E and Witten I H 1998 Proc. 15 th Int. Conf. on Machine Learning, Morgan Kaufmann,

pp. 144–151

[19] Landwehr N, Hall M and Frank E 2005 Machine Learning 59 (1–2) 161

Polish Tagger TaKIPI: Rule Based Construction and Optimisation 167

[20] Witten I H and Frank E 2005 Data Mining: Practical Machine Learning Tools and Techniques,

2nd Edition, Morgan Kaufmann, San Francisco

[21] Konchady M 2006 Text Mining Application Programming, Charles River Media

[22] Kuncheva L 2004 Combining Pattern Classifiers: Methods and Algorithms, John Wiley

& Sons, New Jersey

[23] Márquez L, Rodŕıguez H, Carmona J and Montolio J 1999 Proc. 1999 Joint SIGDAT Conf.

on Empirical Methods in Natural Language Processing and Very Large Corpora, Maryland,

USA, pp. 53–62

[24] Piasecki M 2006 Proc. Multimedia and Network Information Systems (Zgrzywa A, Ed.), Wyd.

PWr., pp. 99–107

168 TASK QUARTERLY 11 No 1–2

