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Abstract: Timetabling problems are often difficult and time-consuming to solve. Most of the

methods of solving these problems are limited to one problem instance or class. This paper describes

a universal method for solving large, highly constrained timetabling problems in various domains.

The solution is based on an evolutionary algorithm framework and employs tabu search to quicken the

solution finding process. Hyper-heuristics are used to establish the algorithm’s operating parameters.

The method has been used to solve three timetabling problems with promising results of extensive

experiments.
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1. Introduction

Timetabling problems have been quite popular with researchers for more

than thirty years now. Their practical importance should not be underestimated, as

institutions involved in education, healthcare, transportation, sports, courts of law,

production enterprises and many others devote considerable resources to establish

effective plans of their actions. Over these years, many approaches to partial or

complete automation of such tasks have been presented, roughly divisible into four

types [1]:

– Sequential methods, using domain heuristics to order events and then assign

them sequentially to valid periods of time (also called timeslots) so that no

events in the period are in conflict with each other. Events are most often

ordered so that those most difficult to schedule are assigned to timeslots

first (this course of action being called a direct heuristic based on successive

augmentation) [2].

– Cluster methods, in which events are collected in clusters so that no two

events in a particular cluster are in conflict with each other. The clusters of

events are formed and fixed at the beginning of the algorithm, which is the
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main disadvantage of this approach, as it may result in a timetable of poor

quality [3].

– Constraint-based methods, in which a timetabling problem is modeled as

a set of variables (i.e. events) having a finite domain to which values (i.e.

resources such as time periods) need to be assigned to satisfy a number of

constraints; a number of rules is defined for assigning resources to events and,

when no rule is applicable to the current partial solution, backtracking is

performed until a solution is found that satisfies all constraints. Algorithms

are usually allowed to break some constraints in order to produce a complete

timetable (which must be done in a controlled manner), as it may be impossible

to satisfy all constraints [4].

– Meta-heuristic methods, a variety of which have been investigated for

timetabling, including simulated annealing, tabu search, evolutionary algo-

rithms and hybrid approaches. Meta-heuristic methods begin with one or more

initial solutions and employ search strategies to find the optimal solution, at-

tempting to avoid local optima in the process [3, 5–8].

Most approaches use heuristics (or metaheuristics) because timetabling prob-

lems are considered to be NP-hard (although mathematical proof of this exists only

for small-sized problem). Traditional combinatorial optimization methods most often

come with a considerable computational cost and, although capable of producing high

quality solutions, they are not suitable for solving large, highly constrained problems.

The above might suggest that AI-based automatic planning has already reached

a level of relative maturity, all the problems have been solved in principle, and the

research is focused on making the existing methods faster, more effective and yielding

solutions of better quality for more complex and larger problems. (It is, of course,

possible to find an instance large enough for a combinatorial optimization problem of

a given class, where modern metaheuristics perform poorly or even fail, but these are

rarely real-life problems.) Nevertheless, it must be pointed out that a vast majority of

methods concern only a specific type of problems (e.g. [9, 10]) or a particular problem

class (cf. [11, 12]) and require time and resources to be adapted for specific practical

applications.

This paper presents an attempt to create a universal method capable of solving

problems from different areas with minimum user interaction. Three problems from

different classes have been chosen for testing, so that universality and flexibility

of the method be assured. We begin with a typical university course timetabling

problem, very popular and widely researched, thus facilitating access to test data, both

real-life and artificially generated. A similar but more specific problem with different

constraints is timetabling at the Faculty of Computer Science and Management of

the Wroclaw University of Technology. Our last problem belongs to the personnel

scheduling class and concerns monthly duty plan of a Polish hospital’s ward. Its

relatively small size makes facilitates analysis, while its constraints are unlike those

of school timetabling.
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2. Description of the problems

A typical timetabling problem consists in assigning a set of activities/actions/

events (e.g. work shifts, duties, classes) to a set of resources (e.g. physicians,

teachers, rooms) and time periods, fulfilling a set of constraints of various types.

Constraints either stem from the very nature of timetabling problems or are specific

to the institution involved. In other words, timetabling (or planning) is a process

of putting in a sequence or partial order a set of events to satisfy temporal and

resource constraints required to achieve a certain goal. It is sometimes confused with

scheduling, which is a process of assigning events to resources over time to fulfill certain

performance constraints, although some scientists consider scheduling as a special case

of timetabling or vice versa [7].

Timetable problems are subject to numerous constraints, usually divided into

two categories: hard and soft. Hard constraints are rigidly enforced and have to be

satisfied in order for a timetable to be feasible. Soft constraints are desirable but not

absolutely essential.

The first problem considered is a typical university course timetabling problem

(UCTP). It consists of a set of events (classes) to be scheduled in a certain number

of timeslots and a set of rooms of certain features and sizes in which the events can

take place. There is a defined set of students attending each event and the number

of timeslots is 45 (5 days, 9 timeslots each). Test sets for this problem come from

International Timetabling Competition (ITTC) [13].

A feasible UCTP timetable is one in which all the events have been assigned

a timeslot and a room, while the following hard constraints have been satisfied:

(1) only one event is scheduled in each room at any timeslot,

(2) each room is large enough for all the attending students and has all the features

required for the event, and

(3) no student attends more than one class at the same time.

There are also three soft constraints defined, which are broken if:

(1) a student has a class in the last slot of the day,

(2) a student has more than two classes in a row,

(3) a student has a single class on a day.

The second problem – timetabling at the Faculty of Computer Science and

Management of the Wroclaw University of Technology – is similar to the first, but

has additional constraints related to teachers and the set of students attending each

event is undefined (only the number of students and the faculty they attend is known)

and has to be concluded from other data. In this problem, the number of timeslots is

35 (5 days, 7 timeslots each) and each event is attributed to a defined course (each

class is a part of a particular university course). Some test sets for this problem come

from real FCSM data while others have been generated artificially. In this problem,

a feasible timetable is one in which all the events have been assigned a timeslot

and a room so that the following hard constraints have been satisfied (apart from

constraints (1) and (2) of UCTP):

– no teacher teaches more than one class at the same time,

– no teacher teaches any class in timeslots which are forbidden for him, and
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– if a particular course has only one class assigned, no class with students from

the same faculty is scheduled at the same timeslot with this course (this covers

the obligatory courses which are usually taught for all the faculty’s students).

The third problem concerns a typical hospital department where about a dozen

physicians of various specialties are employed. Every day one or more doctors have

duty, but the number of doctors on duty may vary from day to day. A planning horizon

(i.e. a period of time for which the problem must be solved) amounts to one month.

If specialties of physicians in a particular department are not homogenous (e.g. the

casualty ward employs surgeons and anesthesiologists) doctors of particular specialty

are often required to be on duty. The following hard constraints have been defined:

– all the timeslots (i.e. days) have a proper number of physicians of appropriate

specialties assigned,

– no physician has duty on two (or more) consecutive days,

– no physician has duty more often than twice a week,

– at least one physician on each duty is able to perform his duties single-handedly

(viz. has a sufficient degree of medical education and experience).

In order to consider and model issues of fairness and job satisfaction, the

following soft constraints have been introduced:

– physicians have duties on their preferred days of the month and, symmetrically,

have no duties assigned in timeslots they would rather avoid,

– if more than one physician have duty at the same time, their interpersonal

preferences are taken into consideration (so that doctors have duty with persons

they like).

3. Solution details

Evolutionary algorithms (EA) are considered to be a good general-purpose

optimization tool due to their high flexibility and conceptual simplicity. Moreover,

as they have been proven to solve timetabling problems effectively ([3, 14]), the EA

framework has been chosen as the basis for a universal solver of timetable problems.

The term “EA” is used in this paper in its most generic meaning to indicate any

population-based metaheuristic optimization algorithm that uses mechanisms inspired

by biological evolution, such as reproduction and mutation.

3.1. Representation of the solutions

In order to assure universality of the approach, each solution (genotype) of

a particular problem’s instance is represented directly – each timeslot has a list of

events assigned and each event – a list of resources. Genotype length is constant for

particular problem – in the case of hospital duties the genotype has the length of

the number of physicians on duty multiplied by the number of timeslots, while the

course timetable genotype’s length equals the number of timeslots multiplied by the

number of rooms. The data (e.g. constraints) required to describe a particular problem

class is abstract and unified for all problem classes. Some weak constraints (those with

more than two preference levels – desired and undesired) require a special description:

a constraint is defined by its type and the number of preference levels. The latter must
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always be odd; the first level is the most desirable, the last level is the least desirable

and the middle level is neutral. Weak constraints may be of two types: timeslots which

have preferred resources and resources which have preferred resource combinations.

Examples of such constraints may be found in the duty assignment problem in the

form of interpersonal preferences (doctors may “love”, “like”, “dislike” or “hate” one

another, or merely be “indifferent”).

3.2. The evaluation function

A penalty-based evaluation function has been used. Penalty for genotype g

amounts to:

fg =
∑i<t

i=0

∑j<c

j=0
wjnij , (1)

where t is the number of timeslots, c is the number of constraint types (in the case

of a weak constraint with more than two preference levels, all preference levels are

considered to be separate constraints), wj is the weight assigned to a particular

constraint type, while nij is the factor determined by the penalization method. Four

different methods of penalization have been considered wherein:

– a timeslot is penalized once for every type of constraint broken (i.e. nij , is

either 0 or 1),

– a timeslot is penalized every time a particular type of constraint is broken,

– as in the first method, but the penalty is doubled for each subsequent constraint

of a particular type being broken, and

– a binary penalty – if a timeslot with events planned breaks no constraints, the

penalty for this timeslot amounts to 0 (or 1 otherwise); this is an exception

from Equation (1), as no weights are used to determine the penalty’s value.

A value of the evaluation (fitness) function for a solution, g, is calculated by

dividing the lowest non-zero penalty value in the population by the penalty value

for g:

Fg =
fmin

fg
. (2)

After generating the initial population, the evolutionary algorithm begins to

operate. A population is created in subsequent generations (iterations) by means of

the classical genetic roulette, as described in [15], but 20% of the population is always

preserved from the previous generation. 10% consists of the best solutions in terms of

the evaluation function described above. The remaining 10% are the solutions most

distant from the rest of the population, in order to preserve population diversity. The

distance between two timetables can be measured in three ways:

– as the number of events planned with the same resources in the same timeslot

in both timetables,

– as the number of pairs of events planned with the same resources in the same

timeslot in both timetables; as described in [1], this method is favored as it

allows to represent diversity as a single value average and did not have the

drawback of the method where absolute positions of events in timetables are

considered, or

– as search space coverage – how often the tuple 〈event, resources,timeslot〉

appears in the whole population.
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The higher the score, the smaller the distance between the timetables.

Additionally, three methods of determining the weights have been proposed:

– unified weights (all weights amount to 1),

– weak constraints having the weight value of one, strong constraints having the

weight equal to the number of weak constraints,

– automatic weight assignment – a procedure that allows establishing the weights

basing on how frequently constraints of particular type are broken in randomly

generated solutions; a set of solutions is generated at random and the least

frequently broken constraint is assigned the weight of one, while other weights

are established proportionally (the more frequent the constraint is broken, the

higher the weight).

If a weak constraint has more than one preference level, in all cases:

– the neutral level has nil weight value,

– positive preferences have negative weight values (it is a prize rather than

penalty; which may lead to negative penalty values, in such cases considered to

be zero),

– the weight of preference level p of constraint c equals:

wcp=
∣

∣

∣

wc

2

∣

∣

∣
·p, (3)

where wc is the weight value of constraint c established by means of one of the

aforementioned methods.

3.3. Genotype initialization strategies

In most of the approaches either random or heuristic initialization is used to

provide EA with an initial population of solutions. The random method is the least

computationally complex and ignores the problem’s domain knowledge. Heuristic

approaches have proven to be more effective though, i.e. the final solution tends

to be found faster than in the case of random initialization. Nevertheless, heuristics

always employ event sequencing strategies – the events are placed in the timetable

in the descending order of their “difficulty” to be planned, i.e. the events that are

the most difficult to schedule are allocated first. Graph coloring or problem-specific

heuristics is used. In the approach described in this paper, random initialization has

been used as reference in evaluating the other method, viz. the peckish initialization

method [16]. In this approach, sets of events (and resources) are chosen at random for

each timeslot k. The one that breaks the least number of hard constraints is assigned to

the timeslot. The number k is called the greediness level – when k equals 1 this method

corresponds to random initialization; when k aspires to the number of combinations

of events and resources, the algorithm becomes greedy. After assigning the weights

(by means of any of the aforementioned methods), the greediness level is established.

About a dozen sets of solutions are generated with ascending greediness levels (due to

increasing computational complexity of the generation process, the highest greediness

level considered has been arbitrarily set up at the number of timeslots in the particular

solution). Then the average fitness is calculated for each set of solutions, along with

their average generation time. The greediness offering the best score (the shortest

time and the greatest average fitness) is chosen.
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3.4. Genetic operators

In the classic genetic algorithm, some solutions are exposed to genetic opera-

tors, mutation and crossover, after selection during each iteration. The contents of

operators’ sets and their operation depend strongly on both specifics of the problem

being solved and the chosen approach. In this particular case, a recombination op-

erator would probably exhibit high computational and conceptual complexity. Even

a simple, one-point crossover operator would be quite complicated – after swapping

parts of different timetables the integrity of resulting solution would have to be as-

sured, which requires making sure that no event appears twice in the timetable and

removing the copies accordingly. Thus, only mutation operators are used, as in evo-

lutionary programming, which rarely attempt to emulate specific genetic operators

as observed in nature. Resources, events and timeslots can be mutated, thus yielding

a set of three different types of mutation operators. In the “classic” EA mutation, the

operator is “blind”, i.e. it changes the solution at random, an approach proven to

be ineffective (see [3]). The place in the genotype (tuple 〈event, resources,timeslot〉),

which breaks the most constraints, i.e. the most difficult to schedule, is selected for

mutation. If a number of places are equally difficult to schedule, one of them is cho-

sen at random. Operators attempt to reschedule events so that they would eliminate

a particular type of conflict (broken constraints of a particular type) caused by this

event. k possible variants are examined, and that which breaks the least constraints

of the particular type is chosen, like in the peckish initialization algorithm. Typi-

cally, either only one random change is considered [17] or a form of local search is

employed [6]. The proposed method is a simple, yet effective alternative to that.

3.5. The tabu search phase

Preliminary tests have shown an interesting phenomenon occurring about

half-way through the solution-finding process. If the average is being observed

one can notice A steady, steep drop in the value of the penalty function can be

observed for a particular solution until the population reaches a certain plateau,

where the value oscillates slightly (within a margin of about 1%). This is a proof

that, although directed genetic operators have been used, the algorithm continues to

search the solution space somewhat blindly and tends to get stuck in local optima,

which it manages to escape through random mutation only. Tabu search (TS) has

been employed in order to speed up the solution-finding process and avoid the

aforementioned oscillations. If the average penalty for a population deviates by less

than 20% for fifty generations, the genetic roulette is stopped and tabu search begins

to operate. The length of the tabu list has been arbitrary established and fixed at 10·k,

like all other parameters for the tabu search operation, in order to avoid introducing

new variables into the method. The algorithm operates as follows:

(1) Find a place in solution (tuple 〈event, resources,timeslot〉) which breaks the

most constraints (if there are a few such places, choose one at random).

(2) Generate k solutions with events rescheduled with different resources and/or

timeslot.

(3) Choose the solution which has the lowest penalty score and is not on the tabu

list, add it to the tabu list and go to (1). The chosen solution is now the current

one.
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The tabu search algorithm operates for 50 iterations, following which the

evolutionary algorithm takes over again. Results of experiments with tabu search

application are described in Section 4.

3.6. Establishing the operating parameters

Some parameters have to be established in order for the solution to work.

Usually, the parameters are established arbitrarily, e.g. on the basis of domain

knowledge, or experimentally. However, in “knowledge-poor” algorithms, designed

to solve a range of problems, such approach is not applicable. It has recently been

suggested [18], that hyper-heuristic methods can be used to deal with this problem.

A hyperheuristic is a high-level procedure which searches over a space of low-level

heuristics rather than directly over the space of problem solutions. It is different from

the popular metaheuristic, or heuristics which control simpler heuristics for a narrow

range of problems, in than the hyper-heuristic approach chooses from a range of

heuristic approaches to robustly solve a wide range of problems. A hyper-heuristic

can be thought of as a heuristic to choose or create heuristics and is a term more

specific than that of meta-algorithm, which uses the results of individual algorithms

for similar tasks or subtasks to perform the chosen task.

Current applications of hyper-heuristics in timetabling tend to use metaheuris-

tics to search for permutations of graph heuristics which are then used for constructing

timetables [18]. In the method described in this paper, a metaheuristic (or an evolu-

tionary algorithm, in this case a second-level algorithm as described below) is used to

find the best parameters for another metaheuristic (evolutionary programming, a first

level algorithm described in Section 3). Automatic weight assignment and establishing

greediness level procedures are both part of the hyper-heuristics.

An evolutionary algorithm has been used to find out which methods of penal-

ization, measuring the distance between solutions and weight assignment, along with

the order of conflict elimination and greediness level of genetic operators are the most

effective in terms of solution quality and time required to reach a feasible solution. The

genotypes represent the aforementioned parameters; the greediness level is a natural

number not greater than the number of timeslots, the order of conflict elimination

is an ordered sequence, the remaining attributes are nominal. A particular problem’s

solution is generated during each iteration of the algorithm using the parameters

given in every genotype, so that the first-level algorithm operates with parameters

from the second-level algorithm’s genotype. In order to avoid infinite operations, the

first-level algorithm ceases to operate after finding a feasible solution or after 1000

iterations, whichever occurs first. The genotypes of the second-level algorithm that

have not given feasible solutions of the first-level algorithm are scrapped, while the

others are evaluated. The value of the evaluation function is that of the binary penalty

function for the best genotype in the first-level algorithm’s population. The best set

of parameters is memorized and the genetic operators of mutation and crossover are

applied to the solutions. Mutation, acting with the probability of 0.2, changes one of

the parameters at random; in the case of the conflict elimination order, it changes that

order. Crossover swaps random parts of any two parameter sets with the probability

of 0.05, treating the conflict elimination order as one parameter. In the case of the

second-level algorithm, there is no threat that a crossover operator could compromise
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data integrity, as may be the case in the first-level algorithm, because it merely mixes

parameters from two solutions. The procedure is stopped after a fixed number of

iterations or when no improvement has been achieved in two subsequent iterations.

4. Experimental results

Preliminary experiments have been conducted with the approach described in

this paper. The first task was to prove that the method is capable of finding a feasible

solution for all the test problems. Ten International Timetabling Competition sets

have been used for the first problem, two real datasets for the second, and one real

and nine artificially-generated ones for the third. A feasible solution was found for all

the test sets. More extensive experiments were conducted on UCTP, as the problem

is widely recognized and the results can be compared with those found in other

publications. The results presented in the tables below have their fitness function

values recalculated to match the method used for evaluating the solution in ITTC

(all weights equal one, the second penalization method). As there are no analytical

means to compare the complexity of particular problem instances, only empirical

comparison is feasible. All the datasets depict problems similar in size: about 400

events, 200 students and a dozen rooms and features.

4.1. The first level algorithm: EA vs. tabu search

The first set of experiments has been conducted to ascertain whether EA can

be sensibly used as a first-level algorithm. Many researches have reported excellent

results using only a variation of tabu search, so the importance of this question cannot

be underestimated. Every dataset has been solved twenty times for each method

variation, i.e. EA only, TS only and EA with tabu search used to escape from local

optima. Both algorithms operated until a feasible solution has been found or for 1000

generations otherwise. The greediness level for EA equaled 15, the tabu list’s length

was 150, while the population size was 500. The second penalization method with

automatic weight assignment was used. The results are presented in Table 1.

The feasibility of the solutions found was not taken into account (most of the

time the algorithms were unable to find one in 1000 iterations): it is possible that two

solutions with the same score existed and only one of them was feasible.

Tabu search shows better average results, although not all of its “best” results

are better than those of EA, which is probably due to tabu search operating in more

systematically and predictably than EA. This comes with a price tag: EA is more

likely to find a better solution by pure chance. The combination of TS and EA shows

improvement in both best and average results; incorporating a tabu search phase

accelerates the search process. It is possible that using only tabu search would produce

a better overall solution but at a considerably greater computational cost of looking

through the tabu list.

4.2. Experiments with the second-level algorithm

In all our experiments, the second-level EA had a population size of 100, the

first-level – that of 500. The second-level EA was run for 1000 iterations, following

which the best 10 specimens of the second-level algorithm were run through the

first-level algorithm for 5000 generations.
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Table 1. Experimental results: the first row is the best result obtained with the evolutionary

algorithm only, the second is the average of the best solutions in 50 runs, the next two

rows are the best and average results using tabu search, the last two – the evolutionary

algorithm combined with a tabu search phase

Dataset 1 2 3 4 5 6 7 8 9 10

EA best 176 135 201 551 391 207 159 186 212 167

EA avg. 191 163 249 610 412 257 199 206 281 199

TS best 168 174 228 511 388 201 148 211 217 159

TS avg. 181 195 245 536 391 226 158 241 247 178

Both best 166 145 192 510 357 175 144 197 184 157

Both avg. 187 156 210 570 386 242 163 254 255 163

Dataset 11 12 13 14 15 16 17 18 19 20

EA best 186 254 295 281 184 166 317 101 302 165

EA avg. 199 263 301 297 190 167 327 109 317 179

TS best 179 243 271 269 155 128 281 91 275 159

TS avg. 187 251 289 285 179 134 287 98 278 165

Both best 163 231 262 261 164 126 262 84 269 157

Both avg. 176 244 278 278 176 139 276 88 271 159

The results archived by ITTC participants, which will be used as reference for

the method presented in this paper, are shown in Table 2. The best results have been

gathered from all the participants, but the winner has failed to achieve the best known

solutions for all the problem instances. An experiment with the algorithm described

in this paper was conducted 20 times and the averages of its best results are included

in Table 2.

Table 2. Results of experiments with the second-level algorithm

Dataset 1 2 3 4 5 6 7 8 9 10

ITTC best 45 25 65 115 77 6 12 29 17 61

ITTC average 137 87 150 289 248 143 145 129 123 153

Without TS 158 103 156 399 336 146 125 110 154 153

With TS 141 101 145 340 271 138 107 98 146 139

Best 10 with TS 130 93 139 320 264 136 104 92 138 128

Dataset 11 12 13 14 15 16 17 18 19 20

ITTC best 53 110 109 93 62 22 79 31 44 0

ITTC average 148 206 234 229 149 124 207 89 257 101

Without TS 163 220 268 255 158 145 301 92 299 185

With TS 151 218 255 234 149 134 287 88 278 165

Best 10 with TS 146 211 248 227 136 126 252 74 267 151

In all the experiments, feasible solutions have been found for all the problem

instances before the second-level algorithm ceased to operate. Most of the results

are above the average of the ITC score, but none is near the best score achieved by

competitors. Nevertheless, it has to be emphasized that the methods used in ITC were

designed to perform only one task and the parameters of their operation were chosen

intentionally to perform that task in the most effective way possible.
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4.3. Diversity of feasible solutions: the duty planning problem

Another set of experiments has been conducted on the duty planning problem.

The datasets solved were rather simple, so the algorithm was able to find feasible

solutions (even with no penalty) quite fast. However, a less constrained problem

often means a greater search space and further study is required to determine what

part of the search space has been visited. The ultimate operational acceptability and

subjective quality of the solutions with no penalty had to be determined by a human,

so the more different solutions were offered by the algorithm, the wider was the range

of selection. The task was to observe the diversity of feasible solutions in order to

determine whether it was sufficient to for the user to choose from.

The experiments were conducted on nine datasets. One was a real dataset from

the Department of Neurosurgery of the Wroclaw Medical University and contained

data on ten neurosurgeons, three of who could not work alone. No time preferences

and only two negative social preferences were defined. There were two doctors on

duty on odd days of the month and one doctor on even ones. The remaining datasets

were created artificially by adding 2 random social preferences for each doctor and 5

random temporal preferences to the real-data set (datasets 2–5) or 5 random social

preferences and 10 random temporal preferences for each doctor in the real-data set

(datasets 6–9).

The results are presented in Table 3. The figures given in the table are averages

of fifty measurements. Algorithm run time was 250 iterations of the second-level

algorithm, with the first-level population size of 100 solutions and the second-level

of 30 sets of parameters. The second column from the left contains the number of

iterations after the first solution with 0 or less penalty had been found. The average

penalty of the entire population after completion of computations is given in the third

column, while the fourth contains the average distances between solutions with no

penalty after completion of computations measured by search space coverage (the

third method) and divided by the number of timeslots, which gives the average

distance between particular timeslots across the whole population. The number of 0

or less penalty solutions after the algorithm had stopped is given in the last column.

The most interesting value is the average distance between solutions, e.g. the

value of 7.6 roughly means that nearly 90% of the population have no different

Table 3. Population diversity in the duty planning problem: experimental results

Average Average Average 0 or less
Dataset

iterations penalty distance solutions

1 160 47.8 7.6 63

2 217 69.3 9.2 31

3 267 77.1 4.1 53

4 232 43.2 4.3 56

5 199 81.8 9.2 23

6 631 95.3 12.2 9

7 939 57.3 3.8 33

8 715 73.4 4.4 21

9 688 104.2 11.0 11
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events and/or resources planned in any particular timeslot and there is about a dozen

different types of timetables to choose from.

5. Conclusions and future work

Whether a universal, “knowledge-poor” method is able to perform better or

at least comparably as well as domain-specific ones remains an open question. In

terms of computational time, it appears impossible, as a general method searches

the parameter space blindly. Our preliminary results are encouraging, but further

research is required to improve the algorithm: employing a form of local search seems

particularly promising in this regard. Nevertheless, universal methods will always have

a distinctive advantage over specialized ones in they do away with the laborious and

time-consuming process of redesigning and fine-tuning to fit the specific requirements

of a particular problem.

Results of the second-level algorithm’s operation should be investigated as

it is possible that some methods of penalization, weight assignment and distance

measurement may prove useless for all the problem’s variations and may thus be

removed from the search space. This would be especially important in the case

of personnel scheduling problems such as the doctors’ duty assignment problem

described in this paper. In most cases, duty roster changes only slightly from one

planning horizon to another (see [8, 19, 20]), so there is no need to search the

parameter space every time a particular problem class is solved; the set of “best”

parameters from previous runs can be used instead.
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