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Abstract: The presented comparative analysis concerns two iterative solvers for large-scale linear

systems related to µFEM simulation of human bones. The considered scalar elliptic problems

represent the strongly heterogeneous structure of real bone specimens. The voxel data are obtained

with high resolution computer tomography. Non-conforming Rannacher-Turek finite elements are

used to discretize of the considered elliptic problem. The preconditioned conjugate gradient method

is known to be the best tool for efficient solution of large-scale symmetric systems with sparse

positive definite matrices. Here, the performance of two preconditioners is studied, namely modified

incomplete Cholesky factorization, MIC(0), and algebraic multigrid. The comparative analysis is

mostly based on the computing times to run the sequential codes. The number of iterations for

both preconditioners is also discussed. Finally, numerical tests of a novel parallel MIC(0) code are

presented. The obtained parallel speed-ups and efficiencies illustrate the scope of efficient applications

for real-life large-scale problems.
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1. Introduction

These days computational science entails interdisciplinary research, tackling

complex scientific and engineering problems under the unifying concept of compu-

tation. The explosive growth of computer performance and progress in numerical

methods and interfaces extend the power of scientific computation to an ever larger

set of problems, while suggesting new ideas for experimental research. The present

study is motivated by the development and tuning of robust iterative solution meth-

ods, algorithms and software tools for µFE (micro finite element) simulation of human

bones. The problem includes a voxel representation of bone structure based on micro

computer tomography (CT) images. We consider an isotropic 3D elliptic partial dif-

ferential equation. This scalar problem is an [[inherent brick]] in the development of

efficient solvers for the related coupled problems involved in nonlinear elasticity and

porous elasticity µFE simulation of bone structures.

The computational domain is a complicated heterogeneous composition of solid

and fluid phases. The figure below presents the solid phase of a micro mesh detail of

a 2.5 mm cubic portion of a bone specimen with 44µm voxels [1].
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Figure 1. Micro mesh detail of the solid phase of a human trabecular bone

Non-conforming Rannacher-Turek FEs are used to discretize the problem. The

obtained linear system is large with a sparse, symmetric and positive definite matrix.

This implies the use of iterative solvers based on the preconditioned conjugate gradient

(PCG) method [2]. Here, the performance of two PCG codes is studied: (a) modified

incomplete factorization, MIC(0), and (b) algebraic multigrid, AMG. The former has

been developed in IPP-BAS, Sofia, while the AMG code is the BoomerAMG module of

the Hypre software system developed at LLNL, Livermore. The comparative analysis

is focused on the number of iterations and the related computing times for real-life

large-scale problems.

The paper is organized as follows. In Section 2 we describe the Finite Ele-

ment Method (FEM) setting of the problem. Brief information about MIC(0) and

BoomerAMG preconditioners is given in Section 3 followed by comparative numerical

tests for the related sequential codes. Section 4 is devoted to the recently proposed

parallel MIC(0) algorithm for 3D Rannacher-Turek FEM systems. Parallel numerical

tests are included, performed on an IBM SP Cluster.

2. Non-conforming FEM formulation of the problem

Let us consider the elliptic boundary value problem:

Lu≡−∇·(a(x)∇u(x)) = f(x) in Ω,
u =0 on ΓD,

(a(x)∇u(x)) ·n =0 on ΓN ,
(1)

where Ω is a parallelogram domain in R
3 which can be decomposed into n1×n2×n3

cubes. Each of these cubes corresponds to a voxel from the CT image of a bone

specimen. The problem is isotropic. The a(x) coefficient is assumed to be piece-wise

constant with jumps aligned with the voxel mesh:

a(x)=

{

1 for x∈Ωs,
ζ for x∈Ω\Ωs,

(2)
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where Ωs stands for the solid phase of bone volume, Ω\Ωs corresponds to the fluid
phase, and ζ is a constant parameter in (0,1].

The weak formulation of problem (1) reads as follows: given f ∈ L2(Ω) find
u∈V ≡H1D(Ω)= {v ∈H1(Ω) : v=0 on ΓD}, satisfying:

A(u,v)= (f,v) ∀v ∈H1D(Ω), where Ah(u,v)=

∫

Ω

a(x)∇u(x) ·∇v(x)dx. (3)

The variational problem (3) is then discretized using the finite element method, i.e.,

the continuous space V is replaced by a finite dimensional subspace V h. Then, the

finite element formulation is: find uh ∈V h, satisfying:

A(uh,vh)= (f,vh) ∀vh ∈V h, where Ah(uh,vh)=
∑

e∈Th

∫

e

a(e)∇uh ·∇vhdx. (4)

Thus, the resulting discrete problem to be solved is a linear system of equations:

Auh= fh, (5)

where uh stands for the vector of unknown degrees of freedom, A and fh being

the corresponding global stiffness matrix and global right hand side, h being the

discretization (mesh size) parameter for the underlying partition T h of Ω. The aim of

this paper is to investigate high performance preconditioners for solving system (5).

Non-conforming finite elements based on rotated multilinear shape functions

were introduced by Rannacher and Turek [3] as a class of simple elements for the

Stokes problem. More generally, the recent activities in the development of efficient

solution methods for non-conforming finite element systems are inspired by their at-

tractive properties as a stable discretization tool for ill-conditioned problems. Further

details of non-conforming finite elements can be found in [4–6]. The [−1,1]3 cube is
used as a reference element, ê, to define the isoparametric rotated trilinear element

e∈T h. Let Ψe : ê→ e be the corresponding trilinear one-to-one transformation, and
let the nodal basis functions be determined by the following relation:

{φi}6i=1= {φ̂i ◦Ψ−1e }6i=1, {φ̂i}∈ span {1,x,y,z,y2−x2,x2−z2}, (6)

where (x1,x2,x3)≡ (x,y,z), ‘◦’ denotes the composition of functions. For the MP (mid
point) variant, {φ̂i}6i=1 are found by the point-wise interpolation condition:

φ̂i(b
j
e)= δij , (7)

where bje, j=1,6 are the centers of gravity of the walls of cube ê. Then:

φ̂1(x,y,z)=
(

1−3x+2x2−y2−z2
)

/6,

φ̂2(x,y,z)=
(

1+3x+2x2−y2−z2
)

/6,

φ̂3(x,y,z)=
(

1−x2−3y+2y2−z2
)

/6,

φ̂4(x,y,z)=
(

1−x2+3y+2y2−z2
)

/6,

φ̂5(x,y,z)=
(

1−x2−y2−3z+2z2
)

/6,

φ̂6(x,y,z)=
(

1−x2−y2+3z+2z2
)

/6.

(8)

Alternatively, for the MV variant, the integral mean-value interpolation operator is

applied in the following form:

|Γjê|−1
∫

Γj
ê

φ̂idΓ
j
ê= δij , (9)
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Γjê, j=1, 6 being the cube walls, and then:

φ̂1(x,y,z)=
(

2−6x+6x2−3y2−3z2
)

/12,

φ̂2(x,y,z)=
(

2+6x+6x2−3y2−3z2
)

/12,

φ̂3(x,y,z)=
(

2−3x2−6y+6y2−3z2
)

/12,

φ̂4(x,y,z)=
(

2−3x2+6y+6y2−3z2
)

/12,

φ̂5(x,y,z)=
(

2−3x2−3y2−6z+6z2
)

/12,

φ̂6(x,y,z)=
(

2−3x2−3y2+6z+6z2
)

/12.

(10)

Both variants have similar properties with respect to the solution methods for the

related FEM systems. In the following Section we present numerical tests for the MV

case, due to the approximation advantages of this variant reported in the literature

(see e.g. [3]).

3. PCG algorithms

The PCG is known to be the best algorithm for solving large sparse systems

of linear equations with a positive definite matrix. Crucial for its performance is

the preconditioning technique used. Here, we focus on two preconditioners: modified

incomplete Cholesky factorization, MIC(0), and the algebraic multigrid method in the

BoomerAMG variant, developed at Lowrance Livermore National Laboratory (LLNL).

3.1. MIC(0) preconditioning

In this section we briefly discuss modified incomplete factorization ([7], see also

[8, 9]). Our presentation will follow [10]. Let us rewrite the real N×N matrix A=(aij)
in the following form

A=D−L−LT , (11)

where D is the diagonal and (−L) is the strictly lower triangular part of A. Then, we
consider the approximate factorization of A of the following form:

CMIC(0)=(X−L)X−1(X−L)T , (12)

where X =diag(x1, .. . , xN ) is a diagonal matrix determined by the condition of equal

rowsums. We are interested in the case when X > 0 and thus CMIC(0) is positive

definite for the purpose of preconditioning. If this holds, we speak about stable MIC(0)

factorization. Concerning the stability of MIC(0) factorization, we have the following

theorem.

Theorem 1. Let A = (aij) be a symmetric real N ×N matrix and let A =
D−L−LT be the splitting of A. Let us assume that:

L≥ 0,
Ae ≥ 0,

Ae+LTe > 0, e =(1, .. . , 1)T ∈RN ,
(13)

i.e. that A is a weakly diagonally dominant matrix with nonpositive offdiagonal entries

and that A+LT =D−L is strictly diagonally dominant. Then the relation:

xi= aii−
i−1
∑

k=1

aik
xk

N
∑

j=k+1

akj > 0 (14)
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holds and the diagonal matrixX =diag(x1, . .. , xN ) defines stableMIC(0) factorization

of A.

Remark 1. The presented numerical tests have been performed using the

perturbed version of the MIC(0) algorithm, where incomplete factorization is applied

to the Ã = A+ D̃ matrix. Diagonal perturbation, D̃ = D̃(ξ) = diag(d̃1, .. ., d̃N ), is

defined as follows:

d̃i=

{

ξaii if aii≥ 2wi,
ξ1/2aii if aii< 2wi,

(15)

where 0<ξ < 1 is a parameter, while wi=
∑

j>i−aij .

3.2. BoomerAMG

BoomerAMG contains sequential and parallel implementations of algebraic

multigrid methods [11]. It can be used both as a solver and as a preconditioner.

Various parallel coarsening techniques and relaxation schemes are available. (See

[12, 13] for a detailed description of the coarsening algorithms, interpolation and

numerical results.) The following coarsening techniques are available:

– Cleary-Luby-Jones-Plassman (CLJP) coarsening,

– various variants of the classical Ruge-Stüben (RS) coarsening algorithm and

– Falgout coarsening, which is a combination of CLJP and the classical RS

coarsening algorithm.

The following relaxation techniques are available:

– Jacobi relaxation,

– the hybrid Gauss-Seidel / Jacobi relaxation scheme,

– the symmetric hybrid Gauss-Seidel / Jacobi relaxation scheme, and

– Gauss-Seidel relaxation.

3.3. Sequential numerical tests

The tests included in this section were performed on a computer with an

Athlon64 processor running at 2.0GHz with 4GB of RAM. The structure of the solid

phase for the (32×32×32) and (64×64×64) domains was extracted from a real CT
image of a trabecular human bone. The voxel size was 40µm. A mirror reflection

technique was applied to get the larger problems (see Figure 2), which is a standard

procedure (see, e.g., [14] and the references therein) to construct a sequence of discrete

problems when computational scalability is studied.

Remark 2. It is well known that bone microstructure is not periodical. Here,

a mirror reflection has been applied only for benchmarking the studied iterative

solvers. It is important to note that we have used no periodical properties in the

construction of the studied preconditioners.

Both MIC(0) and BoomerAMG are used as preconditioners with a relative

stopping criteria in the following form:

(C−1rNit ,rNit)/(C−1r0,r0)< 10−6, (16)

where ri is the current residual and C stands for the used preconditioner. The

size of discrete problem N and coefficient jump ζ varies, while N = (n1+1)n2n3+
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Figure 2. Structure of the solid phase: 64×64×64 (left), and 128×128×128 (right)

n1(n2+1)n3+n1n2(n3+1), ni is the number of mesh intervals along the xi direction,

i∈{1, 2, 3}.
Numerical tests for the MIC(0) and BoomerAMG preconditioners are respec-

tively presented in Table 1 and Table 2. They include the obtained numbers of itera-

tions, Nit , and the related total execution times, t, measured in seconds. The default

settings of BoomerAMG were used: the Falgout coarsening consisted of the classical

Ruge-Stueben coarsening, followed by CLJP using the interior coarse points gener-

ated by Ruge-Stueben coarsening as its first independent set. A V(1, 1)-cycle was

performed with hybrid Gauss-Seidel smoothing. The related AMG strength threshold

was 0.25.

Table 1. MIC(0)

ζ =1 ζ =0.1 ζ =0.01 ζ =0.001

n1×n2×n3 N Nit t Nit t Nit t Nit t

32×32×32 101376 27 0.86 46 1.55 121 3.22 187 5.11

32×32×64 201728 26 1.58 36 2.27 115 6.08 296 15.3

32×64×64 401408 26 3.04 41 5.51 117 13.1 379 47.8

64×64×64 798720 35 7.84 56 14.5 166 41.3 417 103

64×64×128 1593344 33 14.6 52 28.1 141 69.3 453 220

64×128×128 3178496 33 27.7 53 54.2 142 134 467 440

128×128×128 6340608 47 76.8 72 122 197 337 575 981

Notably, Nit =O(
√
n1) in the case of MIC(0), which is in full agreement with

the existing theoretical estimates and with computational practice. For the largest

problem, 128×128×128, Nit increases more than 12 times when ζ decreases from
1 to 0.001. The iteration counts are much better for BoomerAMG. The multigrid

iterations are almost optimal with respect to the problem size, N , increasing slightly

with the coefficient jumps, while the AMG theory does not support the case of so

strongly heterogeneous media.

It is important to note that the structure of the algorithm and the memory

consumption of the MIC(0) code does not depend on the coefficients. This is not the
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case with BoomerAMG, which uses about 4 times more memory than the MIC(0) for

the Laplace equation (ζ = 1) and about 10 times more in the presence of coefficient

jumps. The shortage of the available RAM was the reason to skip the last two largest

tests for BoomerAMG in the cases of ζ ∈ {0.1, 0.01, 0001}. The number of iterations
for the MIC(0) algorithm depends heavily on the perturbation parameter, ξ.

Table 2. BoomerAMG

ζ =1 ζ =0.1 ζ =0.01 ζ =0.001

n1×n2×n3 N Nit t Nit t Nit t Nit t

32×32×32 101376 7 3.65 8 5.42 9 5.79 11 6.18

32×32×64 201728 7 6.83 8 9.55 8 10.0 10 10.0

32×64×64 401408 7 13.4 8 27.3 10 29.2 11 30.5

64×64×64 798720 8 28.5 9 58.9 12 57.1 13 52.7

64×64×128 1593344 8 58.1 9 145 11 153 15 181

64×128×128 3178496 8 123

128×128×128 6340608 8 252

ζ =1 ζ =0.1 ζ =0.01 ζ =0.001

n1×n2×n3 N Nit t Nit t Nit t Nit t

32×32×32 101376 7 3.65 8 5.42 9 5.79 11 6.18

32×32×64 201728 7 6.83 8 9.55 8 10.0 10 10.0

32×64×64 401408 7 13.4 8 27.3 10 29.2 11 30.5

64×64×64 798720 8 28.5 9 58.9 12 57.1 13 52.7

64×64×128 1593344 8 58.1 9 145 11 153 15 181

64×128×128 3178496 8 123

128×128×128 6340608 8 252

The ultimate aim of this analysis is to compare the total computing times.

The presented tests demonstrate that MIC(0) performs better in all cases excluding

the strongest coefficient jump of ζ = 0.001. The time required to construct the

preconditioner (for recursive approximate factorization) is relatively long for the

BoomerAMG implementation of the general purpose algebraic multigrid algorithms.

The better times for BoomerAMG are indicated in Table 2 by gray background.

Importantly, MIC(0) provides an alternative choice for efficient solution of voxel FEM

elliptic systems in cases of small to moderate coefficient jumps. For stronger jumps

and larger problems (if they fit the available RAM), BoomerAMG will outperform the

tested MIC(0) code.

Figure 3. Structure of the solid phase: 64×64×256

Let us consider the case when the domain has stronger geometrical anisotropy

(see Figure 3). Such problems naturally appear in bone simulations. Let n1=n2 and

n3 = kn1 for k ∈ {1, 2, 4, 8}; the results for both solvers are presented in Tables 3
and 4.

Again, with varying n3 for fixed ζ the number of iterations remains much

the same, which is generally expected for the optimal BoomerAMG solver. More

interesting is the obtained optimal convergence rate for the MIC(0) preconditioner.

Both solvers scale relatively well in all cases. Doubling the problem size approximately
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Table 3. MIC(0): domain anisotropy

ζ =1 ζ =0.1 ζ =0.01 ζ =0.001

n1×n2×n3 N Nit t Nit t Nit t Nit t

32×32×32 101376 27 0.86 46 1.55 121 3.22 187 5.11

32×32×64 201728 26 1.58 36 2.27 115 6.08 296 15.3

32×32×128 402432 29 3.94 42 5.28 124 15.3 357 43.3

32×32×256 803840 27 6.78 41 10.3 118 27.2 286 65.8

64×64×64 798720 35 7.84 56 14.5 166 41.3 417 103

64×64×128 1593344 33 14.6 52 28.1 141 69.3 453 220

64×64×256 3182592 39 36.4 54 49.1 148 131 449 399

64×64×512 6361088 37 66.6 57 98.3 161 265 504 835

Table 4. BoomerAMG: domain anisotropy

ζ =1 ζ =0.1 ζ =0.01 ζ =0.001

n1×n2×n3 N Nit t Nit t Nit t Nit t

32×32×32 101376 7 3.65 8 5.42 9 5.79 11 6.18

32×32×64 201728 7 6.83 8 9.55 8 10.0 10 10.0

32×32×128 402432 7 14.1 9 26.0 10 26.0 11 26.3

32×32×256 803840 7 28.2 9 48.1 11 49.6 10 44.7

64×64×64 798720 8 28.5 9 58.9 12 57.1 13 52.7

64×64×128 1593344 8 58.1 9 145 11 153 15 181

64×64×256 3182592 7 115

64×64×512 6361088 8 246

ζ =1 ζ =0.1 ζ =0.01 ζ =0.001

n1×n2×n3 N Nit t Nit t Nit t Nit t

32×32×32 101376 7 3.65 8 5.42 9 5.79 11 6.18

32×32×64 201728 7 6.83 8 9.55 8 10.0 10 10.0

32×32×128 402432 7 14.1 9 26.0 10 26.0 11 26.3

32×32×256 803840 7 28.2 9 48.1 11 49.6 10 44.7

64×64×64 798720 8 28.5 9 58.9 12 57.1 13 52.7

64×64×128 1593344 8 58.1 9 145 11 153 15 181

64×64×256 3182592 7 115

64×64×512 6361088 8 246

doubles the computational time. The scalability is even better expressed for MIC(0) in

the case of stronger coefficient jumps. As in Table 2, the data missing for BoomerAMG

are due to the lack of sufficient RAM. The better times for BoomerAMG are again

markeed with gray background.

4. Parallel MIC(0)

As has been mentioned, BoomerAMG also has a parallel implementation. Less

popular is a parallel algorithm for MIC(0) preconditioning of Rannacher-Turek FEM

systems. The last section of this article is concerned with the recently developed

parallel MIC(0) for 3D Rannacher-Turek problems. A separate article will be devoted

to a comparative analysis of the parallel performance of MIC(0) and BoomerAMG.

4.1. The parallel algorithm

The idea of the algorithm is to applyMIC(0) factorization to an auxiliary matrix

B. The matrix has a special block structure allowing scalable parallel implementation.

Following the standard FEM assembling procedure, we write A in the form

A =
∑

e∈ωh
LTe AeLe, where Ae is the element stiffness matrix, Le stands for the

restriction mapping of the global vector of unknowns to the local one corresponding

to the current element e. Let us consider the following approximation Be of Ae:

Ae=













a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56
a61 a62 a63 a64 a65 a66













, Be=













b11 a12 a13 a14 a15 a16
a21 b22 a23 a24 a25 a26
a31 a32 b33 0 0 0
a41 a42 0 b44 0 0
a51 a52 0 0 b55 0
a61 a62 0 0 0 b66













. (17)
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The local numbering follows the pairs of opposite nodes of the reference element. The

diagonal entries of Be are modified to hold the rowsum criteria. Assembling the locally

defined matrices Be, we obtain the global matrix: B=
∑

e∈ωh
LTe BeLe.

The sparsity structure of matrices A and B is illustrated in Figure 4, with

the use of lexicographic node numbering. An important property of matrix B is

that its diagonal blocks are diagonal matrices. This allows well-scalable parallel

implementation (see [15–17]), confirmed by the tests presented at the end of this

section.

Figure 4. Sparsity structure of matrix A (left) and matrix B (right) for division of Ω into

2×2×6 hexahedrons. Non-zero elements are marked as small squares

4.2. Convergence tests

The definition of B ensures a uniform spectral condition number estimate,

κ(B−1A)=O(1). Here, we compare the convergence of the sequential MIC(0) and the

parallel variant, i.e. MIC(0) applied to auxiliary matrix B. Diagonal compensation is

used to remove the positive offdiagonal entries and ensure stable MIC(0) factorization

of A in the sequential algorithm. The numbers of iterations are collected in Table 5 for

both methods. Their convergence is very similar, but the computational complexity

of one PCG iteration is cheaper for the second variant as B is considerably sparser

than A.

Table 5. Number of iterations for MIC(0) and Parallel MIC(0)

n1×n2×n3 MIC(0) Parallel MIC(0)

32×32×32 23 27

64×64×64 33 35

128×128×128 46 47

As can be seen in Tables 1–5, the sequential tests presented in Section 3.3 have

been performed using the modified (parallel) version of MIC(0).
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4.3. Parallel tests

The parallel MIC(0) algorithm was programmed using the Message Passing

Interface library (MPI). The presented tests were performed on four parallel platforms.

Platform C1 was an IBM SP Cluster 1600 made of 64 nodes p5-575 interconnected with

a pair of connections to the Federation HPS (High Performance Switch). Each p5-575

node contained 8 SMP Power5 processoer of 1.9GHz and 16GB of RAM. Platform C2

was a Cray XD1 cabinet, fully populated with 72 2-way nodes, with a total of 144 AMD

64-bit Opteron processors of 2.4GHz. Each node had 4GBs of memory. The CPUs of

C2 were interconnected with the Cray RapidArray network. Platforms C3 and C4

provided different interconnections for one and the same cluster. They were made

of 32 nodes each with 2 AMD Opteron processors of 2.4GHz and 4GBs of memory.

The processors run in the 32 bit mode. The communication of C3 was over a normal

gigabit ethernet, while C4 used an M3F-PCIXD-2 Myrinet/PCI-X network interface.

Basing on the conclusions from the previous subsections, we concentrate here

on the parallel speedups and efficiencies presented in Table 6 and Table 7. Since the

cost of constructing the MIC(0) preconditioner is roughly about 2/3 of the cost of

one iteration – only times per iteration are given. The number of iterations for the

parallel MIC(0) solver does not depend on the number of processors, p.

The first set of parallel experiments were performed with n1=n2=n3=n (see

Table 6).

Table 6. Parallel Tests I

C1 C2 C3 C4

p n Tp Sp Ep Tp Sp Ep Tp Sp Ep Tp Sp Ep

1 0.0204 1.00 1.00 0.0268 1.00 1.00 0.0257 1.00 1.00 0.0236 1.00 1.00

2 0.0111 1.8 0.92 0.0161 1.66 0.83 0.0263 0.97 0.48 0.0157 1.50 0.75

4 31 0.0072 2.8 0.70 0.0115 2.33 0.58 0.0275 0.93 0.23 0.0116 2.04 0.51

8 0.0046 4.4 0.55 0.0067 4.01 0.50 0.0281 0.91 0.11 0.0082 2.88 0.36

16 0.0033 6.0 0.38 0.0046 5.72 0.36

1 0.176 1.00 1.00 0.227 1.00 1.00 0.221 1.00 1.00 0.200 1.00 1.00

2 0.090 1.94 0.97 0.117 1.94 0.97 0.137 1.62 0.81 0.118 1.70 0.85

4 63 0.049 3.56 0.89 0.071 3.18 0.80 0.098 2.26 0.56 0.070 2.86 0.71

8 0.026 6.70 0.84 0.045 5.01 0.63 0.082 2.69 0.34 0.047 4.28 0.53

16 0.017 10.5 0.66 0.033 6.84 0.43

1 1.57 1.00 1.00 2.09 1.00 1.00 1.82 1.00 1.00 1.92 1.00 1.00

2 0.81 1.94 0.97 1.08 1.92 0.96 1.08 1.69 0.84 1.11 1.73 0.87

4 127 0.44 3.56 0.89 0.55 3.83 0.95 0.62 2.94 0.74 0.53 3.62 0.90

8 0.22 7.01 0.88 0.30 6.97 0.87 0.39 4.64 0.58 0.29 6.59 0.82

16 0.12 13.16 0.82 0.19 11.12 0.69

The parallel scalability of the solver is well expressed for the larger of the

test problems. Slight differences in sequential times on platforms C3 and C4 can be

explained by the use of different MPI libraries. Notably, even the sequential runs

(p=1) have been influenced by the related MPI library.

As the efficiency of the parallel MIC(0) algorithm depends mainly on the n2n3/p

ratio, we repeated the parallel tests on platforms C3 and C4 in the case of domain

anisotropy as introduced above. The results are presented in Table 7.
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Table 7. Parallel Tests II

C3 C4 C3 C4

p n1×n2×n3 Tp Sp Ep Tp Sp Ep p n1×n2×n3 Tp Sp Ep Tp Sp Ep

1 0.027 1.00 1.00 0.025 1.00 1.00 1 0.22 1.00 1.00 0.20 1.00 1.00

2 0.024 1.10 0.55 0.020 1.27 0.63 2 0.23 0.93 0.46 0.12 1.72 0.86

4 32×32×32 0.036 0.77 0.19 0.012 2.13 0.53 4 64×64×64 0.10 2.09 0.52 0.08 2.70 0.67

8 0.033 0.82 0.10 0.009 2.99 0.37 8 0.08 2.57 0.32 0.05 4.22 0.53

1 0.060 1.00 1.00 0.050 1.00 1.00 1 0.54 1.00 1.00 0.53 1.00 1.00

2 0.036 1.67 0.84 0.031 1.57 0.78 2 0.26 2.11 1.05 0.23 2.37 1.18

4 32×32×64 0.030 1.99 0.50 0.021 2.39 0.60 4 64×64×128 0.14 3.69 0.92 0.12 4.31 1.07
8 0.030 1.98 0.25 0.012 4.08 0.51 8 0.17 3.05 0.38 0.08 6.67 0.83

1 0.107 1.00 1.00 0.116 1.00 1.00 1 0.93 1.00 1.00 0.96 1.00 1.00

2 0.063 1.71 0.85 0.057 2.02 1.01 2 0.62 1.50 0.75 0.56 1.70 0.85

4 32×32×128 0.075 1.43 0.35 0.034 3.39 0.85 4 64×64×256 0.30 3.05 0.76 0.25 3.79 0.94
8 0.034 3.14 0.39 0.021 5.43 0.68 8 0.15 6.04 0.76 0.12 7.55 0.94

1 0.238 1.00 1.00 0.240 1.00 1.00 1 2.11 1.00 1.00 2.00 1.00 1.00

2 0.133 1.78 0.89 0.133 1.81 0.90 2 1.07 1.91 0.96 1.00 1.99 0.99

4 32×32×256 0.068 3.49 0.87 0.057 4.15 1.03 4 64×64×512 0.63 3.32 0.83 0.59 3.41 0.85
8 0.047 5.04 0.63 0.035 6.84 0.86 8 0.30 7.15 0.89 0.26 7.73 0.97

There is very good efficiency for larger n3 on both types of interconnections,

additionally supported by the implemented overlapping of computations and com-

munications (for more details see [16]). As a result, the influence of latency and the

networks’ speed is strongly reduced with the increase of n3. When n2n3/p > c, c is

a certain threshold depending on the interconnection, almost all communications are

overlapped with the ongoing computations, and the efficiencies are close to 1. Efficien-

cies greater than 1 could be explained by better data localization and the consequent

better memory cache utilization in some of the cases.

5. Concluding remarks

Computational scalability issues of high performance iterative solution meth-

ods, algorithms and codes have been studied and tested. Benchmarking has been

focused on strongly heterogeneous scalar elliptic problems. The structure of the test

problems has been taken from a CT image of a trabecular bone. The presented results

enable further development of robust computational tools for µFEM analysis of bone

structures. The planned next steps of this study include the application of scalar el-

liptic solvers in the construction of block-preconditioners for coupled elasticity and

poroelasticity problems.
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[11] Ruge J W and Stüben K 1987 Frontiers in Applied Mathematics (McCormick S F, Ed.),

SIAM, Philadelphia, PA, 3, pp. 73–130

[12] Henson V E and Yang U M 2002 Appl. Num. Math. 41 (5) 155 (also available as LLNL

Technical Report UCRL-JC-141495)

[13] Yang U M 2005 Numerical Solution of Partial Differential Equations on Parallel Computers

(Bruaset A M and Tveito A, Eds), Springer-Verlag, pp. 209–236 (also available as LLNL

Technical Report UCRL-BOOK-208032)

[14] Arbenz P, van Lenthe G H, Mennel U, Müller R and Sala M 2006 A scalable Multi-

level Preconditioner for Matrix-free µ-Finite Element Analysis of Human Bone Structures,

Institute of Computational Science, ETH Zurich, Technical Report 543

[15] Arbenz P and Margenov S 2004 Proc. IMET Conf., Prague, Czech Republic, pp. 12–15

[16] Arbenz P, Margenov S and Vutov Y 2007 Comput. Math. Appl. (to appear)

[17] Vutov Y 2007 Lecture Notes in Computer Science, NMA 2006, Borovets, Bulgaria, 4310 114


