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Abstract: Lack of the quality of the information that is integrated from heterogeneous sources is

an important issue in many scientific domains. In toxicology the importance is even greater since

the data is used for Quantitative Structure Activity Relationship (QSAR) modeling for prediction of

chemical toxicity of new compounds. Much work has been done on QSARs but little attention has

been paid to the quality of the data used. The underlying concept points to the absence of the quality

criteria framework in this domain. This paper presents a review on some of the existing data quality

assessment methods in various domains and their relevance and possible application to predictive

toxicology, highlights number of data quality deficiencies from experimental work on internal data

and also proposes some quality metrics and an algorithm for assessing data quality concluded from

the results.
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1. Introduction

Nowadays, given the development and low cost of high data storage capacities,

more experimental data is available from various scientific laboratories. A modern ap-

proach to the accessibility of large amounts of data is therefore using data integration

methods. In this context, data quality is one of the most important attributes for data

integration. A special case is predictive toxicology, the science of developing in-silico

models for toxicity prediction, which is of interest to chemical and pharmaceutical in-

dustry, regulatory bodies and environmental protection agencies. This approach con-

siders the use of experimental data for Quantitative Structure Activity Relationship

modeling [1], relating aspects of chemical compound structure to biological activities

against various endpoints in order to predict chemical toxicity of new compounds.

Currently, most of toxicity data is obtained from publicly available databases such as
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Toxnet [2] or DSSTox [3] as collation of various experimental data from governmental

or industrial bodies. But because of their limitations such as various experimental

conditions, incomplete source identification or lack of standardization requirements

for different measurement units, many of them may still not be fully recognized as

reliable sources. Efforts are paid to organize and manage toxicity databases toward

standardization and to improve their integrity and reliability by National Institute

of Standards and Technology [4] which focuses on producing a common vocabulary

of weights, measures, names and symbols to scientific enterprises and agreement of

a data file terminologies. This effort provides procedural guidelines for experimental

work but still the inconsistencies of data values within a source or from one source to

another remain a subject to be addressed. These drawbacks generated a demand of

methods to tackle the data quality problems [5].

In the next section, we overview some integration methods implemented in

other domains to address the problem of low quality data. A short analysis of each

method is also provided to clarify the relevance of each approach to the predictive

toxicology domain. A summary of extensive experimental work carried out in our

research laboratory on assessment of data quality in predictive toxicology domain

using data for five different endpoints is presented in Section 3. Results of this work

have been used to originate some criteria for measuring data quality and could define

a foundation for future studies in automated data-driven model development and

validation.

2. Examples of data quality assessment methods

There have been various methods developed to approach the problem of data

quality assessment in different domains, depending on some specific criteria. These

methods are mainly based on user, domain and use of the system constraints:

1. According to Naumann [6] Information Quality (IQ) depends on the user,

the information and the process of accessing the information. For example, for

user there are some information quality criteria such as: believability and concise

representation. Criteria for the information itself include: completeness and customer

support, assessed through parsing, sampling and expert input. For the process,

quality criteria include: availability and accuracy assessed by cleansing techniques and

parsing. The IQ method identifies elements that are information system processing

oriented. Other information quality measurements such as believability are also

user dependent assessment methods and could vary from one user to another.

Process-based criteria could easily be overlooked in toxicology domain however other

issues such as completeness and believability seem relevant to any domain.

2. Fusionplex [7] is a system that integrates information from multiple sources

and also resolves data inconsistencies by use of fusion methods. For this specifica-

tion a feature weight is identified and added to the database related to that source.

Examples of features include: timestamp and cost. According to this method, incon-

sistencies are schematic differences between databases. For example, in one database

we might have „salary” as an attribute and in another „income”, where both still rep-

resent the same thing. Fusionplex uses criteria that are concentrated on information

processing aspects rather than the data itself. Use of feature weight is also applicable
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to toxicology domain. However, a main problem in predictive toxicology regarding the

values conflict because of different originating sources remains untouched.

3. COLUMBA [8] performs the quality check by data cleansing. Errors in

databases are considered of syntactic or semantic nature. Syntax errors are mainly

domain or format violations in data entries and misspellings. Individual parsers

perform syntactic cleansing such as dictionary lookup. Semantic errors affect the

quality of the data significantly. These are resolved by using redundant information,

which is possible in cases where another version of the same data source is available.

The limitation of the system COLUMBA lays on relying on the redundant data.

This approach can not be extended entirely to Predictive Toxicology since there might

be cases of sparse tables of data where there are no duplicated instances for model

development in the initial data collection, so the quality assessment and validation

process cannot be achieved. Another issue is how this redundant data can be qualified?

What are the sources of this data? Some steps proposed by this method might

be considered relevant, such as overcoming syntax and semantic errors, which are

important issues in any database management systems.

4. The Information Quality Assessment Methodology [9] introduced by Richard

Y. Wang, contains three components: product-service-performance, information qual-

ity assessment and IQ benchmark gap analysis. Each component contains further

criteria in order to identify the best practice of company in production and delivery.

The system proposes a method to measure information quality according to specific

dimensions and is based on questionnaire. This approach is mostly based on data

processing and it is user oriented. The evaluated outcome will differ between users.

Some criteria (free-of-error) need a rigorous metrics definition if applied in

predictive toxicology. Such necessary metrics can explain for instance what sort of

information is believable which still shows dependency. The other two components

are entirely accessing the organizational performance in the sense of improving their

products and services based on feedback from consumers.

5. The methodology for establishing and maintaining quality in data con-

text [10] proposes five levels: test of completeness and emptiness; ranges and distribu-

tions; derived relationships; meaning and interpretation and hypothesis and discovery.

This approach could be a first step toward a reliable database management

system in predictive toxicology. It is organization oriented although can be used as

a stepping stone by any database administrator.

6. Data quality in predictive toxicology – identification of chemical structures

and calculation of chemical properties by Helma [11] highlights some of the data

inefficiencies and errors in toxicology databases and also draw some rules from a case

study which was carried out in order to emphasize how some of the elements in

experimental works could go under quality assurance. An example in toxicology

databases relates to chemical compounds, which instead of chemical structure are

identified by CAS Registry number and because of formatting or typing errors

sometimes the compound cannot be identified. This approach emphasizes the idea

of data representation rules in any source of toxicity database. Some of these rules

are drawn from standard agencies for collecting, storing and processing such a data.
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3. Data cleaning methods

Data cleaning techniques and procedures for noise removal could also enhance

data quality. These methods could be applied to the data at different stages to address

variety of data quality problems. At data collection stage, this could be in the form of

removing duplicated records, missing values, spelling errors and outdated codes [12].

These techniques could also be used at data analysis stage. The purpose of data

cleaning at this stage is to remove data errors in order to increase the quality for better

classification models produced by machine learning and data mining algorithms. These

techniques are based on outlier detection. Examples of some of these techniques are:

cluster based, distance based and density based outlier detection.

In our experimental work data cleaning has been proposed at data collection

stage. Also some metric has been proposed to detect outliers and suspicious values

to increase the quality of the data for further modeling. These have been discussed

further in the paper

4. Materials and methods

The contribution of our investigation at this stage is to highlight some common

problems of data quality in toxicity prediction. Our current objective is the study of

inconsistencies in data values and their affect on downstream QSAR modeling. We

also rely on the data made available by research group of experts and the rules of

compromise are already agreed on.

4.1. Case studies

Given the current facilities available for complex calculations, it seems that

high confidence is implicitly awarded to data downloaded from online resources. The

same applies to data generated by specialist software. We used the opportunity to

study the DEMETRA data sets on some issues on data quality for large databases. We

started with identification of descriptors sharing the same name and duplicated as

generated by various software used by research laboratories involved in the project.

We addressed the differences in data source values and also differences in performance

of models developed from the same data sources. Data on five toxicity endpoints are

provided by the DEMETRA project [13] for four different species: Bee, Daphnia, Trout,

OralQuail and DietryQuail. For each dataset, values for six compound descriptors

calculated by two specialist programs: ACD [14] and Pallas [15], have been considered.

These programs calculate pKa, logP, logD values and also metabolites based on

structural formulae of compounds. In the field of industrial pharmacy perhaps the

most important physicochemical characteristics of compounds are their acidity or

basicity (expressed by their pKa value), hydrophobicity and its dependence on pH

(expressed by their logP and logD, respectively) [15]. Calculating accurate values of

pKa, logP, logD and other chemical descriptors requires a great deal of work and use

of specialized software.

For this work the number of chemical compounds present in each data set varies

from 105 for Bee endpoint to 252 for Trout. Our aim was to highlight the variation of

values for each descriptor produced from one program to another and also to compare

any further quantitative differences between specific descriptors calculated by one
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program with the value for the same descriptor and chemical compound generated by

the other one. Then we compare the accuracy of basic classification models (developed

using Weka [16]) built using input data presented for each endpoint by descriptors

calculated by ACD and Pallas. Ten tables were investigated, two for each endpoint.

The aim of this experiment was to identify how the predictive models’ quality is

affected by hidden parameters such as source of data, subjective input characterization

in running feature extraction algorithms etc. Comparisons of models performance will

address variations, contradictions, reliability and deficiency issues.

4.2. Data pre-processing

For each dataset the same number of compounds has been selected. Data

cleaning has been performed in the form of eliminating rows with missing values.

The values for each descriptor in each row have been looked at in order to highlight

deficiencies and wrong values. CAS number and chemical name for each corresponding

ID number has been compared in both data sets to assure accuracy and homogeneity

of data storage. Six common descriptors have been selected from both datasets. These

are as follows: LogP, LogDpH3, LogDpH5, LogDpH7, LogDpH7.4 and LogDpH9.

The data have been divided into training set and testing set based on pre-

defined rules (85% training, 15% testing) by DEMETRA project. Weka data mining

tool has been used to develop models. The conditions of experiments for each end-

point containing two datasets were identical in order to assure an accurate compar-

ison. Identifying aspects of data manipulation in further model development within

our work, we aim to provide a clearer picture for scientists to perform quality

assurance.

4.3. Comparison of global parameters and source value difference

For this experiment, after preparation, data files in their original format (Excel)

were studied. We calculated the Mean, Min and Max for each input (LogP, LogDpH3,

LogDpH5, LogDpH7, LogDpH7.4, LogDpH9) from both source files. At the second

stage we compared each descriptors value for these parameters with its corresponding

value from the other file (ex: parameter values for LogP from ACD were compared

with same parameters from Pallas).

Then every row’s value presented by ACD was subtracted from value presented

by Pallas for the same chemical compound and same descriptor in order to measure

their difference, as generated by different source program. Finally Mean, Min and

Max were calculated for value differences as well. The results are shown in Table 1.

4.4. Comparison of models

Original data sets (prepared for training and testing) were used to develop Weka

models based on the following algorithms: ClassificationViaRegression, BayesNet,

MultilayerPerceptron, IBK, ZeroR, LMT, J48 and JRip. For performance of models

study, two case studies have been considered. Firstly models obtained from training

data (separated inputs from ACD and Pallas for same endpoint) were tested against

test data sets. Secondly 10-fold Cross Validation has been used on training data. The

accuracy of each model (one from modeling against testing set and one from modeling

with Cross Validation) was recorded to identify which model suits which endpoint.



108 L. Malazizi et al.

Table 1. Results of descriptors comparison by source for three endpoints

Pallas (Daphnia) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9

Min −2.70 −6.54063 −6.54052 −7.85046 −7.89228 −9.10505

Max 11.7 11.6915 11.6915 11.6915 11.6915 11.6915

Min Value Difference −7.4 −8.11613 −8.11602 −8.50406 −8.10928 −7.40214

Max Value Difference 2.21 4.00517 3.19537 3.58602 3.80667 3.81636

ID of Min 346 51 51 417 417 143

ID of Max 418 418 418 418 418 418

ACD (Daphnia) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9

Min −2.35 −5.4966 −5.8715 −6.499 −6.6644 −6.8685

Max 13.6 13.676 13.676 13.676 13.676 13.676

Min Value Difference −7.40 −8.11613 −8.11602 −8.50406 −8.10928 −7.40214

Max Value Difference 2.21 4.00517 3.19537 3.58602 3.80667 3.81636

ID of Min 143 143 143 143 143 143

ID of Max 90 90 90 90 90 90

Pallas (Bee) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9

Min −0.95 −3.78509 −4.75384 −5.6052 −5.9931 −7.5105

Max 8.16 8.16996 8.16996 8.16996 8.16996 8.16996

Min Value Difference −3.0 −3.00158 −3.00158 −3.00158 −3.00158 −3.27919

Max Value Difference 2.21 2.22028 2.21881 3.58602 3.80667 3.81636

ID of Min 192 382 457 373 373 373

ID of Max 146 146 146 146 146 146

ACD (Bee) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9

Min −1.42 −3.4969 −4.2068 −5.0751 −5.2504 −5.8599

Max 8.26 8.1404 8.1404 8.1404 8.1404 8.1678

Min Value Difference −3.0 −3.00158 −3.00158 −3.00158 −3.00158 −3.27919

Max Value Difference 2.2 2.22028 2.21881 3.58602 3.80667 3.81636

ID of Min 373 382 382 373 373 373

ID of Max 146 248 248 248 248 146

Pallas (Trout) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9

Min −2.7 −6.54063 −6.54052 −6.5299 −6.51344 −9.10505

Max 8.68 8.68196 8.68196 8.68196 8.68196 8.68196

Min Value Difference −7.4 −8.11613 −8.11602 −8.1055 −8.08934 −7.40214

Max Value Difference 2.69 4.00517 3.19537 3.58602 3.80667 3.81636

ID of Min 346 51 51 51 51 143

ID of Max 93 93 93 93 93 93

ACD (Trout) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9

Min −2.35 −5.4966 −5.8715 −6.499 −6.6644 −6.8685

Max 13.6 13.676 13.676 13.676 13.676 13.676

Min Value Difference −7.40 −8.11613 −8.11602 −8.1055 −8.08934 −7.40214

Max Value Difference 2.69 4.00517 3.19537 3.58602 3.80667 3.81636

ID of Min 143 143 143 143 143 143

ID of Max 90 90 90 90 90 90

Other parameters from modeling can also be recorded. Table 2 shows classification

accuracy for models obtained as described above, once using training set against test

set and once using 10-fold Cross Validation with 8 algorithms on three endpoints.
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Table 2. The algorithm classification accuracy for three endpoints

Algorithm accuracy against test set
Endpoints

BN MLP IBK CVR J48 JRip ZeroR LMT

Trout(Pallas) 56.52 54.35 36.96 56.52 54.35 47.83 43.48 52.17

Trout(ACD) 63.04 65.22 47.83 63.04 56.52 58.70 43.48 60.87

Daphnia(Pallas) 42.50 47.50 40.00 40.00 42.50 45.00 40.00 42.50

Daphnia(ACD) 47.50 50.00 35.00 45.00 40.00 37.50 40.00 45.00

Bee(Pallas) 31.25 37.50 18.75 37.50 37.50 37.50 31.25 37.50

Bee(ACD) 31.25 37.50 31.25 31.25 25.00 31.25 31.25 37.50

Algorithm accuracy tested by 10-fold Cross Validation
Endpoints

BN MLP IBK CVR J48 JRip ZeroR LMT

Trout(Pallas) 57.41 50.46 43.06 54.63 52.31 50.93 44.91 50.00

Trout(ACD) 56.48 49.07 51.39 54.63 51.39 56.02 44.91 51.85

Daphnia(Pallas) 44.12 47.55 38.24 43.14 48.53 43.14 44.61 45.59

Daphnia(ACD) 42.65 47.06 42.16 50.49 48.04 48.53 44.61 46.08

Bee(Pallas) 41.77 34.18 32.91 40.51 31.65 41.77 41.77 36.71

Bee(ACD) 35.44 36.71 39.24 39.24 35.44 44.30 41.77 39.24

4.5. Descriptor swap

Another experiment that has been performed on value comparison was to see

the effect of one descriptor value (LogP) in the set of descriptor values in another

file on the performance of the model. The logP descriptor of the ACD dataset for

all the endpoints was swapped with the corresponding descriptor in Pallas and vice

versa in both training and testing data set. Then with Weka and use of the same

algorithms as for the previous experiment the models were trained once before swap

and once after. As the result show in Table 3, the classification accuracy increases after

LogP swap. Since the accuracy improves there should be better correlation between

this individual descriptor value and the rest of the descriptors in each data set. This

Table 3. The Algorithm classification accuracy by 10-Fold Cross Validation after LogP swap

Endpoint BN MLP IBK CVR J48 JRip ZeroR LMT

Trout(Pallas)-Before 44.12 47.55 38.24 43.14 48.53 43.14 44.61 45.59

Trout(Pallas)-After 57.41 52.31 44.44 54.63 50.93 50.93 44.91 49.54

Trout(ACD)-Before 42.65 47.06 42.16 50.49 48.04 48.53 44.61 46.08

Trout(ACD)-After 56.02 53.70 47.69 55.09 54.63 55.09 44.91 53.24

Bee(Pallas)-Before 41.77 34.18 32.91 40.51 31.65 41.77 41.77 36.71

Bee(Pallas)-After 41.77 31.65 31.65 41.77 30.38 40.51 41.77 40.51

Bee(ACD)-Before 35.44 36.71 39.24 39.24 35.44 44.30 41.77 39.24

Bee(ACD)-After 35.44 21.52 35.44 39.24 31.65 44.30 41.77 40.51

Daphnia(Pallas)-Before 44.12 47.55 38.24 43.14 48.53 43.14 44.61 45.59

Daphnia(Pallas)-After 46.08 47.06 38.73 44.61 44.12 46.08 44.61 45.59

Daphnia(ACD)-Before 42.65 47.06 42.16 50.49 48.04 48.53 44.61 46.08

Daphnia(ACD)-After 43.14 44.12 39.71 44.12 45.10 47.06 44.61 46.08
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issue could also be considered as data pre-processing stage and also provide better

understanding when it come to identify value variation bias for descriptors.

4.6. Results and discussions

We found the following deficiencies in data files:

Check of Input Values: there were number of rows in which the values for all

columns (descriptors) were identical for specific chemical compounds. This might have

happened as a result of a mistake in value generation by the software used due to the

complexity of the calculation of the chemical compounds properties (ex: Trout data

set). These values might be the default values for descriptors, which are generated

when the exact measures for compounds attributes cannot be produced. For whatever

reasons these values appear in the dataset, they need further consideration and study

and they cannot be relied on.

We also found a contradiction between ID number and matching chemical

specified by one program to another in the sense that the ID for the specific chemical

was the same in both files but the matching name and CAS number were different. For

example for endpoint Bee LD50, in the file with ACD descriptors, chemical compound

with ID = 450 = Allethrin has been given CAS no: 584-79-2 but in the file produced

by Pallas, ID = 450 = 28434-00-6 = s-bioallethrin, which in Toxnet comes with

a different name for the same chemical having the same CAS: 284-792.

Moreover, a breach of the homogeneity rules was found: in the dataset for

endpoint Trout, legend (descriptors definition) for Pallas is different from the other

endpoints although for this work the descriptors were selected accordingly (ex:

Pallas04 = LogDpH7 but for other endpoints Pallas05 = LogDpH7).

Also the number of significant places that represent values in each column and

for every row is different, which shows inconsistencies of data representation. Table 1

presents the results of calculation for Min, Max values and their difference of the same

descriptor for the same compound available in two data files related to the software

used to calculate chemical descriptors and also shows the ID number of the chemical

compound with the Min or Max value for the specific descriptor. What we found are

significant differences between calculated values for the same descriptor presented by

ACD and Pallas. In some cases, for example for endpoint Trout LC50, the maximum

values for LogP are 8.6 (Pallas) and 13.6 (ACD) and for OralQuail LD50 are and 8.1

(Pallas) and 13.6 (ACD) (see Table 1). This is almost double from one to another and

flags out a significant warning, since information provided for this descriptor identifies

compound solubility in water and ability to cross cell membranes and is therefore of

high importance for toxicity prediction models.

Model Performances: descriptor value differences also create doubts of relia-

bility. This problem applies to all descriptors and for all endpoints in DEMETRA

datasets. In Table 2, the accuracy of models using various algorithms for classifica-

tion is compared: values for the first experiment, which was model development based

on training set using eight algorithms (see above) and validation against original test-

ing set. The performance in general presents better results for data values generated

by program ACD. Mean Square Error and Root Mean Absolute Error have been used

to measure the errors of classification accuracy (not displayed here) are lower for

models related to ACD data. This shows better correlations between ACD descriptors
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Figure 1. Comparison of classification accuracy of models after LogP swap for Trout endpoint

values and the toxicity output. Performance of the models has also improved with

swapping descriptor between two dataset from ACD and Pallas (Table 3).

Figure 1 also shows the results of the LogP swap for Trout endpoint graphically.

The first and third bar represents the value for classification accuracy before swapping

LogP descriptors between two files (ACD, Pallas) and second and fourth bar shows

the values after the swap. As the graph shows the difference between bars are very

considerable especially for BN. CVR and JRip algorithms.

Range Margins’ IDs: ID numbers for chemical compounds defining Min and

Max value for same descriptor were also considered. If a chemical compound with

specific ID number has the Min value for a specific descriptor in one data file, the

same chemical compound should possess the same parameter property for all source

files. For instance (Table 1) for endpoint Trout, the ID of compound, which has the

minimum value for LogP (Pallas) is 346 but generated by ACD is 143.

Min-Max value difference between two columns (value for the same descriptor,

one generated by ACD and one by Pallas) in the same row considerably vary (ex: for

Trout LC50 endpoint vary by up to 8.1 unsigned numerical value).

5. Proposed criteria for data quality

in predictive toxicology

Figure 2 shows values variation for LogP between the two programs (data for

OralQuail LD50 endpoint). There are number of big peaks in the graph for values

calculated by both programs which clearly identify the presence of outliers. As it

shown the values follow same pattern but in different proportion. This again depends

on the computer program calculation default values setup, which is not the same

in two programs. From this experiment we propose as property for data quality the

definition domain for each variable (a value range for each descriptor) and decide that

we just accept the values in this range and categorized the peaks outside the range as

outliers so they could be studied separately. This bias could be proposed as metric for

every descriptor considering the measurements of every descriptors confidence interval

for each endpoint and acceptance of the values within this range. Later we need to
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Figure 2. Comparison of LogP variation values presented by ACD and Pallas for OralQuail

Table 4. Calculated variance for OralQuail

OralQuail LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9

VARP (ACD) 4.83210 5.52960 5.62856 6.18880 6.26632 6.23918

VARP(Pallas) 4.87138 7.21954 7.29682 7.51035 7.51433 7.37912

define a method to describe how the outliers could be modeled separately and how

we can combine these models with the results of the training the rest of the data.

Table 4 shows the variance VARP calculated for descriptor values obtained by

using ACD and Pallas for OralQuail LD50 endpoint according to formula:

∑
(x−x)2

n

where x is a sample Mean and n is a sample size. The variance values are greater for

values produced by Pallas, which shows bigger distribution with a negative impact on

the model development. The descriptor variance qualifies as a meaningful property

of the source values. Noise in data identified by rows with the same values in each

column could be another measurement for signaling wrong data inputs. These rows

should be recalculated.

A correlation of the margins (Min and Max values) for each descriptor as

calculated by different software represents a quality flag variable as well. If these

extreme values (generated by various sources) for each endpoint do not belong to the

same compound, then that particular descriptor needs further study. This is especially

requires further consideration for descriptors (i.e. LogP) that are likely to be included

as inputs for models based on feature extraction algorithms.

Descriptor swap (LogP) increased the classification accuracy. This showed the

change of input balanced the model, which also can be used in defining bias for

descriptors min and max values.

5.1. Quality processing flow chart for proposed metrics

Based on empirical results obtained from studying the five toxicity datasets, we

propose a data quality assessment process. Figure 3 shows this necessary process to

prepare data for further modeling based on highlighted defects in our experimental

work at this stage. Note that investigation was carried out on internal data and the

proposed process has been based on discovered results. A final version of the procedure

is still under development.

As the figure shows, first input values from data sources are checked one by

one. At the second stage based on quality check (Q1) rows with missing values are

identified and eliminated. Then the rows with disguised missing values are flagged



An Algorithm for Data Quality Assessment in Predictive Toxicology 113

(Q2) (these are the rows with same value in all the columns). The values in each

column for every chemical compound are then checked for out of range values based

on (Q3). Then comparison of minimum and maximum values are performed (Q4).

At this stage if the data is rejected the process ends otherwise the data is modeled.

After first modeling the value difference between descriptors are calculated. If the

value difference is considerable, LogP between two dataset would be swapped and

data would be trained for the last time.

input values: Ds1, Ds2, . . . , Dsn

eliminate rows
with missing values (Q1)

flag disguised values (Q2)

compare values in each column
for the same row (Q3)

check for compounds with Max, Min
value for descriptors (Q4)

reject accept generate model

compare value difference
for logP (Q5)

swap logP

tune model

Figure 3. Data quality assessment procedure

5.2. A quality assessment algorithm for data quality procedure

In Figure 4 we propose a quality check and assessment algorithm for the above

procedure. The proposed algorithm could be improved and extended to provide further

quality checks. At this stage the main aim was to direct our attention to the first

stage, error identification defects and highlighting defects and propose possible ways

of discovering and overcoming these in toxicology data.

6. Conclusions and future work

Considering data quality parameters and criteria identified by our study and

the experimental work presented above, some issues related to data quality have

been highlighted, which indicate the need for a framework for quality assessment
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Double data source

Input: Ds: Data Source, Ro: Result Output (data processed, ready for

modeling), Rw: Instance(compound, row), Dc: Descriptor(column),

result: Rs (final model), Quality Metrics: Q1=missing values in rows,

Q2=column values are same in one row, Q3=values for the descriptor

in each row is out of range Minv→Maxv, Q4=flag if Min and

Max value for same descriptor in two files do not belong to the same

compound, Q5=bias for value difference between same descriptor value

for same compound in Ds1, Ds2, Dsn... In our example data sources

are ACD and Pallas.

Clean the data

//check for rows with missing values and eliminate

//check for rows with same value in each column and eliminate

//compare if value for each descriptor (column) and every row falls

within bias (value range)

Start: SearchSheet (ACD & Pallas)

Foreach (Result as sheet→Ro)
For (i=0; i<count (Rw); i++)

If (Rw=(Q1))

Delete Rw else

For (j=0; j<count (Dc); j++)

If (Dc=(Q2))

Flag (error): "disguised data" else

If not Rw=(Q3) & Dc=(Q3)

Flag (error): "suspicious values" else

If not Rw=(Q4) & Dc=(Q4)

Flag (error): "Min, Max do not belong to same compound" else

Display Ro
End

Generate model

//check similar fields; if value difference for same descriptor

(logP) and for same compound is high, then train model, produce

result, swap logP, train again.

Input: Ro+added new column which shows the difference between two

values (logPPallas-LogPACD=Dsw), LogP descriptor=DLogP

//generate model with cleaned data

Start: generate model (ACD, Pallas)

//swap logP and generate again

Foreach (Result as sheet→Rsw)

For (j=0; j<count (Dc); j++)

If (Rsw=Q5)

Swap (DLogP)

Display Rsw
Generate model

End

Figure 4. Data quality assessment algorithm

and measurements. The experimental work has identified some deficiencies related to

data values and presentation. All highlighted data defects have direct effect on QSAR

model performances. Further work would involve investigation into datasets, values

for chemical compounds descriptors and relationships between attributes.
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