
TASK QUARTERLY 11 No 1–2, 71–86

EMOT – AN EVOLUTIONARY APPROACH

TO 3D COMPUTER ANIMATION

HALINA KWAŚNICKA AND PIOTR WOŹNIAK

Institute of Applied Informatics, Wroclaw University of Technology,

Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland

Halina.Kwasnicka@pwr.wroc.pl

(Received 18 December 2006)

Abstract: Key-framing and Inverse Kinematics are popular animation methods, but new ap-
proaches are still developed. We propose a new evolutionary method of creating animation – the
EMOT (Evolutionary MOTion) system. It enables automation of motion of animated characters and
uses a new evolutionary approach – Gene Expression Programming (GEP). Characters are controlled
by computer programs, an animator providing the way of motion’s evaluation. GEP works with a ran-
domly selected initial population, using directed but random selection. Experiments have shown that
the proposed method is capable of developing robust controllers.

Keywords: Gene Expression Programming, computer animation, simulation, motion

1. Introduction

The paper concerns the problem of automation of computer animation of
characters. Animation is understood as specification of motion in such a way that
a given entity performs actions and expresses thoughts and emotions, important for
the related story. In the paper, we focus on entities (characters) consisting of a set of
stiff blocks with a number of joints.

Recently, most animation is created using the Key Framing technique. This
technique requires high qualifications of animators: an animator has to take care
about the general nature of an animated character, and simultaneously, about all
visualization details and the physical credibility. Thus, even partial automation of the
process is desirable. We observe intensive study in this area and a number of different
approaches being used.

Usually, an evolutionary paradigm is used for developing geometrical and
physical models rather than animation itself (e.g. the Karl Sims study [1]). Our
approach shows that a new evolutionary technique, Gene Expression Programming
(GEP) [2], could be useful in automation of movement generation that would meet
animators’ expectations.

The proposed solution, the EMOT (Evolutionary MOTion) system, allows us to
automate the motion of an animated character. Characters are controlled by computer
programs (controllers); an animator has to provide the way of motion’s evaluation

72 H. Kwaśnicka and P. Woźniak

(fitness function) but GEP searches acceptable controllers. GEP, as all evolutionary
methods, works with a randomly selected initial population, using directed but
random selection. Naturally, it does not guarantee proper solutions but experiments
have shown that the proposed method is capable of developing robust controllers. The
method is rather general and it can be applied to various animation tasks.

The paper is structured as follows. The following section is a presentation
of problems connected with animation, briefly reviewing useful approaches and
techniques. GEP is introduced in Section 3, where the coding schema and genetic
operators are presented as well. Section 4 is devoted to the developed computer
system, EMOT (Evolution of MOTion). The results of experiments with two animated
characters are described in Section 5. A short Summary concludes the paper.

2. 3D animation – a short overview

Animation is not only simulation of physics or of an animal behavior, but also
an art [3]. Often real biological and physical features are violated when animators
try to tell a story due to the personality of a character and the course of narration.
Using an evolutionary approach to the behavior of an animated character allows us
to optimize its behavior taking into account the physical features, but what about
characters’ expressivity? How can we incorporate expressivity in the fitness function?

A number of different objects can move in animation, but characters are only
those, which express thoughts, emotion and action important for the related story.
When designing motion, animators must care for individuality and emotion of an
animated character. Not only living organisms can be used as characters in animation,
e.g., a shoal of fish is alive but it is perceived more as a mechanical natural force than
as a character.

Special effects such as rain, water waves, a flying plane, etc. are yet another
category of animation. There are a number of commercially successful techniques –
such effects can be obtained by physical simulation. In the present paper, we focus on
a specific kind of character animation: animation of a set of stiff blocks with a number
of joints. An additional assumption is that our character (blocks with joints) forms
an acyclic graph.

2.1. Basic rules of animation

Most of the rules for ‘perfect’ animation were developed in the early 20th
century, especially in the Disney Studios. Frank Thomas and Ollie Johnston, in their
book entitled The Illusion of Life: Disney Animation proposed twelve basic principles
of animation:

Timing – The tempo of moving an object gives meaning to the object and
prompts why the object is moving, e.g. a quick wink denotes that the object is
worried or stimulated, a slow one – that our character is tired and asleep. Additionally,
a character’s quickness creates a subconscious assumption about its mass and strength
in a given scene.

Slow in and out – Movement between extreme positions cannot start and
stop violently, e.g. a limb achieving a position slows down or gradually accelerates
starting to move.

EMOT – an Evolutionary Approach to 3D Computer Animation 73

Arcs – In the real world almost every move of a character (or a part thereof)
is performed along an arc. Biological joints are usually rotary.

Anticipation – Actions of an animated character usually happen in three
phases: a preparatory phase, movement, and a final phase. Anticipation concerns
preparations. A jumper usually sags his knees before jumping, which is justified by
physics. Looking for an object usually comes before reaching for it.

Exaggeration – Exaggeration of movement, emotions or even constitution of
the character’s body focuses the attention of spectators and helps in understanding
the story.

Squash and stretch (deformations) – This rule describes a way in which
animated characters react to movement or being subjected to forces. A ball falling
down is flattened when it touches the playing field (squash), but after a rebound
the ball is lengthened in direction of movement (stretch). These deformations allow
spectators to imagine the physical features of an animated object.

Secondary action – Living organisms have a natural tendency to simulta-
neously perform a number of actions. In general, a basic activity occurs (required
for a basic task, e.g. our character walks), but less important, secondary activities
accompany it (e.g. the walking character looks around). Thus, the character becomes
more natural and interesting.

Follow through and overlapping action – The sequence rule (follow
through) is similar to anticipation but it concerns the third phase of movement – the
finish. It usually consists in moving something and returning to a neutral placement.
Overlapping action means that one action comes from a previous one.

Straight-ahead action and pose-to-pose action – These are two alterna-
tive ways of creating animation. Forward animation is creating a starting frame and
then adding subsequent frames up to the final one (when the action is stopped). The
other way is developing frames in a number of key moments and then building the
intermediate frames.

Staging – Clear and easy-to-understand presentation of the idea of animation.
Action should be presented in a manner easy to understand.

Appeal – This means attractiveness, all that we like to see. It covers character
creation as well as the scenario.

Solid drawing – The ability of an animator to create realistic, three-dimen-
sional objects (including characters).

The basic rules of animation presented above concern various aspects of
animation (see Table 1). Some of them concern artistry and we do not try to automate
artistic elements. We are only interested in the rules connected with the physical
aspects of animation.

2.2. Overview of methods

Simplification of animators’ work is the main feature of the newly developed
animation methods. Animation techniques, apart from ‘technical’ details of animation,
allow animators to focus on the behavior and nature of animated characters instead
of solid geometry [4].

Key framing. Key framing is the oldest animation method – the main anima-
tor creates figures of characters in some characteristic positions, while the remaining

74 H. Kwaśnicka and P. Woźniak

Table 1. Rules of animation and their aspects

Rules of animation Aspect

Squash and stretch (deforming)
Follow through and overlapping action Physical
Slow in and out
Arcs

Secondary action
Anticipation Physical and artistic
Timing

Straight ahead action and pose-to-pose action
Staging
Exaggeration Artistic
Appeal

Solid drawing Not relevant to computer animation

frames are drawn by less skillful animators in a kind of ‘manual interpolation’ [5].
Later, 2D animation was made using computers to interpolate basic, characteristic
positions [6]. Further development allows to transform key framing into 3D anima-
tion [7, 8].

IK – Inverse Kinematics. Inverse Kinematics [9] is another well-known
technique. It allows finding end positions of an animated element, e.g. hand or
foot, using a coordinate system as a referrence set. Forces and moments that cause
movement are omitted [9]. A number of methods were developed to transform position
and velocity from the character set (joints angles) to the Cartesian system [10, 11].

Physical simulation: dynamics. Systems based only on kinematics are
intuitive but the resulting animation is often unrealistic due to gravitation or inertia.
Natural movement can be achieved by taking into account forces and momentum.
Physical simulation methods can be divided into two groups: with or without
constraints. The latter approach is more popular; it mainly consists in parameter
adjustment. The former approach requires presentation of features in the form of
constraints [12–15].

Behavioral techniques. Behavioral systems can be seen as particle systems in
which a number of moving objects are controlled by the same set of relatively simple
rules. The entirely system manifests complex and complicated moves ([16–18]).

Optimization methods. Recently, optimization methods of computer anima-
tion have been developed. They can be divided into three groups:

– energy minimization [19],
– space-time constraints [20, 21],
– evolutionary algorithms, such as Genetic Programming [1, 5, 22], evolution of
computer programs able to control motion.

3. Evolutionary Computation and GEP

Evolutionary Computation (EC) covers a number of methods of good search
skills, incl., Genetic Algorithms, Evolutionary Strategies, Genetic Programming.
They are nature-inspired and often used searching through the solution space as an
optimization methods [3, 23, 24].

EMOT – an Evolutionary Approach to 3D Computer Animation 75

The evolutionary approach uses a population of potential solutions. The better
individuals are chosen as parents for the next population’s generation according to
an assumed selection method. The quality of individuals is measured using a defined
fitness function that reflects how good a solution is coded into an evaluated individual.
Stochastic processes imitating those of natural evolution, such as mutation and
crossover, are used as a way of differentiating individuals (potential solutions) in
the evolved population. The process of artificial evolution used in the EC paradigm is
a stochastic but directed (by selection) process that finds better and better solutions
in the course of evolution. We can stop it at any time and use the best solution found
so far, if we find it satisfactory. If the solution is not good enough, we can run the
evolution process once more.

The most popular evolutionary approaches are Genetic Algorithms (GA) [23]
and Genetic Programming (GP) [24, 25]. In GA, individuals (potential solutions) are
coded as linear chains, usually - but not always - as bit strings of constant length.
GP uses the same paradigm as GA but it evolves different structures: instead of
linear chains (of bits or real numbers), potential solutions are coded into trees, each
individual having a different size, which requires special genetic operators (mutation
and crossover).

3.1. GEP

Gene Expression Programming (GEP) [2] is a kind of GP using linear structures
as individuals: parse trees are coded into linear strings of constant length. An
individual – a genotype represented as a linear structure – is easily decoded into
a phenotype, called an Expression Tree (ET). It allows the use of simple, traditional
genetic operators. GEP offers similar functionality as GP but it is easier to evolve. In
GEP, the process goes according the following pseudocode:

Pseudocode 1: Evolution in GEP
Generate of an initial population (random selected chromosomes)
Express of chromosomes (decoding genotypes into phenotypes)
Repeat for each individual in the population
Fitness calculation (it requires calculation the expressions or running
the programs)
Checking the stop conditions
If stop condition occurs do
Return the best solution
STOP

else do
Store the best solution
Reproduction process (creation of the next population’s generation)
Select individuals according to assumed selection method
Perform mutation and crossover operators

end if
end repeat

3.2. Representation of individuals

Let us consider the following expression:
√

(a+b)(c−d). (1)

It can be easily presented as the expression tree (ET) shown in Figure 1, where Q
denotes a square root. This ET is a phenotype of expression (1).

76 H. Kwaśnicka and P. Woźniak

Q

*

+ -

a b c d

Figure 1. ET representing expression 1

The genotype of this expression can be represented by Chromosome 1.
Chromosome 1:

01234567

Q*+-abcd

The second row represents the chromosome itself but the first row contains the
positions (numbered from zero) of the corresponding function/terminal symbols in
the chromosome.

A genome of an individual in GEP is called a K-expression (from the Karva
language) [2]. K-expression can be easily created from an Expression Tree by reading
the tree from left to right and from bottom to top. It is worth mentioning that this
representation differs from those used in GP, viz. post- and prefix ones.

The inverse process – converting a K-expression into an expression tree (ET) –
is simple and efficient. A genome in GEP consists of a head and a tail. The head may
contain symbols representing functions and terminal symbols. The tail contains only
terminal symbols. The head’s length, h, is determined depending on the expected
complexity of the problem (it defines the maximal size of coded trees). The length
of the tail, t, is a function of h and the maximal number, n, of arguments of the
functions considered in the K-expression:

t=h ·(n−1)+1. (2)

Let us consider a chromosome consisting of the alphabet {Q, ∗, /, −, +, a, b}.
We can see that n=2 and further assume that h=10. We calculate t=11. The length
of the chromosomes is equal to 10+11= 21. An example of such a chromosome can
be as follows:

Chromosome 2:

012345678901234567890

+Q-/b*aaQbaabaabbaaab

The ET coded by this chromosome is presented in Figure 2 using only the first
10 symbols. In GEP, individuals may consist of a number of genes, each gene having
the same length and coding one subtree. Subtrees form more complex structures. An
example of a 3-gene chromosome (with three encoded subtrees) follows:

Chromosome 3:

012345678012345678012345678

-b*babbab*Qb+abbba-*Qabbaba

Depending on the problem under consideration, subtrees can be evaluated
separately (e.g. when the problem has a number of outputs) or be combined into
a complex structure in a predefined way and evaluated as a single structure.

EMOT – an Evolutionary Approach to 3D Computer Animation 77

+

/ *

-Q

Qa a

a

b

b

Figure 2. ET encoded in the Chromosome 2

3.3. Genetic operators in GEP

Evolved individuals are mutated and crossed according to the assumed probabil-
ities. Genetic operators have to assure a proper structure of each gene (chromosome).

Mutation can occur in any place in the chromosome, but in the head each
symbol can be changed into any symbol and in the tail – only into a terminal symbol.

GEP offers three kinds of crossover :

• 1-point crossover : parents’ chromosomes are crossed at a randomly chosen point
producing two offspring;
• 2-point crossover : as above, but two points of cutting are randomly selected;
• gene crossover : whole, randomly selected genes are exchanged between two
parents chromosomes.

Besides mutation and crossover, three kinds of transposition are defined in GEP:

• insertion sequence (IS): a short fragment of the chromosome starting from
a function or a terminal symbol is copied into any position in the head of
any gene other than the zero position (a root of ET). Symbols of the head in
which the sequence is copied are shifted to the right and the last symbols are
removed so that the length of the chromosome remains unchanged;
• root insertion sequence (RIS): a short fragment of the chromosome starting from
a function symbol can be copied at the beginning of the head of any gene in
the chromosome (into a subtree root). The whole head is shifted to the right
overwriting the last symbols of the head, so that the length of the chromosome
remains unchanged;
• transposition of genes (GT): the whole selected gene is removed from its original
location to the beginning of the chromosome.

3.4. EMOT – an overview of the system

Figure 3 presents a general scheme of EMOT. From an animator’s point of view,
the GEP, scene service, physical simulation subsystems, and the simulator itself can
be treated as black boxes.

The system always has to know the geometry of a scene and the dynamics of
each character involved in the simulation – this is EMOT’s precondition. The model of
a character contains the geometry, mass and inertia of particular joints, a description
of the character’s possibilities (i.e. ranges of joints’ angles, forces and momentum of
muscles, location of sensors of strength pressure). These values are constant during
the animation process. Each sequence of movement has to be evaluated using a fitness

78 H. Kwaśnicka and P. Woźniak

model

of scene

evaluation

function

system

of physics

scene

service
simulator GEP

visualization

system

controller

of character

Figure 3. A diagram of the EMOT system

function defined by an animator. The best control program (i.e. the best individual)
is the system’s output.

The system of physical simulation takes care of natural appearance of the
animation. In the proposed system, we have used the Open Dynamics Engine (ODE)
software package developed by R. Smith. A character is represented as a set of rigid
blocks connected by joints, the rest of thr scene, – e.g. walls, floors, – are treated
as geometrical elements of infinite mass (stationary but interacting with animated
characters). Joints moves are limited and each joint is propelled by an angular motor
that gives the demanded relative angular velocities to all elements joined with the
joint. The velocity is achieved by applying force (each angular motor a has defined
power).

A controller of character is calculated (developed) in each step of the physical
simulation and it is a list of demanded angular velocities for all joints. From the
physical point of view, the resulting move looks quite natural because ODE detects
collisions and reactive forces. The pseudocode of simulating moves generated by
a character’s controller is as follows:

Pseudocode 2: Simulation of moves
t=0
while t < time limit do
make controller-program (calculate demanded angular velocities)
simulate dynamics with moving ahead delta t
t <- t+delat t

end while

3.5. GEP in designing control engines

The EMOT system uses a standard schema of GEP [2]. Each degree of freedom
of each joint has to be controlled, so we must generate a control program for each of
them. Therefore, a number of genes has to equal the number of degrees of freedom
of all joints of the animated character. We assume that each gene codes a control
program for one degree of freedom of a character’s joint, which means that each gene
is an independent program (see Figure 4).

A set of functions and a set of terminal symbols are presumed. Initial experi-
ments allow us to choose adequate sets of functions and terminals. A set of functions
consists of the basic mathematical operators and a predefined IfNeg function: {+,
−, ∗, /, IfNeg}, where ‘/’ means ‘safety division’. The IfNeg function (with three
arguments) returns:

EMOT – an Evolutionary Approach to 3D Computer Animation 79

gene 1 gene 2 gene 3 an individual

joint 1: 1 degree of freedom

joint 2: 2 degrees of freedom

Figure 4. A coding schema

– the value of the second argument (subtree) if the value of the first argument is
negative,
– the value of the third argument (subtree) if the value of the first argument is
positive or zero.

A set of terminals consists of internal variables (position, velocity, angles of
joints, external forces, time, etc.) taken from the simulation system of dynamics when
the program-controller is running and from random real values.

Each of the mini-programs is calculated (run) separately but they usually use
state variables of the whole character model. Therefore, subprograms have a tendency
to generate mutually dependent moves when it is more efficient than a series of
separate moves. A fitness value is calculated for each program on the basis of statistics
returned by the dynamic simulation system. The fitness value can be divided into two
parts: satisfying the main task and a reward for style. For example, if we try to evolve
a character that should move to a given point X, the distance between the character
and point X at the end of simulation is a measure of the task’s fulfillment. EMOT is
able to produce different ways of moving (as some characters crawl rather than jump),
so we should take into account the style of movement by enlarging or diminishing the
fitness value as a reward for style. A number of categories can be distinguished in
stylistic evaluation, namely:

– safety – a penalty for collisions with other objects,
– time – a penalty for inefficient behavior (e.g. selection of a longer route or quick
movement after long inactivity),
– attaining equilibrium – a reward for remaining in a neutral position at the end
of the movement (e.g. a character should stand and not lie),
– other – depending on the kind of generated movements.

It is worth mentioning that the initial raw fitness should be transformed into
normalized fitness. In some cases, the raw and standardized fitness are the same.
Standardized fitness means that a better individual has a lower fitness value (we try
to minimize it). An ideal individual should have standardized fitness equal to zero.
Adjusted fitness (fadj) is given by the following equation:

fadj=
1

1+fstd
, (3)

where fstd is standardized fitness.

80 H. Kwaśnicka and P. Woźniak

Normalized fitness is adjusted fitness divided by the adjusted fitness of the
whole population:

fnorm=
fadj

∑

M

i=1fadji
, (4)

where M denotes the size of the population.
Normalized fitness is used in the selection process. EMOT uses n-tournament

selection [23, 25].

4. Examples and experiments

Two tasks have been chosen for experiments. One, called Jumper , is used to
study the suitability and efficiency of the approach proposed in EMOT. The other
example, a spider we have called Madzia, is slightly more complicated task. The
obtained results are very interesting.

4.1. Jumper

The Jumper example has been selected due to its clarity. The task of EMOT
was to teach Jumper relocate to a defined place. The Jumper model is fully
three-dimensional: it consists of five elements (a head, a two-part leg, a bearing and
a base) joined by four joints (see Figure 5). Each joint has one degree of freedom and
is controlled by the developed program. Jumper ’s head moves right and left, both
parts of the leg move vertically, and the bearing can turn in the plane of base, so that
Jumper can move in any direction. We have defined Jumper ’s task as moving to the
defined point and standing in such a way that the center of the base is exactly at the
defined point.

Figure 5. Jumper

A number of fitness functions were tested. The best fitness function found
consisted of the following constraints:

1. the main aim: distance between the center of Jumper ’s base and the desired
position at the simulation’s end;

2. style: a weighted sum of values ascribed for particular subtasks:

(a) a penalty for each collision of the head with any element of the scene,

EMOT – an Evolutionary Approach to 3D Computer Animation 81

(b) a penalty for too long idleness,
(c) a reward (exactly – a lack of penalty) for a neutral position at the
simulation’s end.

The used fitness function is presented in the form of Pseudocode 3.
Some values were normalized into the range of [0;1]. We did not want to

punish individuals who performed two subtasks relatively well, but failed in the
third, therefore we cut fitness at the defined level. Violating the safety constraint
(striking the head) caused the worst evaluation. Safety moves were evaluated taking
into account tempo, the final position and remaining motionless after achieving the
goal.

Pseudocode 3: The pseudocode and the fitness function used for Jumper

evaluation

normalized distance = distance / initial distance

phase = sqrt(recent generation / max number of generation)

style = 0

if safety rules are violated then

style = style +1

else

style = style + timing (do not be inactive)

style = style +sum of angles (initially sum of angles is equal to zero)

style = style +sum of velocities (stop after achieving the goal)

evaluation = normalized distance + phase * style

GEPFLOAT CEvolution:: GEPFitness(int generation)

{

GEPFLOAT dist, phase, style;

Dist = (lpPhysics -> GetDistance(ID 1,ID 2))/dOriginalDistance;

Phase = sqrt((double)generation/MAX GENERATIONS)

Style = 0.0;

if (lpPhysics->iGetCollisions(lpPhysics->BodyByID(5),

lpPhysics->GeomByID(10000)) ||

lpPhysics->iGetCollisions(lpPhysics->BodyByID(5),

lpPhysics->GeomByID(10)))

style += 1.0;

else

{

style += 0.33*clamp(0.0, 1.0, lpPhysics->GetTiming());

style += 0.33*clamp(0.0, 1.0, lpPhysics->GetAngleSum());

style += 0.33*clamp(0.0, 1.0, lpPhysics->GetVelocitySum());

}

return dist+style*phase;

}

Taking into account that evolution with simulation is time-consuming, we ran
EMOT ten times for 50 generations with the same parameters. All parameters used in
the experiments, as well as sets of functions and terminals, are collected in Table 2.

All ten runs ended in success in that EMOT found adequate controllers, but
different controllers were produced in particular runs. An exemplary animation of the
best individual is shown in Figure 6. Some statistics are shown in Figure 7 (averages of
ten runs). A common feature of all solutions (controllers) found is physical correctness,
simplicity and surprisingly natural movement.

The length of genes’ head influences the size of Expression Trees. Experiments
were performed for lengths from 3 to 50. The best individuals were produced for
the lengths of 10 and 15 (0.96 and 0.95 average fitness, respectively, see Figure 8),

82 H. Kwaśnicka and P. Woźniak

Table 2. Parameter values used in the experiments

Aim Controller that relocates Jumper
from one to another defined point

Set of terminal symbols t (time)
k0, k1, k2, k3 (angles of joints)
Oxxx.px, Oxxx.py, Oxxx.pz (coordinates of object xxx)
Vxxx.x, Vxxx.y, Vxxx.z (velocity of object xxx)
Random constants

Set of functions +, −, ∗, /, IfNeg

Parameters of GEP Size of population 100
Number of generations 50
Length of a gene head 10
Tournament size 6
Mutation 0.01
Transposition IS 0.1
Length of IS 1, 2, 3, 4
Transposition RIS 0.1
Length of RIS 1, 2, 3, 4
Gene transposition 0.05
1-point crossover 0.2
2-point crossover 0.5
Gene crossover 0.1
Mutation of constant 0.05
Tuning of constant 0.9
Range of constants −6.0 – 6.0

Other parameters Maximal time of simulation 20.0
Simulation step 0.01
Number of animation slots 2000

while for head lengths equal to 3 and 50 the average fitness equalled 0.34 and 0.32.
Too short a head makes the evolution of proper controllers impossible. At the same
time, a longer head increases the size of the search space and the task becomes more
difficult. The number of successes (per cent) is shown in Figure 9.

Working with GEP, we realized that the population size was an important issue.
We tested populations of 10, 30, 50, 70, 100, 200, 300, 500, 1000 and 2000 individuals.
Populations of 50 or less individuals were incapable of evolving acceptable solutions.
Meaningful changes were observed for a population of 70 individuals. Evolution of
100 or more individuals did not generate substantially better controllers. It seems
that the size of 100 individuals is a good balance between the quality of solution and
efficiency of GEP.

It is difficult to find the required minimal number of generations due to the
use of a scaling parameter for style evaluation in the fitness function (see the phase
parameter in Pseudocode 3). With small values of P , the assumed scaling parameters
given by Equation (5) causes the fitness function to prefer the role of style before
suitable controllers are evolved (i.e. controllers able to achieve the main goal). At
the same time, too long evolution takes into account mainly the styles of evolved
controllers, potentially producing controllers that assure smart moves but miss the

EMOT – an Evolutionary Approach to 3D Computer Animation 83

Figure 6. The best Jumper, 50th generation of the third run. Jumper accessed the desired point
precisely after three jumps and remained stable

Figure 7. Normalized fitness values in generations (average from 10 runs). The best possible one
is one, the worst – zero

assumed goal. Small values of P (10–20) are not suitable, the best results being
obtained in 50–200 generations:

Phase =

√

p

P
, (5)

where p is a number of recent generation, and P is the maximal assumed number of
generations.

4.2. The Spider

In this experiment we used a simple model of a spider. Our spider, calledMadzia
(in Polish a diminutive female first name), consists of a trunk and four legs, each

84 H. Kwaśnicka and P. Woźniak

Figure 8. The best fitness values (an average from 10 runs) depending on the length of a head

Figure 9. The number of successes (per cent) depending on the length of a head

Figure 10. The best fitness values (an average from 10 runs) depending on the population size

with two segments, joined by 12 joints, each joint having one degree of freedom.
The main task of Madzia was to go strictly over the box. The used fitness function
consisted of two parts: a measure of distance and a safety rule (Madzia’s trunk could
not touch the floor). Madzia’s model had more degrees of freedom than Jumper ’s
model, making the search space more complex and the evolution process (together
with simulation) more time-consuming. Early experiments had shown that Madzia
tried to reach the box by jumping rather than walking. In order to force it to walk
we set Madzia’s mass and strength of muscles very carefully so as to prevent it from
jumping.

An exemplary result is shown in Figure 11. Madzia amazed us by keeping her
equilibrium relatively well but, instead of moving directly over the box, approaching
the box so that she could reach it with one of her front legs. Then, she pushed the box

EMOT – an Evolutionary Approach to 3D Computer Animation 85

directly under her body (trunk). Having shifted the box a bit further than required,
she moved back a little and achieved her goal. This behavior is completely compatible
with the assumed aim and the used fitness function, but it came unexpected. In a way
it was caused by our mistake: we had set the mass of the box too small compared
with Madzia’s and she discovered it.

Figure 11. Madzia tries to stand up over the box

In our opinion it is a very natural result generated by artificial evolution.
Artificial evolution surprises us by discovering solutions that people have troubles
to find.

5. Summary

A number of techniques of automated animation have been developed recently,
supporting animators’ work. Using dynamic simulation for proper presentation of
physical properties of objects and characters produces good results but is very difficult.
Majority of approaches require parts of control programs to be written manually.

In the present paper we have proposed to use controllers of characters’ moves
assuring proper values of angular velocities of joints. Characters are built from rigid
blocks connected by joints. Controller programs are not developed manually but
by means of Evolutionary Computation, viz. Gene Expression Programming (GEP).
Characters controlled by programs evolved using GEP are simulated in a dynamic
environment. Controller programs are evaluated on the basis of simulation results,
using manually written fitness functions.

Our method generates moves that are credible from the physical point of
view, allows for animation goals to be specified and creates animation that is quite
natural. The technique is not limited to one type of animation, depending only on the
imagination and skills of the author of the fitness function. The results are visually
attractive, the moves are fluent and natural, through effects of artificial evolution. As
demonstrated by the Madzia example, the result may be surprising. We have shown
GEP to be an approach useful in supporting automated animation. The presented
examples have a relatively small number of degrees of freedom. The possibility of

86 H. Kwaśnicka and P. Woźniak

scaling the method to a higher number of degrees of freedom seems to be a good
starting point for future work.

The EMOT system has its disadvantages. The generated controllers are not
flexible and a program generated for one move is sensitive to the initial condition and
cannot be used for other moves. An evolution of controllers stressing their skills rather
than defined tasks seems to be a proper direction of future work, another direction
being extension of the method to include ‘animation news’, e.g. objects’ deformation.

References

[1] Sims K 1994 Computer Graphics, Proc. SIGGRAPH’94, USA, pp. 15–22
[2] Ferreira C 2001 Complex Systems 13 (2) 87
[3] Ventrella J J 1995 Proc. Computer Animation ’95, USA, IEEE Comp. Soc., pp. 35–42
http://www.ventrella.com/Alife/Disney/disney 0.html

[4] Terzopoulos D 1999 Communications of the ACM 42 (8) 32
[5] Gritz L and Hahn J K 1995 J. Visualization and Computer Animation 6 129
[6] Burtnyk N and Wein M 1971 J. SMPTE 80 149
[7] Leffler S J, Reeves W T and Ostby E F 1990 J. Visualization and Computer Animation 1
(1) 33

[8] Helser A 1988, Electronic document
http://www.cs.unc.edu/˜helser/291/Animation using GAs.htm

[9] Magnenat-Thalmann N M and Thalmann D (Eds) 1996 Computer Animation, Prentic Hall,
USA

[10] Maciejewski A A 1985 Proc. 12 th Ann. Conf. Computer Graphics and Interactive Techniques,
ACM Press, USA, pp. 263–270

[11] Baerlocher P 2001 Inverse Kinematics Techniques for the Interactive Posture Control of
Atriculated Figures, PhD Thesis, Ecole Polytechnique Federale de Lausanne, France

[12] Barzel R and Barr A H 1988 Proc. SIGGRAPH’88, ACM SIGGRAPH, USA 22, pp. 179–188
[13] Baraff D 1993 Eurographics’93, State of the Art Reports, USA
[14] Baraff D 1989 Proc. 16 th Ann. Conf. Computer Graphics and Interactive Techniques, ACM
Press, USA, pp. 223–232

[15] Hahn J K 1988 Computer Graphics 22 (4) 299
[16] Reynolds C W 1982 Computer Graphics 16 (3) 289
[17] Reynolds C W 1987 Computer Graphics 21 (4) 25
[18] Reeves W T 1983 ACM Trans. Graphics 2 (2) 91
[19] Witkins A, Fleischer K and Barr A 1987 Computer Graphic 21 225
[20] Witkins A and Kass M 1988 Computer Graphic 22 159
[21] Ngo J T and Marks J 1993 Proc. 20 th Ann. Conf. Computer Graphics and Interactive
Techniques, ACM Press, USA, pp. 343–350

[22] Reynolds C W 1994 Proc. 4 th Int. Conf. Simulation of Adaptive Behavior, in “From Animals
to Animats 4”, MIT Press, USA, pp. 401–410

[23] Goldberg D E 1989 Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley

[24] Koza J R 1992 Genetic Programming: On the Programming of Computers By Means of
Natural Selection, MIT Press

[25] Kwaśnicka H 1999 Evolutionary Computation in Artificial Intelligence, Oficyna Wydawnicza
Politechniki Wroclawskiej, Poland (in Polish)

