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Abstract: The problem of observation space reordering is presented as a novel approach to pattern

recognition based on non-parametric, combinatorial statistical tests. It consists in linearly ordering

the elements of a discrete multi-dimensional observation space along a curve such that elements

belonging to different similarity classes are as close to each other as possible, the similarity classes

are mutually separated, and the length of the curve is kept to minimum. The problem is NP-difficult

and it is shown how its approximate solution can be reached by a series of transformations

improving the initial lexicographic linear order of a discrete observation space. Recommendations are

formulated for linear order improvement leading to a pattern recognition algorithm based on serial

statistical test.
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1. Introduction

The commonly known pattern recognition methods can be roughly divided into

two classes: (1) analytical methods based on calculating similarity between the recog-

nized objects (formulated in the terms of linear or angular distance, logical, syntactic

or structural consistency, etc.) and (2) methods based on concepts of artificial neural

networks. In both cases, models of similarity classes of objects in a multi-dimensional

observation space separated by hyper-planes are widely used [1–3]. They are partic-

ularly useful for examination of non-supervised pattern recognition methods based

on Bayesian, distance or correlation approaches, as well as supervised pattern recog-

nition learning (potential functions, k-nearest neighbors, etc.), providing that well

mathematically-defined, homogenous, metric observation spaces are considered. The

latter condition is satisfied if, in particular, the objects are represented by matrices

or vectors consisting of components to which a common meaning can be assigned and

which, as a consequence, can be measured in the same physical or geometrical units.

Otherwise, if elements of the observation space represent various object parameters,
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the problem of scaling arises. For example, it is not clear what is the meaning of an

Euclidean distance between two vectors used in medical diagnosis whose components

are: x1 – the patient’s age [years], x2 – the patient’s weight [kg], x3 – systolic blood

pressure [hPa], x4 – diastolic blood pressure [hPa], etc. There also arises a question

whether it is better to express the blood pressure in hPa or in mmHg, as their relative

influence on the measure of distance between the vectors depends significantly on the

choice of units. Additionally, it may happen that some Boolean components should

be considered, e.g. x5 – was the patient hospitalized due to cardiac infarct [YES, NO].

It is evident that in such cases (rather typical in computer-aided medical diagno-

sis) an observation space X consisting of pseudo-vectors like x = [x1, x2, x3, x4, x5]

satisfy neither the metric space nor the linear vector space assumptions. Even if

the pseudo-vectors’ components have been normalized, there remain the problems of

choosing the normalization coefficients and of their influence on the quality of pattern

recognition. Pattern recognition methods neglecting these problems lead to algorithms

which can be used only in local, strictly defined areas, decisions made under different

assumptions being incomparable.

Pattern recognition methods based on the concept of linear ordering of observa-

tion space enable overcoming the above-mentioned difficulties. This is connected with

the fact that a linear order remains invariant with respect to any continuous trans-

formations of observation space components. The methods originated as an attempt

to use non-parametric statistical tests for pattern recognition given limited primary

information about the similarity classes. Combinatorial serial tests have been found

to be well-suited to such situations [4, 5].

The idea can be easily illustrated geometrically. A 2-dimensional observation

space and three similarity classes of objects represented by training sets S1 (whose

elements are denoted by ), S2 (denoted by ) and S3 (denoted by ) are shown

in Figure 1. The training sets are considered as mutually disjoint subsets of a total

reference set, S, unclassified elements being denoted by .

Figure 1. Example of a 2D observation space with elements representing

three similarity classes

If a new-observed element, , is to be recognized (i.e. assigned to one of the

above-mentioned classes) then, using the k-NN approach and a Manhattan metric, its

8-connective neighborhood should be examined. It contains 3 unclassified elements ,

1 element , 3 elements and 1 element . Therefore, will be recognized (for k < 4)

as an element of S3 (i.e. as ).
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Using a serial statistical test requires linear ordering to be introduced to the

observation space. This can be achieved in a number of ways, the simplest one based

on lexicographical ordering of elements, 1st in rows, 2nd in columns. Starting from

the lowest left element, we can observe that classified (non- ) elements occur in the

following order:

where the position of the unknown element, , has also been indicated. It should

be recognized as an element minimizing the number of homogenous sub-series in the

given sequence of elements. As long as the element is neglected, the number of

sub-series is 16. Including into the sequence leads to the following possible solutions

(the corresponding numbers of sub-series are given in brackets):

(16)
(17)
(16)

Therefore, it can be concluded that in the given case can be recognized as

either or , the number of series in both cases being the same, 16. Let it be stressed

that:

1. the method can be applied to any non-homogenous multi-dimensional observa-

tion space (i.e. representing data of varying formal nature),

2. it is independent of observation space scaling,

3. suitable for any finite number of similarity classes (easily merged into higher-or-

der classes or split into similarity subclasses) and

4. easily implemented on computers, while

5. storage of the learning sets’ elements in computer memory is not required (the

rules of the observation space’s linear ordering are stored instead).

However, there arises a problem of linear ordering of the observation space

adequate to the given pattern recognition problem, which will be considered in detail

below. The present paper is an extension of a poster presented at the XXII Autumn

Meeting of the Polish Information Processing Society in Wisla, 2006 [6]. It is organized

as follows. The impact of linear ordering of an observation space on the pattern

recognition efficiency is discussed in Section 2. The problem of optimization of the

linear order of an observation space based on a given family of reference subsets is

analyzed in Section 3. Section 4 is a presentation of methods of step-wise linear order

improvement (instead of its optimization) based on reversion, shifting and segmental

permutation of sub-segments of linearly-ordered segments of elements, including

several theorems and corollaries justifying these methods. Finally, conclusions are

presented in Section 5.

2. Impact of linear ordering

on pattern recognition efficiency

In this section, the influence of linear ordering introduced into an observation

space on the effectiveness of pattern recognition will be illustrated. For this purpose

the 2D observation space and training sets shown in Figure 1 will be considered.
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Examples of linear ordering are shown in Figure 2: (a) lexicographical, (b) reversible

sequential, (c) diagonal and (d) spiral. The (a), (b) and (c) orderings can be

transformed into alternative orderings, based on different direction of observation

space scanning by symmetrical reflection with respect to a vertical axis and rotation

by the −90◦ angle; they are respectively denoted by (a’), (b’) and (c’). Corresponding

sequences of training elements and the numbers of homogenous sub-series can be

calculated for the formerly given training sets S1, S2 and S3 and the defined linear

orderings:

(a) (16)

(a’) (14)

(b) (9)

(b’) (10)

(c) (7)

(c’) (11)

(d) (13)

In the given case, ordering (c), leading to the lowest number of sub-series (7)

is the best; ordering (b) (9 sub-series) is also satisfactory. However, neither (c) nor

(b) is an optimal ordering, their minimum possible number of sub-series being 3 –

the number of distinguished similarity classes. This minimum should be taken into

account as the aim of optimization of linear ordering of the observation space.

The methods of linear ordering shown in Figure 2, as defined by simple

geometrical rules, can be called regular. They can easily be extended to any discrete

finite-dimensional observation spaces. Other, slightly more sophisticated, regular

ordering methods, preferring local observation space scanning and based on a Hilbert

general concept of curves filling compact geometrical areas, have been presented in [5].

However, the numbers of series generated by simple regular orderings for given

reference sets are usually far from the minimum and thus arises the problem of linear

ordering optimization. A heuristic solution of this problem based on the hyper-cube

permutation approach has been proposed in [7]; in this paper a more general approach

to the problem is presented. In particular, choosing the best linear ordering is

considered as an optimization problem which should take into account both the

low implementation complexity costs and the high pattern recognition effectiveness

requirements.

3. The linear ordering optimization problem

A discrete multi-dimensional observation space will be considered, defined as

a Cartesian product of a finite number of discrete sub-spaces:

D =D1×D2× . ..×Dn. (1)

Sub-spaces Dν , ν = 1, 2, .. . , n, representing various features of the objects under

observation, may have different formal natures and are assumed to be linearly ordered

independently of each other. Taking into account computer implementation of pattern

recognition systems, it is additionally assumed that each feature represented by
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(a) (b)

(c) (d)

Figure 2. Selected types of discrete 2D observation space linear orderings: (a) lexicographical

(with respect to columns and rows), (b) reversible sequential, (c) diagonal, (d) spiral

a discrete scaleDν assumes values from a finite interval. With a simple transformation,

this interval can be represented in a standard form of a sequence of integers ∆ν =

[1, 2,. .. , mν ]. Therefore, a real observation space D can be reduced in practice to

a discrete hyper-cube:

∆=∆1×∆2× .. . ×∆n (2)

The elements of each hyper-cube of this type can be ordered linearly in M !

ways, where M =m1 ·m2 · . . . ·mn is the number of elements of ∆. A lexicographical

ordering of ∆ based on a fixed order of its components will be distinguished as one

that can be easily realized technically. However, permutation of the components of ∆

results in changing the lexical order, excepting a situation when the order is merely

reversed. Therefore, on the basis of the given family, F = {∆ν}, of n discrete sets, the

number, c= 1
2
·n!, of lexicographical orders can be established, significantly different

from the pattern recognition point of view. For example, a family, F = {∆1,∆2,∆3},

of three linearly ordered sets generates 3! = 6 hyper-cubes: ∆1×∆2×∆3, ∆1×∆3×

∆2,∆2×∆1×∆3,∆2×∆3×∆1,∆3×∆1×∆2 and ∆3×∆2×∆1, only three of which

(say, ∆1×∆2×∆3,∆1×∆3×∆2 and ∆2×∆1×∆3) can be taken into account while

generating substantially different lexicographical orders. We shall denote by QM a line

representing the order of the elements of ∆, as illustrated in Figure 2; it can also be

interpreted as a sequence (finite linearly ordered set) of M elements.

It is assumed that a pattern recognition task relies on assigning to any

newly-observed element x in ∆ a pattern-index k, k=1, 2, .. ., K, K being a natural

number > 1, so as to minimize the probability of false recognition in a long series

of experiments. It is assumed in a supervised learning pattern recognition system

that pattern-indices have been assigned to the elements of a reference sub-set S⊂∆
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according to verified results of earlier experiments. It is also assumed that each

similarity class is represented in S by at least one element. Therefore, indices from an

extended set [0, 1, 2, . .. , K] can be assigned to the elements of QM , 0 being assigned to

elements not belonging to S. Taking into account the linear order in QM , the indices

assigned to QM can also be presented by the following sequence:

V (QM )= [v1, v2, v3,. .. , vM ]. (3)

At the same time, V (QM ) can be represented as a sequence of sub-series of

homogenous elements:

V (QM )= [σ1, σ2, . .. , σr], (4)

where σ̺, ̺ = 1, 2,. .. , r, consists of elements of a fixed value. Any sub-series is

delimited on the left and on the right by different-value elements or by the sequence’s

ends. The r integer (number of sub-series) plays a substantial role in the pattern

recognition algorithm.

Theorem 1. If M ≥K then:

(a) the minimum value of r is rmin=K;

(b) the maximum value of r is

rmax=N1 ·(K+1)+(N2−N1) ·K+ . . .+(NK−NK−1) ·2+1, (5)

where N1, N2,. . ., NK+1 are the numbers of elements of V (QM ) of a given value,

taken in a non-decreasing order, N1≤N2≤ .. .≤NK+1.

Proof. Part (a) is evident, as the elements of V (QM ) can be linearly ordered

so that the elements tagged by “0” are taken first (except when S ≡∆, i.e. when

all elements of the observation space have been classified a priori), followed by those

tagged by “1” and so on, up to the elements of the last reference subset.

In order to prove part (b) it will be initially assumed that a series of strong

inequalities, N1 <N2 < ... < NK+1, is satisfied. Then, at the 1st step, we can form

N1 sub-sequences consisting of elements differently tagged by K+1 indices. Each

sub-sequence of this type thus represents K+1 one-element sub-series. This justifies

the first term of the right side of Equation (5). After this operation, there remain only

elements tagged byK indices and the less numerous, uniformly tagged subset contains

only N2−N1 elements. The earlier reasoning can thus be re-applied to the reduced

sequence of elements, leading to the second term of Equation (5). Such operations can

be repeated until only elements tagged by 2 different indices remain; their number

(NK −NK−1)+ (NK+1−NK) enables us able to form (NK −NK−1) two-element

sub-sequences of differently tagged elements. At last, there remain (NK+1−NK)

uniformly tagged elements which allow us to form only one series represented by

the last term of Equation (5).

In order to complete the proof, let us assume that some weak inequalities

occur among the series of inequalities; let it for example be N1=N2. Then, N3−N2
sub-sequences consisting of K−1 differently tagged elements can be formed in the

next step after forming N1 sub-sequences consisting of elements differently tagged by

K+1 indices. This means that the second term on the right side of Equation (5)

disappears and, as a consequence, the rmax number is reduced.
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For effective pattern recognition, the observation space ∆ should be linearly

ordered so as to minimize the number, r, of series constituting the V (QM ) sequence.

This can be achieved by a series of transformations of the initial lexicographical order.

Each transformation is in fact a permutation of the elements of V (QM ). Let us denote

by Π∆ the set of all permutations that can be applied to the elements of ∆, π0 ∈Π∆
being an initial permutation defined by lexicographical ordering of the elements of∆.

It is well known that each multi-element permutation can be realized by a sequence

of simple permutations of pairs of the sequence’s elements. Thus, a cost, Cs, defined

as a minimum number of pair-wise permutations transforming π0 into πs may be

assigned to any permutation πs ∈Π∆, s= 1, 2, .. ., M !−1, other then π0. Then, the

following problem can be formulated:

For given observation space ∆, number of classes K, reference subset S ⊂∆ and

initial linear order in ∆ described by a permutation π0, find a permutation πs ∈Π∆
reducing to K the number, r, of sub-series corresponding to V (QM ) and minimizing

the permutation cost, Cs.

However, the solution of the above-formulated problem is, in general, an

NP-difficult numerical task that could be extremely high time-consuming in practice.

This is why we are interested in looking for sub-optimal solutions of the problem.

4. Linear order improvement

For linear order improvement, it is practical to consider aggregated transfor-

mations consisting of permutations performed on larger segments instead of single

elements of a sequence QM . The aim of transformations remains minimization of the

number of series in QM . For this purpose we shall use a notion t for a transformation

(a single one or a composition of permutations) of the elements of QM (as well as

of V (QM )). The set of transformations of this type will be denoted by T . A sequence

ta tb .. . tf{ } will denote the result of a consecutive application to QM of transforma-

tions tf , .. . , tb and ta.

The following types of transformations will be considered:

1. reversion: tr(p,q), 1≤ p< q≤M , which consists in taking from QM its segment

(a compact sub-sequence) starting from the pth element and ending with the qth

element, reversing the order of its elements and inserting them into the same

place in QM ;

2. shifting: ts(p,q,y), 1≤ p, q, z ≤M , p < q, p 6= y, which consists in taking from

QM its segment starting from the pth element and ending with the qth element

and shifting it within QM to the position starting from y;

3. segmental permutation: tp(p,q,y,z), 1≤ p, q, y, z≤M , p< q, y < z, p 6= y, which

consists in taking fromQM its segment starting from the pth element and ending

with the qth element and a segment starting from the rth element and ending

with the sth element and exchanging their positions in QM .

It will be shown that the above-described transformations can be used to

improve the initial linear order of ∆.
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Theorem 2. Let r be the number of series in V (QM ). Then the number, r
′, of

series in tr(p,q) {V (QM )} satisfies the following inequality:

r−2≤ r′≤ r+2. (6)

Proof. Let us consider a part of the V (QM ) sequence containing the [p,q]

interval. We shall denote by a, b, c, d the values of this sequence delimiting the

interval:

position: .. . p−1 p ... q q+1 .. .

value: .. . a b ... c d ...

where a, b, c, d∈ [0, 1, 2, . .. , K]. The following situations will be taken into account:

(a) b= c meaning

position: .. . p−1 p ... q q+1 .. .

value: .. . a b ... b d ...

Then a reversion of the [p,q] segment, independently on the a and d values,

does not change the number of series, r′= r;

(b) a= d, which, for similar reasons, leads to r′= r;

(c) a, b, c, d are all different – then reversion of the [p,q] segment also does not

change the number of series, i.e. r′= r;

(d) b 6= c, a 6= d, a= b, c 6= d (or a 6= b, c= d), meaning that the situation

position: .. . p−1 p ... q q+1 .. .

value: .. . a a ... c d ...

will be changed to

position: .. . p−1 p ... q q+1 .. .

value: .. . a c ... a d ...

and the number of series will thus be increased, r′= r+1;

(e) b 6= c, a 6= d, a= c, b 6= d, (or a 6= c, b= d), being an exact reversion of (d), thus

the number of series will decrease, r′= r−1;

(f) b 6= c, a 6= d, a= b, c= d, i.e.:

position: .. . p−1 p ... q q+1 .. .

value: .. . a a ... d d ...

in which case reversion of the [p,q] segment destroys two series and, as

a consequence, the number of series increases, r′= r+2;

(g) b 6= c, a 6= d, a= c, b= d, i.e.:

position: .. . p−1 p ... q q+1 .. .

value: .. . a d ... a d ...

an exact reversion of (f), so the number of series will decrease, r′= r−2;

When p= 1 or q =M the impact of transformation tr(p,q) on the number of

series is no greater than in the above-analyzed cases. The above-described situations

thus complete the proof.

Corollary 1. The situation described in (g) of the Proof of Theorem 1

suggests the most effective reversion as a transformation improving the linear order

in ∆.
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Theorem 3. Let r be the number of series in V (QM ). Then the number, r
′, of

series in ts(p,q,y){V (QM )} satisfies the following inequality:

r−3≤ r′≤ r+3 (7)

Proof. Like in the Proof of Theorem 2, a part of the V (QM ) sequence

containing the [p,q] segment and the y element and their close environments will

be analyzed:

position: . .. p−1 p ... q q+1 .. . y−1 y

value: . .. a b ... c d ... e f

where a, b, c, d, e, f ∈ [0, 1, 2,. . ., K]. Shifting the [p,q] segment leads to the following

situation:

position: . .. p−1 p ... q q+1 .. . y−1 y

value: . .. a d ... e b ... c f

An analysis similar to that given in the Proof of Theorem 2 will lead us to the

conclusion that in the following situations:

(a) all values a, b, c, d, e, f are different,

(b) all values a, b, c, d, e, f are equal,

(c) a= e and d= f , the number of series after the shifting transformation remains

unchanged, r′ = r, as shifting the [p,q] segment does not modify its close

environment.

In other cases, the relationships within pairs of values (a,b), (c,d), (e,f), (a,d),

(e,b) and (c,f), having a direct influence on the structure of series before and

after the transformation, are critical for changing their number. From this point

of view the following extreme situations can be distinguished:

(d) if a= b, c= d, e= f , a 6= d, e 6= b and c 6= f , three series are split by insertion of

segments of elements of different value and we obtain r′= r+3 as a consequence;

(e) if a 6= b, c 6= d, e 6= f , a= d, e= b and c= f , three pairs of series are merged and

we obtain r′= r−3.

When p=1 or y=M , the impact of the ts(p,q,y) transformation on the number

of series is no greater than in the above-analyzed cases. Thus, the above-described

situations complete the proof.

Corollary 2. The stuation described in (e) of the Proof of Theorem 2

suggests the most effective shifting as a transformation improving the linear order

in ∆.

Theorem 4. Let r be the number of series in V (QM ). Then, the number, r
′,

of series in tp(p,q,y,z){V (QM )} satisfies the following inequality:

r−4≤ r′≤ r+4 (8)

Proof. A part of the V (QM ) sequence containing the [p,q] and [y,z] segments

and their close environments will be analyzed:

position: . .. p−1 p ... q q+1 .. . y−1 y ... z z+1 . ..

value: . .. a b ... c d ... e f ... g h ...
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where a, b, c, d, e, f , g, h∈ [0, 1, 2, .. . , K]. Mutual permutation of segments [p,q] and

[y,z] leads to the following situation:

position: .. . p−1 p ... p+z−y p+z−y+1 .. .

.. . p+z−q+1 p+z−q+2 .. . z z+1 .. .

value: .. . a f ... g d ...

... e b ... c h ...

In the following situations:

(a) all values a, b, c, d, e, f , g, h are different,

(b) all values a, b, c, d, e, f , g, h are equal,

(c) a= e and d=h,

the number of series after transformation remains unchanged, r′= r, as mutual

permutation of segments [p,q] and [y,z] does not modify their close environ-

ments.

In other cases, the relationships within pairs of values (a,b), (c,d), (e,f), (g,h),

(a,f), (g,d), (e,b) and (c,h), having a direct influence on the structure of series

before and after the transformation, are critical for changing their number.

From this point of view, the following extreme situations can be distinguished:

(d) if a= b, c= d, e= f , g=h, a 6= f , g 6= d, e 6= b and c 6=h, four series are split by

insertion of segments of elements of different value and we obtain r′= r+4 as

a consequence;

(e) if a 6= b, c 6= d, e 6= f , g 6=h, a= f , g= d, e= b and c=h, four pairs of series are

merged and we obtain r′= r−4.

When p = 1 or z =M , the impact of the tp(p,q,y,z) transformation on the

number of series is no greater than in the above-analyzed cases. The above-described

situations thus complete the proof.

Corollary 3. The situation described in (e) of the Proof of Theorem 3

suggests the most effective segmental permutation as a transformation improving

the linear order in ∆.

Corollaries 1–3 contain recommendations on choosing sequences of transfor-

mations of an initial linear order in an observation space. However, the criterion of

transformations’ effectiveness has only been applied on the number of series, r. There-

fore, they have not taken into account the cost of calculations connected with using

serial statistical tests based on the given linear order. This cost increases with the

distance between the initial lexicographical order and the linear order obtained as

a result of a series of transformations. The distance between two linear orders of se-

quences consisting of the same elements is understood here as the minimum number

of pair-wise permutations transforming one order into the other. At the same time, no

recommendations follow from Theorems 1–3 about choosing the position and lengths

of reversed, shifted or permuted segments. However, it seems reasonable to operate,

first of all, on the segments delimited by the initial lexicographical order.

Ther remains a problem of selecting the segments of QM for order changing.

The method of assessing segments’ ordering based on numerical parameters described

in [5] can be used for this purpose.
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5. Conclusions

Linear ordering of an observation space is a new paradigm of pattern recognition

based on non-parametric, serial statistical tests. The effectiveness of of this type of

tests depends on choosing a linear order appropriate for the geometrical form of

similarity classes, which are unknown a priori. Therefore, there arises a problem of

linear order optimization according to the available learning data-subsets. It has been

shown in this paper how to improve the initial linear order (usually lexicographical)

by a sequence of transformations: reversing the order at selected intervals and shifting

the intervals or permutation of selected pairs of intervals on the sequence of linearly

ordered data. Although our considerations are theoretical in character, they indicate

ways to construct the corresponding algorithms applicable in pattern recognition

systems based on serial statistical tests.
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