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Abstract: The concept of utilizing association rules for classification has emerged in recent years.
This approach has often proved to be more efficient and accurate than traditional techniques. In
this paper we extend the existing associative classifier building algorithms and apply them to the
problem of image classification. We describe a set of photographs with features calculated on the
basis of their color and texture characteristics and experiment with different types of rules which
use the information about the existence of a particular feature in an image, its occurrence count and
spatial proximity to classify the images accurately. We suggest using association rules more closely
tied to the nature of the image data and compare the results with those of classification with simpler
rules, taking into consideration only the existence of a particular feature on an image.
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1. Introduction

The large volume of multimedia data collected every day, from satellite and
aerial imagery for land planning, agriculture or forestry to that recorded any owners
of a digital camera, highlights the problem of automatically extracting meaningful
information from such collections of raw image data. Classification is an important
part of any knowledge-retrieval system, particularly significant in applications where
images are the main source of information in the decision making process.

In this paper, we propose an application of extended Class Association Rules
(CARs) to image classification. The approach is suitable for analyzing large sets of
photographs, as it has been developed from data-mining techniques dedicated to such
databases. As we have shown earlier by experimenting with a similar method [1], it
offers particularly good results in classification of images obtained with remote-sensing
methods, but may also be used for analysis of any sets of photographs. We have
extended the concept of association rules with recurrent items for classification
with information specific to image analysis, such as the number of occurrences of
a particular feature in an image or the maximum size of a region with uniform feature
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characteristics. A modified version of the classifier building algorithm (CBA) is used
to mine such rules from a training set of images, described by their color and texture
features. The rules have the form of an implication between a limited number of
features with appropriate weights and a category label. They are pruned and used to
create a classifier suitable for efficient classification of unseen examples.

The employed method of classification is a two-stage process in which the
classifier is built on the basis of a training set and used to associate category labels
with previously unseen examples of images. First, a symbolic representation of images
is created to enable the use of data mining methods, by calculating their color and
texture features and clustering them into a structure of a dictionary of representative
values. A classifier is created on the basis of a reduced set of discovered rules. New
photographs are processed in exactly the same way as the training ones, but without
the dictionary building and rule mining steps. The existing dictionary is used to label
particular blocks of images with identifiers of the dictionary entries, while rules from
the classifier are applied to classify the photographs into categories.

The remainder of the paper is organized as follows: Section 2 presents previous
work related to the subject of CARs and association rule mining in image databases.
In Section 3 we give the details of our approach to image representation, later used
in the classification process. In Section 4 we describe the concept of associative
classification and propose extended association rule mining and classifier building
algorithms. Experimental results of image classification are presented in Section 5.
Our conclusion and discussion of possible future improvements is given in Section 6.

2. Previous work

While the concept of mining association rules for classification was first pro-
posed in [2], the first classifier building algorithm (CBA) was introduced in [3], followed
by CMAR [4] and ARC [5]. The idea of including recurrent items in association rules
was presented as a modification of the Apriori algorithm in [6] and the FP-growth
algorithm in [7]. Finally, the possibility of incorporating recurrent items into CARs
was presented in [8] by a modification of the ARC-BC algorithm.

Recent applications of data mining to image databases have considered the
classification of mammograms [9], mining association rules between regions of paint-
ings [10] or features of aerial images, including their spatial relationships [11].

An image representation approach similar to the method presented here was
proposed in [12], where the authors compared various representational models ex-
tracting image features from individual blocks.

We have shown in [1] that achieving good classification results of aerial
photographs is possible even with simple association rules, having a class label in
the consequent. Here, we elaborate further on this subject and compare the results
with a classifier more closely related to the problem of image classification.

3. Image representation

A preliminary step of creating a symbolic representation of the source images
is required before applying any data mining methods to the database. The images are
first normalized by bringing them to a common resolution and performing histogram
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equalization. This is performed only when necessary (e.g. when the available dataset
contains images from various sources), using the bicubic resampling method for scaling
and histogram equalization for each of the RGB color components. Then, the images
are divided into a grid of 32×32 pixels blocks and color and texture features of each
of the blocks are calculated to be used in further processing. This initial procedure
may be performed well in advance of the actual classification process, for example
while adding a new photograph to the database.

An additional step of creating a dictionary of typical feature values is necessary
before training a new classifier. This is performed by clustering the values to find
a chosen number of group centroids, which then become the elements of a dictionary.
Individual image blocks are then labeled with identifiers of the most similar entries
present in the dictionary. An image’s representation consists of a list of all identifiers
associated with its blocks.

3.1. Calculating color features

Color features are represented by a histogram calculated in the HSV color space,
with the H channel quantized to 18 values, and S and V channels – to 3 values each.
In effect, the representation assumes the form of a 162-element vector of real values
between 0 and 1. Histogram intersection measure is used to compare two feature
vectors, h and g, given below in the form of a distance measure:

dI(h, g)= 1−
N−1
∑

i=0

min(h[i], g[i]). (1)

3.2. Calculating texture features

The statistical approach presented in [13], utilizing Gabor filtering, is used to
represent important information about the texture visible on the photographs. The
feature vector consists of mean and standard deviation values calculated from images
resulting from filtering the original pixels with a bank of Gabor functions, which are
a product of a Gaussian and a sine function. These filters are scaled and rotated
versions of the base function, given by the following formula:
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where σx and σy are parameters of the Gaussian, while W denotes the frequency of
the sinusoidal component.

Six different orientations and four scales of the base function are used to filter
every photograph. Thus, images resulting from consecutive passes assume the form of:

Wmn(x, y)= |I(x, y)∗gmn(x, y)|, (3)

where ∗ denotes spatial convolution, m – filter orientation and n – scale. The final
feature vector consisting of mean, µ, and standard deviation, σ, values assumes the
form of:

f = [µ00 σ00 · · · µM−1N−1 σM−1N−1]. (4)

Comparison of two feature vectors, f
(i)
and f

(j)
, is accomplished by the distance

measure given below:
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dmn(i,j), (5)
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where α(µmn) and α(σmn) are the values’ standard deviations over the entire
database.

3.3. Further image processing

The proposed method of representing images as the color and texture feature
values of their tiles enables further image processing that relies only on that repre-
sentation and does not involve analysis of the originals. One such technique is simple
segmentation roughly detecting the images’ main regions and reducing the number
of processed tiles to a much smaller number of segments. A simplified version of
the EdgeFlow algorithm, presented in [14], makes use of the texture information to
iteratively approximate boundaries between segments of an image.

The EdgeFlow algorithm

First, the differences in texture feature values are calculated between every
block, s, and its eight neighbors:

E(s, 0)= d(f(x+1, y), f(x, y)),

E(s, π/4)= d(f(x+1, y+1), f(x, y)),

...

E(s, 7π/4)= d(f(x+1, y−1), f(x, y)).

(7)

Next, probabilities of reaching a segment boundary in every direction, θ, are
calculated:

P (s, θ)=
E(s, θ)

E(s, θ)+E(s, θ+π)
. (8)

The information is then used to determine the most probable direction of finding
a segment boundary from every image block. The angle, Θ, maximizing the sum of
probabilities in a continuous range of four directions is found. The next step is to
calculate the “edge-flow” vector, having the combined energy and direction of texture
feature value differences in the most probable half-circle:

F (s)=
∑

Θ(s)≤θ<Θ(s)+π

E(s, θ) ·exp(jθ). (9)

The vectors are then iteratively propagated onto their neighbors if the angle
between them is acute, In which case the source vector is added to the destination
and removed from the original location. Otherwise, it remains in its original location.
When the propagation has stopped and there are no similarly oriented neighboring
vectors, the boundaries between segments can be detected by locating vectors that
point at each other (neighboring vectors of opposite directions).

The detected boundaries are closed by a simple algorithm connecting each open
contour with its nearest neighbor located in an approximate contour’s direction. The
number of resulting segments is then reduced to a user-specified one by joining the
most similar regions (having the closest texture feature values).

The final operation is to calculate the color and texture features of the newly
created segments, which now contain many original tiles. This may be easily achieved
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by calculating the mean value of color features of the tiles constituting a particular
segment. In the case of texture, the resulting vector, as given by Equation (4), consists
of values calculated on the basis of N building tiles with the following formulas:

µmn=
1
N

N
∑

k=1

µ(k)mn, (10)
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)

−µ2mn. (11)

3.4. Creating the feature dictionary

The dictionary consists of the most typical color and texture features of
individual blocks of photographs in the training set. It is created by clustering
corresponding feature values into a chosen number of groups. The clustering is
performed using a k-Means algorithm with a histogram intersection measure for
comparing color features and a Gabor feature distance for comparing texture features.

Centroids resulting from the clustering operation become elements of the
dictionary and are labeled with consecutive natural numbers. These identifiers are
then used to describe blocks of images in the database. During the classification phase,
the previously created dictionary is queried with color and texture feature values and
responds with labels of the most similar entries. An example of images converted to
their symbolic representation by a dictionary lookup is shown in Figure 1.

image features

1 B8, T14

2 B1, B12, T14

3 B12, B13, T11, T16

4 B3, B6, B9, B13, T14

5 B6, B14, T16

6 B13, T2, T15

7 B12, B13, T11

8 B13, T11
...

m B7, B9, B12, T13, T14

Figure 1. Converting a set of images to their symbolic representation. From left to right: the
dictionary content (n values of color and texture features after clustering), a set of original images,

and their symbolic representation

4. Associative classification

Associative classifiers are a recent, two-stage approach to classification, in which
a set of association rules between attribute values and category labels is first discovered
and then a compact classifier is created by selecting the most important rules for
classification.
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4.1. Association rules for classification

Formally, an association rule used for classification is an implication of the
form of X→ c, where item set X is a non-empty subset of all possible items in the
database, X ⊆ I, I = {i1, i2,. .. , in}, and c is a class identifier, c ∈ {c1, c2, .. . , cn}. Let
thus a rule item set be a pair <X, c>, containing item set X and class label c. The
rules are discovered in a training set of transactions Dt. Each transaction is a triple
of the < tid , Y, c > form, containing a transaction identifier, tid , itemset Y ⊆ I and
a class label, c.

In our approach we discover the most interesting association rules between
images of the training set, described by dictionary entries, and their category labels.
This is a slight modification of the classic association rule mining problem, as the
consequent implication is always limited to a class label. The aim of mining is then
to discover the rules constituting a subset of general association rules and having the
following form:

Rc : {color1,. .. , colorn, texture1, .. . , texturem}⇒ class label (12)

We have adapted the existing methods of association rule mining to create
a classifier suitable for categorization of image data. Direct application of any rule
mining algorithm to a transactional database containing images represented by feature
values in their particular locations would result in a large number of irrelevant
associations. Therefore, we consider only the existence, occurrence count and spatial
proximity of features in order to create rules that are sufficiently general to classify
previously unseen examples.

The initial set of discovered rules is usually very large, so it is necessary to limit
the number of associations by specifying the minimum support and confidence values
and employing various pruning techniques. We have used the CBA approach proposed
in [3] to mine the rules along with frequent item sets and then apply a pruning strategy
to limit their number.

4.2. Considering occurrence count

Extending association rules to include information about item occurrence count
in multimedia applications was first proposed in [6]. We use this general idea to
mine classification rules with recurrent items and apply a selected number of such
associations to the problem of image classification. A slight modification in calculating
the support of such rules is necessary, as a single transaction may increase the support
of an item set by more than one. The support of an item set,X, may thus be calculated
as follows (see [7]):

supp(X)=
|D|
∑

k=0

φ(X, tk)
|D|

, (13)

where φ is a function returning the ratio at which transaction tk of database D
supports item set X, defined as follows:

φ(X, t)=min
(

αj
βj

)

, j=1. . .n, (14)

tk = {α1i1, α2i2, .. . , αnin}, X = {β1i1, β2i2, . .. , βnin}, αi 6=0, βi 6=0.
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The support of a rule with recurrent items is calculated similarly as when
considering simple association rules, by counting the support of a set consisting of the
rule’s antecedent and consequent. The definition of confidence also remains unchanged
and may be calculated as supp(X ∪Y )/supp(X). The definition of a frequent item
set may be extended by including an additional condition of maximum support,
supp(X) < Σ, apart from its minimum value, supp(X) > σ, which helps minimize
the number of uninteresting rules.

A modified version of the CBA algorithm, presented as Algorithm 1 below, is
used to mine either all possible rules or only those having a certain maximum number
of items in the antecedent.

Algorithm 1. CBA-RG with recurrent items

Input Dt (training set), σ (min. support), Σ (max support), δ (min. confidence)
Output CAR (class association rules with recurrent items)
1: F1← {frequent 1 rule itemsets}
2: M← {maximum occurrence of frequent 1 itemsets in Dt}
3: CAR1←{f ∈F1 | supprule(f)<Σ∧conf(f)>δ}
4: k← 1
5: while Fk 6= ∅ do
6: Ck+1← (Fk⊗Fk)∪{f ∈Fk⊕x∈F1 | count(x, f)<M [x]}
7: for all t∈D do

8: for all c∈Ck+1 do

9: suppX(c)= suppX(c)+φ(c,t)
10: supprule(c)= supprule(c)+φ(c, t) | class(c)= class(t)
11: end for

12: end for

13: Fk+1←{c∈Ck+1 | supprule(c)>σ}
14: CARk+1←{f ∈Fk+1 | supprule(f)<Σ∧conf(f)>δ}
15: end while
16: return

⋃

kCARk

In lines 1–3 of Algorithm 1, a first pass over the database is made to find all
sufficiently frequent item sets which can be used to build rules with a single value in
the antecedent. The maximum number of occurrences of every item in the database’s
transactions is also counted, as per the MaxOccur algorithm [6], in order to limit the
number of item recurrences while generating candidates. Line 6 generates candidates
using the Apriori method and includes another occurrence of an existing item as long
as the current count remains below the maximum value. The count function returns
the item’s current number of occurrences in an item set, while the ⊗ and ⊕ symbols
respectively denote item-set merging and item concatenation operations. Lines 7–12
are used to independently calculate the support of each rule and the support of its
antecedent. These values are then used to calculate the rules’ confidence in line 14.

4.3. Considering spatial proximity

Apart from the association rules between the number of particular features
present in the images and their category labels, we also consider rules that include
information about spatial proximity of features. While mining for the association
rules, we check for spatial relationships between recurring features and include them
in the rules multiple times only when they constitute a single area of an image. This
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approach may be used only when no segmentation is applied to the original tiles, as
it reduces all similarly textured blocks to a single region.

It is possible to mine such rules without any change to the above-mentioned
algorithm by slightly changing the images’ representation. Each transaction is scanned
for every element of the dictionary to find the largest area covered by a single feature.
The original number of occurrences of every item is then reduced to that maximum
value before the association rule mining algorithm is applied. Table 1 illustrates
the difference between the two approaches to image representation and Figure 2
demonstrates the difference in classification rules.

Table 1. An example of image representation when considering spatial proximity of features

B1, T1 B1, T2 B2, T1 B1, T2

B2, T1 B1, T2 B2, T2 B1, T1

B1, T2 B2, T1 B1, T1 B1, T2

B2, T2 B2, T1 B1, T1 B2, T2

→

Direct representation:
9B1, 7B2, 8T1, 8T2
Considering spatial proximity of features:
5B1, 3B2, 4T1, 3T2

Ri : 2 ·colorbeige , .. .⇒ classchimp Ri : 25 ·color
area
red ,. . .⇒ classchimp

Figure 2. Difference in rules when considering the occurence count
only and when including spatial proximity

4.4. Building the classifier

Having found all the rules with minimum and maximum support, as well as
the minimum confidence, we face the problem of creating a classifier to be used
when associating category labels with previously unseen images. The final classifier
is created by first sorting the rules in the descending order of their confidence and
support and in ascending order of the number of items in their antecedents. Next, for
every rule in the sorted list, all elements of the training set matching that rule are
found and removed from further processing. A rule is then added to the classifier if it
matches at least one element of the set. A default class of the classifier is selected at
each step of the iteration that minimizes the error of classification of the remaining
data. Finally, when the rule or data set is empty, the final classifier is reduced to the
first number of rules reducing the general error rate of classification.

4.5. Classification

Classification is performed by applying the first matching rule from the classifier
to a given image described by dictionary entries. A default class label is given to images
for which there are no matching rules. An image matches a rule when it contains each
of the items of the rule’s antecedent with at least equal occurrence count.
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An exemplary representation of a few photographs without considering spatial
relationships between features, possible classifier content and classification results
are shown in Table 2. The classifier was created using the CBA approach to limit
the number of rules. Dictionary entries were identified by Bi (color) and Ti (texture)
labels. The dictionary size in this example was 8 entries each for color and texture. The
first two images were respectively matched by the first and second rule of the classifier
and associated with the C1 category label. The other two images were classified using
the default class value, as they remained unmatched by any rule.

Table 2. An example of image representation, classifier content and classification results

I image features

I1 7B2,38B3,51B4,88T1,7T2,1T3

I2 2B1,3B2,23B3,68B4,65T2,15T3,6T4

I3 23B1,72B2,1B3,4T1,57T2,21T3,14T4

I4 48B1,14B2,34B3,1T1,60T2,24T3,11T4

rules

2B3,1B4,1T1⇒C1

1B2,3B3,1B4⇒C1

default class =C0

I class

I1 C1

I2 C1

I3 C0

I4 C0

5. Experimental results

We have verified the results of image classification of the proposed method with
a test dataset made available by the authors of the SIMPLIcity CBIR system [15]. We
chose 400 photographs, having a resolution of 384×256 pixels and associated with four
different category labels, namely buses, flowers, horses and mountains. The accuracy
of the approach described above and the method of classification with simple class
association rules proposed earlier in [1] was compared by performing classification of
the same set of images belonging to two different categories. We have used ten-fold
cross-validation to reduce any influence due to the selection of training and test images
from the available dataset.

The results of these experiments are presented in Table 3. Classification
accuracy of both methods is shown for each dictionary size k (the number of different
color and different texture entries). In the first experiment, referred to Exp. 1, we
considered classification between horse and flower sets of photographs, in the second
– between bus and mountain, and in the third – between bus and horse. The rules
were mined with the minimum support of 0.01, the minimum confidence of 0.50, the
maximum support of 1.00, and the antecedent length limited to 5 items.

The influence of including the segmentation step in the process is shown in
Figure 3, while the relationship between the dictionary size, the chosen method of
classification and the number of rules found and included in the classifier is presented
in Figure 4. Clearly, including recurrent items when discovering the rules significantly
increases their number. Considering spatial proximity of features helps to reduce the
number of found associations, as well as the number of rules in the classifier. The
segmentation step does not increase the method’s accuracy but reduces the number
of analyzed tiles and, consequently, the processing time.

The presented results are proof that extending class association rules to include
recurrence of items and information about spatial proximity of features may improve
the accuracy of classifying photographs. Most of the results obtained using the newly
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proposed method are more accurate than those presented earlier. As other authors
proved that associative classifiers are better than C4.5 or other similar methods (in
experiments conducted on a set of 34 benchmark problems from the UCI machine
learning repository), we have not performed a comparison of classifiers ourselves.

While association rules with recurrent objects may be thought of as general-
izations of simple rules with binary information about item existence, there remains
the problem of selecting the most effective ones for classification. This is why not
every experiment turned out better results when considering extended rules. There
are cases for which the applied method of rule selection produces better results with
simple class association rules. Considering spatial proximity of features present in an
image does not seem to improve the accuracy of classification considerably, but helps
limit the number of discovered associations.

Table 3. Classification accuracy of the four test datasets

simple rules with recurrence with spatial proximity
k

Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3

4 93.02 87.73 93.26 94.12 91.74 94.24 93.35 89.86 93.86
8 90,70 94.48 99.44 93.48 93.27 98.96 91.32 94.31 99.17
12 96,51 95.70 96.07 97.53 96.48 97.45 95.85 96.35 96.24
16 95,93 95.70 97.75 95.26 95.19 96.89 95.32 96.18 97.89
20 94.77 93.25 98.32 94.34 94.24 98.43 94.80 94.11 98.39
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Figure 3. The influence of segmentation step on classification accuracy; the light gray line
corresponds to the classifier utilizing simple rules, the medium gray – to the classifier with

recurrent items, the dark gray – to the segmentation step included in classification with such rules

6. Conclusions

We have proposed an extension of associative classifiers with recurrent items
and experimented with applications of association rules in classification of pho-
tographs. We have used class association rules with recurrent items and considered the
spatial proximity of features of an image to accurately classify a set of photographs.
We have applied this method to a dataset containing photographs associated with
four different categories and presented results of their classification. The described
approach has proved to perform better than the previously tested classifier utilizing
only simple rules with no item occurrence information. Associative classification of
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Figure 4. Average number of rules with respect to dictionary size; the light gray line corresponds
to the classifier utilizing simple rules, the medium gray – to the classifier with recurrent items,

the dark gray – to the classifier considering spatial proximity of features;
(a) the number of discovered rules with respect to dictionary size;
(b) the number of rules in the classifier with respect to dictionary size

images is a promising area of research, as many different approaches to image repre-
sentation and association rule mining and pruning may be proposed to improve the
process’ accuracy.
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