
TASK QUARTERLY 11 No 1–2, 21–33

MACHINE TRANSLATION USING SCARCE

BILINGUAL CORPORA

KRZYSZTOF JASSEM AND TOMASZ KOWALSKI

Department of Computer Science, Adam Mickiewicz University,

Umultowska 87, 61-614 Poznan, Poland

{jassem,kowalski}@amu.edu.pl

(Received 29 December 2006; revised manuscript received 30 January 2007)

Abstract: We propose a method for automatic extraction of translation rules suitable for

a rule-based machine translation system by using a target language syntactic parser and scarce

bilingual resources as linguistic knowledge sources. We propose an algorithm that assembles trans-

lation rules in order to translate an input sentence.

Keywords: machine translation, parellel corpora analysis, rule extracion

1. Introduction

We have observed growing interest in Statistical Machine Translation (SMT).

To a large extent, this is due to the increasing volume of parallel bilingual data for

major languages. Moreover, the statistical approach involves a lot of computation

time to train the model but almost no manpower.

At the same time, linguistic knowledge acquired in the training phase of

a statistical model does not allow for any human tuning, which makes it difficult

to correct potential errors.

In Rule-based Machine Translation (RMT), linguistic knowledge is hand-coded

into the system. The translation process may be tuned according to the observed

language-specific phenomena. RMT systems deliver translations of better quality than

SMT systems, but are much more expensive as they require manpower with both

linguistic and computer programming skills in order to encode linguistic knowledge

into a machine-readable form.

It would appear desirable to combine the advantages of both approaches. One

way to do so is to build an RMT system with rules being achieved automatically – by

means of statistical calculations.

The idea to acquire transfer rules automatically from a word-aligned corpus was

presented in [1–4], where transfer units were based on subtrees in the source language

parse tree. This schema should work best for pairs of languages, one of which is well

known for the system’s developers whereas the other is not.

22 K. Jassem and T. Kowalski

In this paper, we would like to focus on the possibility of obtaining translation

rules without using a source language parser. We assume the availability of a parser for

a target language and scarce bilingual resources in the form of word-aligned sentences.

Galley et al. (see [5]) have proposed a theory offering formal semantics to

word-level alignments defined over parallel corpora. They have introduced a linear

algorithm that can be used to derive the minimal set of syntactically motivated

transformation rules from word-aligned parallel corpora. The transformation rules

are extracted from the parse tree of the target sentence and the pre-determined

equivalents of its nodes in the source sentence.

Here, we modify this algorithm by using a different annotation schema for

analysed graphs and by using a binary vector algebra instead of set operations. The

modified algorithm is used to extract translation rules for an RMT German-Polish

system. We perform experiments with small German-Polish corpora and parse target

sentences with the state-of-the-art non-statistical parser for Polish (see [6]) used in

the Translatica system1.

Moreover, we propose an algorithm assembling the acquired rules in the process

of translating German sentences into Polish.

Finally, we suggest further work towards enhanced translation quality of an MT

system based on this method.

The development of an RMT system based on this idea requires some human

knowledge required for tagging the equivalence between simple components (usually

words) in parallel sentences (possibly by verifying suggestions of a computer pro-

gram). Such tagging, however, does not require specialized linguistic skills of human

operators.

2. Rule extraction

We extract rules further used in the translation process from a structure called

an alignment graph [5].

We use standard notations form the graph theory: for a graph G, V (G) denotes

the set of nodes, E(G) denotes the set of edges, (n1, n2) denotes the edge from node

n1 to node n2 in graph G.

An alignment graph AG is a rooted, directed (direction in diagrams is usually

presented from top down), connected, acyclic graph spanned over the tokens of the

source sentence and the parse tree of the target sentence. It consists of the set of

source sentence nodes, S, i.e. nodes that represent words or, more precisely, tokens of

the source sentence, a parse tree, P , of the target sentence, where T ⊂V (P) denotes

the set of leaves of the parse tree, or the target sentence nodes, and an alignment A,

i.e. edges between T and S: A= {(t, s)∈E(AG) : t∈ T, s∈S}. We also require that

∀s∈S∃t∈T (t, s)∈A. An exemplary alignment graph is shown in Figure 1.

The idea is to automatically extract subgraphs of the alignment graph that

would generate translation rules.

Definition 1. Let n be a node of the parse tree (n∈V (P)), such that removing

the edge between node n and its parent dissects the alignment graph into two disjoint

1. Translatica (http://www.translatica.pl) is a commercial name of a system formerly

developed under the name Poleng

Machine Translation Using Scarce Bilingual Corpora 23

graphs. We call the graph rooted in node n rule-inducing if it covers a contiguous

part of the source sentence, i.e. source sentence nodes of that graph form a substring

of the source sentence.

The subgraph of the graph shown in Figure 1 rooted in node NP is

rule-inducing. The subgraph is shown in Figure 2.

Figure 1. An example of an alignment graph

Figure 2. An example of a rule-inducing graph

In Figure 3a a subgraph is shown that does not induce a translation rule

because removing the edge between its root and the root’s parent does not dissect

the alignment graph into two disjoint graphs. The subgraph shown in Figure 3b does

not induce a translation rule because it covers a non-contiguous part of the source

sentence. The algorithm we describe below analyses the alignment graph in a single

traversal in order to find all rule-inducing subgraphs.

24 K. Jassem and T. Kowalski

(a) (b)

Figure 3. Examples of non rule-inducing graphs:

(a) removing the edge between N and NP does not dissect the graph;

(b) the V-rooted graph does not cover a contiguous part of the source sentence

First, the algorithm defines the order of the alignment edges “from left to right”:

number 1 is assigned to the leftmost edge of the alignment, i.e. the edge that links

the first token of the source sentence to the leftmost token of the corresponding target

sentence tokens; v= card(A) is assigned to the rightmost edge of the assignment. Or,

more precisely: Let (t1, s1),(t2, s2)∈A, and s1≺S s2 if and only if node s1 precedes

s2 in sentence S. Each alignment edge is assigned a number, n((t,s)∈A)∈ [1, v], so

that the following should hold:

n(t1,s1)<n(t2,s2) ⇔ s1≺
S
s2 ∨ s1= s2∧ t1≺

T
t2 (1)

For each node m in the alignment graph, the algorithm calculates two binary

vectors, span(m) and mask(m), of length v equal to the number of edges in the

alignment (|span(m)| = |mask(m)| = card(A)). For each s ∈ S, the vectors are as

follows:

span(s∈S)= 0 (2)

mask(s∈S)= [mv,. . ., m1] :mi=

{
1, ∃t∈T : i=n((t, s)∈A)
0, otherwise

(3)

For each t∈T , they are:

span(t∈T)= [mv, .. . , m1] :mi=

{
1, ∃s∈S : i=n((t, s)∈A)
0, otherwise

(4)

mask(t∈T)=
∨

(t,s)∈A

mask(s) (5)

The vectors for the remaining nodes are calculated by traversing the alignment graph

bottom-up:

span(n∈V (P)\T)=
∨

(n,m)∈E(P)

span(m) (6)

mask(n∈V (P)\T)=
∨

(n,m)∈E(P)

mask(m) (7)

Machine Translation Using Scarce Bilingual Corpora 25

Listing 1. The rule extraction algorithm

#initializing source sentence nodes
$edge number = 1;
foreach $s (@S) {
foreach $t ($s -> {aligned to}) {

$t -> {span} |= $edge number;
$s -> {mask} |= $edge number;
$edge number <$< 1;
}

create a discard rule ($s) if (0 == $s -> {mask});
}
#initializing target sentence nodes
foreach $t (@T) {

$t -> {mask} |= $s -> {mask} foreach $s ($t -> {aligned to});
$seen {$n} = 1;
}
#traversing the rest of the alignment graph bottom-top

@stack = ($r); #root of the alignment graph
while ($n = pop @stack) {
unless ($seen {$n}) {
$seen {$n} = 1;

push @stack, $n;
push @stack, $n -> {siblings};
} else {
foreach $c in ($n -> {siblings}) {

$n -> {span} |= $c -> {span};
$n -> {mask} |= $c -> {mask};
}
if ($n -> {span} == $n -> {mask}

&& binary to string ($n -> {span}) =~ //^0*1+0*$//
) {
convert to rule ($n);
@n -> {siblings} = (); #detaching all siblings

}
}
}

It is claimed here that:

Lemma 1. For any node p ∈ P , mask(p) = span(p) iff removing the edge e′

between the node p and its parent dissects the alignment graph into two disjoint

graphs.

Proof. Let R be a p-rooted graph.

Let us suppose that mask(p) = span(p) and that removing edge e′ does not

result in partitioning the alignment graph into two disjoint graphs.

Since P is a tree and thus removing any of its edges results in its partition into

two disjoint trees, there has to be an edge e=(t, s) in the alignment such that either

t /∈V (R)∧s∈V (R) or t∈V (R)∧s /∈V (R).

Let us suppose that t ∈ V (R)∧ s /∈ V (R). According to the Equation (4):

span(t)n(e)=1. Since span(p), calculated according to Equation (6), it is effectively:

span(p)=
∨

x∈V (R)∩T

span(x) (8)

and when span(t)n(e)=1 then span(p)n(e)=1.

26 K. Jassem and T. Kowalski

As we have assumed that mask(p) = span(p), we obtain mask(p)n(e) = 1. By

unwinding the recursive Equation (7) we obtain:

mask(p)=
∨

x∈V (R)∩S

mask(x) (9)

Therefore ∃s1∈V (R)∩Smask(s1)n(e) = 1. Since edges are numbered uniquely (rela-

tion (1)) and mask(s1)n(e) = 1 =mask(s)n(e), then s1 = s, which results in contra-

diction as we have assumed that s /∈V (R) but s1 ∈V (R).

Similar reasoning for the other case (t /∈ V (R) ∧ s ∈ V (R)) also leads to

contradiction.

Let us now suppose that removing edge e′ results in a partition of the alignment

graph into two disjoint graphs and mask(p) 6= span(p). If mask(p) 6= span(p) then

∃i=n(e)=n((t, s)) : mask(p)i 6= span(p)i. Since {e
′} is the edge cut off the alignment

graph then t, s∈V (R) or t, s /∈V (R).

Let us assume that span(p)i = 0 and mask(p)i = 1. Given Equation (8), we

obtain 1 =mask(p)i=n(e)=n(t, s) =mask(s)n(t,s). By definition of the span and mask

vectors, mask(s)n(t,s)= span(t)n(t, s). Since s∈V (R) then t∈V (R) and the following

holds: 1= span(t)n(t, s)= span(p)n(t, s)= span(p)i.

A similar reasoning for the case of span(p)i=1 and mask(p)i=0 also leads to

contradiction.

Lemma 2. For any node p∈P , the p-rooted graph is rule-inducing iff

span(p)=mask(p)= [0. .. 0
︸ ︷︷ ︸

a−1

, 1.. . 1
︸ ︷︷ ︸

b−a+1

, 0. .. 0
︸ ︷︷ ︸

v−b

], where a∈ [1.. . v], b∈ [a... v]

Proof. According to Definition 1, a p-rooted subgraph of the alignment graph

is rule-inducing iff (a) the alignment graph may be dissected into two disjoint graphs

and (b) the leaves of the p-rooted graph form a contiguous part of the source string.

According to Lemma 1, the first condition is met when span(p) = mask(p).

Thus, it suffices to prove that condition (b) is satisfied by a “0∗1+0∗” vector, i.e.

a sequence of one or more zeros, followed by one or more ones, followed by one or

more zeros.

(⇐) Let us assume that span(p) = mask(p) and mask(p) has the form of

“0 ∗ 1+0∗” and that the p-rooted subgraph (R) of the alignment graph does not

cover a substring of the source sentence. This implies that there has to be a se-

quence of source nodes of length m such that the first node in sequence s1 ∈S∩V (R)

is followed (in terms of the source sentence) by one or more nodes such that

∀i∈(1,m)si ∈S∧si /∈V (R), followed by a node sm ∈ S ∩V (R). According to Equa-

tion (9):
∀t∈T :[mask(p)]n1=n(t, s1)=1

∀i∈ (1, m) ∀t∈T :[mask(p)]ni=n(t, sm)=0

∀t∈T :[mask(p)]nm=n(t, sm)=1

But since ∀i∈(1,m)n1<ni<nm, we observe a sequence of the form “10+1” (a single

one, followed by one or more zeros, followed by a single one), which contradicts the

assumption that the mask vector should have a “0∗1+0∗” form.

Machine Translation Using Scarce Bilingual Corpora 27

(⇒) Let L be the set of leaves of the p-rooted rule-inducing graph. Since

the leaves of a rule-inducing graph constitute a substring of the source sentence

and the order of numbering is “left-to-right” (relation (1)), the alignment edges

such that ∀s∈L∃t∈T (t, s)∈A are labelled with subsequent numbers. Moreover, let

a=min{n((t, s)∈A)} and b=max{n((t, s)∈A)} for any t∈T and s∈L. According

to Equation (9), we obtain ∀i∈[a, b][mask(p)]i=1. For any source node si that precedes

(in terms of the source sentence) any of the nodes in L, we have ∀t∈Tn(t, si)∈A)<a.

Moreover, for any node si /∈ V (R) we have ∀i∈[0... a)[mask(p)]i=0. Similarly, for

any source node sj that follows (in terms of the source sentence) any of the

nodes in L, we have ∀t∈T b<n(t, si)∈A). Since any node sj /∈ V (R), we have

∀i∈(b... v][mask(p)]i=0.

Listing 1 shows the complete algorithm in the form of a Perl-like code. In order

to simplify the exposition, we have converted the span vector into a string and used

a regular expression to check whether it has the required form.

Once the root of a rule-inducing graph has been found, we convert it into a rule

using the convert to rule procedure. The procedure forms the input of a rule

from leaves of the given graph (see [5]). We order the leaves according to the mask

vector. Please note that the sorted list of leaves often differs from the list obtained by

in-depth traversal of the rule-inducing graph. Therefore, we replace the leaves of the

rule-inducing graph (now the rule body) by references to the sorted list (rule input).

Examples of translation rules formed by the convert to rule procedure are

shown in Figure 4. The input of a rule is shown at the bottom of every diagram with

the rule’s body above it. Empty circles represent placeholders for nodes that match

the rule’s input.

(a) (b) (c)

Figure 4. Examples of translation rules: (a) a dictionary-like rule, (b) a parser rule,

(c) a translation rule with source tokens at the input

The form a discard rule procedure creates a special kind of translation rules,

having empty bodies. They store the information that a particular source sentence

28 K. Jassem and T. Kowalski

token is irrelevant to the translation process, since it has not been aligned to any

target token.

A rule-inducing graph may contain smaller rule-inducing graphs. If all rule-

inducing graphs were converted into rules, a lot of the information contained in the

rules would be stored multiple times. In order to avoid such overload, each time

a rule-inducing graph is found and converted into a rule we reduce the alignment

graph by removing all nodes of the rule-inducing graph except for its root.

Such a rule is shown in Figure 4b, created after the A-rooted rule-inducing

subgraph of the AP-rooted rule-inducing subgraph had been reduced to a single node.

3. Translating via rule assembling

Given a set of rules acquired in the way described above, it is possible to

generate translations of sentences by constructing an alignment graph over the source

sentence from graphs acquired in the training process.

Let us suppose that the rule set is derived from the alignment graphs shown

in Figures 1 and 5, and the sentence to be translated is “ich ziehe das grüne Strom-

kabel ab”.

Figure 5. An example of an alignment graph with one of the rule-inducing graphs marked

Having processed the first alignment graph, we obtain a set of 5 rules (shown

in Figures 4 and 6). An analysis of the second alignment graph results in 7 rules, but

only one of these is relevant to this example. The rule-inducing graph of this rule has

been marked in Figure 5.

We are able to translate the input sentence on the basis of our set of rules in

4 steps:

(a) first, the node representing the token ‘grüne’ of the input sentence is matched

with the rule-inducing graph shown in Figure 5;

(b) next, we merge token A with the graph constituting the rule in Figure 4b;

Machine Translation Using Scarce Bilingual Corpora 29

(a) (b)

Figure 6. Translation rules acquired from the alignment graph of Figure 1

(c) the ‘das’, AP and ‘Stromkabel’ nodes correspond to leaf nodes of the graph

shown in Figure 4c. They should be merged with respect to the reordering

constraints of that rule;

(d) rule in Figure 6a is applied.

The process of subsequent application of rule-graphs is illustrated in Figure 7.

(a) (b)

(c) (d)

Figure 7. Subsequent steps of translation; nodes present before the application of a rule are grey,

the merged nodes are marked by a thick outline

30 K. Jassem and T. Kowalski

Since the constructed alignment graph rooted in VP already spans over the

entire input sentence, there is no need to expand it any further, e.g. by applying the

rule shown in Figure 6b. The translation is to be read from the target sentence nodes

of the alignment graph.

The process shown in the above example may be implemented using the concept

of dynamic programming. A pseudo-code of its algorithm is shown in Listing 2.

The algorithm operates on an n×n matrix, where n denotes the length of the

input sentence. Every matrix element is a pair of lists, one of which contains references

to the nodes of the alignment graph being constructed, and the other one – to virtual

nodes called anchors (a concept explained below).

The matrix is initialized with the source sentence tokens forming the bottom

level of the alignment graph (i.e. source sentence nodes). Then a database query

is performed in order to find rule-graphs matching the source sentence nodes. If

a match is found, the rule-graph is merged with its matching source sentence node

and a reference to the root node of the rule-graph (now part of the alignment graph)

is recorded.

After this initial step, the algorithm analyses longer segments of the input

sentence, trying to construct alignment graph fragments spanning over more and

more source sentence nodes. It stops after analysing a segment of length n, the length

of the whole sentence.

While analysing a segment of length m ∈ [2, n] starting from position i ∈

[1, n−m+1], the algorithm performs a database query in order to find a rule-graph

matching the nodes referenced as spanning over source nodes in positions from i to

i+j−1 and from i+j to i+m−1, where j ∈ [1, m−1].

Listing 2. The translation algorithm

#prerequisite $matrix is already initialized with source sentence tokens
sub compute matrix ($matrix) {
foreach $segment start (0 .. $matrix -> {width}$-1) {
expand segment ($matrix -> [0] -> [$segment start]);
}
foreach $segment length (2 .. $matrix -> {height}) {
foreach $segment start (0 .. $matrix -> {width}$-$segment length) {
$current cell = $matrix -> [$segment length-1] -> [$segment start];
foreach $segment partition (1 .. $segment length-1) {
push @$current cell,
join segments (
$matrix
-> [$segment partition-1]
-> [$segment start]

, $matrix
-> [$segment length-$segment partition-1]
-> [$segment start+$segment partition]

);
}
$current cell = expand segment ($current cell);
}
}
}

The algorithm performs database look-ups only for rules that, if applied, merge

two graph fragments into one. In order to allow the algorithm to use rules that merge

Machine Translation Using Scarce Bilingual Corpora 31

more that two graph fragments without increasing its complexity, we have developed

the concept of an anchor. An anchor is a virtual node linking two alignment graphs

spanned over adjacent fragments. The algorithm treats anchors in the same way as

real nodes of an alignment graph. The use of anchors is shown in Listing 3.

Listing 3. Procedures used by the translation algorithm (Listing 2)

sub expand segment (@list of nodes) {
@to process = @list of nodes;
@processed = ();
while ($current node = pop @to process) {
push @processed, $current node;
unless ($current node -> {is anchor}) {
@rules = run db query ($current node);
foreach $current rule (@rules) {
#apply rule
merge rule graph to nodes ($current rule, $current node);
push @to process, $current rule -> {root};
}
}
}
return @processed;
}

sub join segments (@nodes A, @nodes B) {
@roots = ();
foreach $node a (@nodes A) {
foreach $node b (@nodes B) {
$query = [
$node a -> {is anchor}? $node a -> {query}: $node a,
$node b -> {is anchor}? $node b -> {query}: $node b
];
@rules = run db query($query);
foreach $current rule (@rules) {
$nodes = [
$node a -> {is anchor}? $node a -> {nodes}: $node a,
$node b -> {is anchor}? $node b -> {nodes}: $node b
];
if ($current rule -> {exact match}) {
#apply rule
merge rule graph to nodes ($current rule, $nodes);
push @roots, $current rule -> {root};
} else {
$anchor = new Anchor ($query);
push @{$anchor -> {nodes}$}, @$nodes;
}
}
}
}
return @roots;
}

We have designed the database query to look not only for rule-graphs matching

the request exactly, but also for rules that match it partially. Every time an exact

match is found, it is applied by the algorithm and real alignment graph nodes are

created. The information about partial matches is recoded in the form of an anchor.

The idea of “anchoring” is analogous to that of normalization of a context-free

grammar into the Chomsky form (usually done in order to use the CYK parser, see

[7]). There, the rules with more than two right-hand symbols are replaced by rules

32 K. Jassem and T. Kowalski

with exactly two right-hand symbols by introducing virtual symbols – equivalents of

anchors.

We have implemented the database query by using the standard B-tree index

(see [8]) on rule-graphs’ leafs. The properties of a B-tree index make it equally efficient

in searching for prefixes as it is for exact matches. Moreover, the use of a B-tree index

enables the use of a database engine as a store of rules.

4. Discussion and further work

Both algorithms were implemented in the Perl language. A corpora of 100

sentences from a user manual of a microelectronic device was used for testing. The

source and target sentences were aligned manually.

We have noted the performance of the rule extraction algorithm to depend

strongly on the quality of the alignment. During the initial run of the rule extraction

algorithm, a half of the presented sentence pairs were stored entirely (a single rule

covering the entire sentence was created). This was due to the relatively large density

of the alignment: there were many source nodes aligned to more than one target node

in those sentences. After removing some edges from the alignments, over 80% of the

sentence pairs contributed to the rule set without being stored as a whole sentence.

The remaining sentences tended to be long (over 20 tokens) and contributed to the

rule set when presented as shorter fragments. Assuming the availability of only small

corpora, different alignments of the same sentence pairs (e.g. prepared by different

people) should be presented to the rule extraction algorithm for optimal performance.

We have observed three types of rules acquired by the above algorithm:

(a) dictionary-like rules, (b) parsing rules and (c) mixed rules. Examples of rules

of each type are shown in Figure 4.

A dictionary-like rule consists of four nodes: (i) a source sentence node – the

source token, (ii) a target sentence node – its equivalent in the target language,

(iii) a node that identifies the base form of the equivalent and (iv) a node containing

grammatical information. The rule shown in Figure 4a was actually achieved in

a post-processing step from three extracted rules, each of them consisting of only two

connected nodes. It is worth noting that it would be certainly possible to acquire an

exhaustive bilingual dictionary in this way, although this would require large corpora.

Having only scarce bilingual resources, dictionary rules have to be supplied from

external sources.

A parsing rule consists of P -nodes only. These rules will most likely form only

a subset of the knowledge base for the parser of target sentences because the parser

may be able to deal with cases not observed in the corpora. Thus, it would be better

to transfer the parser’s complete knowledge base into parsing rules by other means.

The third type of the acquired rules are mixed rules, i.e. rules consisting of

source sentence nodes and parse tree nodes. We believe that rules of this type allow

for capturing translation nuances that a human operator (e.g. an author of translation

rules for a transfer-based MT system) may not be aware of.

Actually, the parser used here takes into account also semantic features of

sentence components. This shows that acquired rules may have not only syntactical

but also semantic motivation.

Machine Translation Using Scarce Bilingual Corpora 33

The ability of the assembling algorithm to produce translations is highly

dependent on the graph merging procedure. The procedure used in the translation

algorithm assembles subtrees of translation rules on the basis of agreement of basic

syntactical attributes only, which makes the translation algorithm generate multiple

hypotheses. It is thus necessary to introduce further constraints on the merging

procedure. One of the possible solutions is to consider other syntactic and semantic

attributes in assembling the translation rules. This would substantially limit the

number of generated hypotheses. Another possibility is to choose hypotheses that

have the highest probability with respect to the target language model [9].

Furthermore, the quality of translations obtained with this method could be

improved by applying post-processing procedures similar to those used in transfer

translation, e.g. morphological synthesis [10].

References

[1] Carbonell J, Probst K, Peterson E, Monson Ch, Lavie A, Brown R and Levin L 2002 Proc.

5 th Conf. Association for Machine Translation in the Americas (AMTA-02), London, UK,

Springer-Verlag, pp. 1–10

[2] Dekang L 2004 Proc. 20 th Int. Conf. on Computational Linguistics: COLING-04, Geneva,

Switzerland, pp. 625

[3] Lavoie B, White M and Korelsky T 2002 Proc. COLING-02 Workshop on Machine Translation,

Taipei, Taiwan, Asia, pp. 60–66

[4] Richardson S, Dolan W, Menezes A and Pinkham J 2001 Proc. MT Summit VIII, Santiago

De Compostela, Spain, pp. 293–298

[5] Galley M, Hopkins M, Knight K and Marcu D 2004 Proc. Human Language Technology and

North American Association for Computational Linguistics Conference (HLT/NAACL-04),

Boston, Massachusetts, USA, pp. 273–280

[6] Graliński F 2002 Speech and Language Technology 6 263 (in Polish)

[7] Younger D H 1967 Information and Control 10 (2), pp. 189–208

[8] Bayer R and McCreight E M 2002 Software Pioneers: Contributions to Software Engineering,

Springer-Verlag New York, Inc., pp. 245–262

[9] Song F and Croft W B 1999 Proc. 8 th Int. Conf. on Information and Knowledge Management

(CIKM’99), Kansas City, Missouri, United States, ACM Press, pp. 316–321

[10] Jassem K 2002 Speech and Language Technology 6 277 (in Polish)

34 TASK QUARTERLY 11 No 1–2

