
TASK QUARTERLY 11 No 1–2, 7–19

A CRITICAL REVIEW OF THE NEWEST

BIOLOGICALLY-INSPIRED ALGORITHMS

FOR THE FLOWSHOP SCHEDULING

PROBLEM

JERZY DUDA

AGH University of Science and Technology,

Faculty of Management, Department of Applied Computer Science,

Gramatyka 10, 30-067 Cracow, Poland

jduda@zarz.agh.edu.pl

(Received 30 December 2006; revised manuscript received 01 February 2007)

Abstract: The three most recent bio-inspired heuristics proposed in the OR literature for solving

the flowshop scheduling problem are revised in the paper. All of these algorithms use local search

procedures to improve solutions achieved by the main procedure. The author tries to asses the gains

from hybridizing such heuristics with local search procedures. The achieved results confirm that

simple local search algorithms can compete successfully with much complex hybrids.

Keywords: flowshop scheduling, metaheuristics, local search, hybrid algorithms

1. Introduction

The term biologically-inspired algorithms comprises methodologies such as

neural networks, evolutionary algorithms, particle swarm optimization, ant colony

optimization and artificial immune systems. Most of these metaheuristics have been

successfully applied in various optimization problems in order to provide optimal or

good suboptimal solutions.

The study presented in this paper focuses on the biologically-inspired heuristics

applied for one of the most widely studied combinatorial optimization problems in the

OR literature – the flowshop scheduling problem. This problem is commonly used as

a benchmark for testing new heuristic algorithms, although it can hardly be applied

to shop floor sequencing problems found in real production systems. At the same

time, it is NP-complete in a strong sense [1], its definition is simple and the methods

developed to solve the classical flowshop problem can often be applied to more complex

problems, which can be encountered not only in production management.

The task in flowshop scheduling is to find a sequence of n independent jobs to

be processed on m machines. Only one job can be processed on a given machine at

the same time and it cannot be interrupted. In its most popular permutation flowshop

8 J. Duda

version, all jobs have to be processed in the same order on all machines. Thus, a valid

solution is simply a permutation of all jobs. The most common optimization criterion

is to minimize the completion time of the last job on the last machine, which is called

makespan (Cmax).

A lot of heuristics have been proposed to provide a good approximation of

the optimal solution for the flowshop problem in a reasonable time. Those include

branch and bound techniques and many nature-inspired metaheuristics, including

tabu search, simulated annealing and biologically-inspired algorithms, e.g. first-of-all

genetic algorithms. An extensive review of heuristics applied to the flowshop problem

can be found in [2].

New biologically-inspired algorithms for the flowshop problem have appeared

in the OR literature in recent years, including genetic algorithms (GA) [3], ant

colony optimization (ACO) [4] and particle swarm optimization (PSO) [5]. A common

feature of all these algorithms is that they are in fact hybrid algorithms, as they

use local search procedures to improve the quality of solutions. Their authors have

proven that such hybrid metaheuristics perform better than metaheuristics without

local search optimization. In this study, the author attempts to determine whether

hybrid metaheuristics provide additional benefits over the local search procedures

used therein.

2. The genetic algorithm

The genetic algorithm is the most popular biologically-inspired heuristic of

those studied in this paper. Many authors attempted to apply it also to the flowshop

scheduling problem, one of the first being the GA proposed by Chen et al. [6]. It uses

a single genetic operator, partially mapped crossover (PMX), defined by Goldberg and

Linge for solving the Travelling Salesman Problem. The solutions are initialized with

several constructive heuristics (CDS, Dannenberg), none of them more effective than

NEH, which will be presented later in this section.

A much more effective genetic algorithm was proposed by Reeves [7]. It uses

the so-called C1 crossover, adapting simple one-point crossover to generate valid

solutions for permutation representation of individuals. Unlike in the basic genetic

algorithm, offspring replace not their parents but individuals with fitness values

below the population’s average fitness. Reeves’ algorithm makes use of the simple

swap mutation, but includes self-adaptive probability value in order to maintain the

necessary variability of the population.

New interesting genetic algorithms for flowshop sequencing have been proposed

recently by Ruiz et al. [3]. According to the tests performed by those authors, the

algorithms outperform the Chen et al. and Reeves algorithms by a large margin. The

most effective variant of the proposed solutions, called HGA RMA, is presented in the

following section.

2.1. HGA RMA

HGA RMA uses the well-known insertion mutation and a new crossover opera-

tor, similar block order crossover (SBOX), which works as follows. First, the common

jobs present in both parents are copied into the offspring, but only those which build

blocks, i.e. when there are at least two consecutive common jobs. Next, a cut point

A Critical Review of the Newest Biologically-Inspired Algorithms. . . 9

is chosen and all the jobs up to that point are copied into the offspring. Finally, the

missing jobs are inserted according to their relative order in the other parent. Notice-

ably, SBOX is a combination of one-point crossover and the idea of common sequence,

present for example in longest common sequence crossover (LCS-OX) [8].

The parents chosen for the mating pool are subject to binary tournament

selection, i.e. the individual with better fitness is taken from two randomly chosen

individuals. The author’s experience indicates that this simple selection scheme

performs better in scheduling problems than proportional selection used in the basic

genetic algorithm.

The replacement scheme allows one to replace the worst solution from a pop-

ulation with new offspring only if the fitness function of the latter is better. This

keeps individuals in the population at relatively high fitness levels, but may lead to

quick convergence of the population. In order to prevent this, 80% of the population

is replaced with new individuals after a given number of generations.

The scheme of the HGA RMA algorithm is shown in Figure 1.

Initialize individuals in population
Evaluate fitness values of the population
Do
Select mating pool using binary tournament
Perform SBOX crossover with pc probability
Perform insert mutation with pm probability
Apply LS algorithm to offspring with pe probability
Evaluate fitness values of the offspring
Find the worst individuals in the population
If the offspring are better and unique replace
the worst solutions with them
Find the best solution in the population
If it is new then apply local search algorithm to
it with 2∗pe probability
If no improvement has been made for Gr generations
restart the population, leaving 20% best individ.

Until Termination criterion is met

Figure 1. General scheme of hybrid GA (HGA RMA) by Ruiz et al.

The HGA RMA authors used the Nawaz, Enscore and Ham (NEH) algorithm [9]

to initialize individuals, but also as a local search procedure. The NEH algorithm

is regarded as the best constructive heuristic defined for the flowshop scheduling

problem [2] and works in four steps. First, the sum of processing times on all machines

is calculated for each job. Then, the jobs are sorted in a descending order of the

calculated sums. Next, two first jobs are taken from the list and placed in such an order

that the makespan of the two-job sequence is the smallest. Finally, the remaining n−2

jobs are placed, in turns of separate iterations, in positions of the smallest makespan

of partial sequences built so far. For example, the third job on the sorted list can be

placed in 3 possible positions: before the first job, between the first and the second

job and at the end of the partial sequence (i.e. third). The position of the smallest

makespan for the three jobs is chosen for the next iteration of this NEH algorithm

step.

A local search procedure used in HGA RMA corresponds to the last two steps

of the NEH method and utilizes the so-called insertion neighbourhood. Starting from

10 J. Duda

the job in the second position, jobs are placed in turns in all possible positions in

partial sequences and the best position, i.e. that of the smallest makespan, is taken

every time. The local search is applied with probability pe.

2.2. The NEH-based iterative local search algorithm

The simple iterated local search (ILS) algorithm has been constructed by the

author in order to asses the impact of the local search on the solutions achieved by

HGA RMA. The ILS algorithm uses the same local search procedure as HGA RMA.

The NEH-based local search procedure allows only for intensive exploitation of

a small fragment of the global search space. Thus, it is necessary to introduce

a mechanism enabling escape from the current search space area to another, possibly

more prospective area. This mechanism is called a modification step or disturbance

step in the classical iterated local search scheme.

A general scheme of the ILS algorithm proposed in this paper is given in Figure 2

and corresponds to the general ILS scheme presented by Stuetzle in [10].

Initialize starting solution
Apply NEH local search procedure
Do
Modify current solution
If it is better than current best then accept it
else accept it if acceptance criterion is met
Apply NEH local search procedure
Until termination criterion is met

Figure 2. General scheme of iterated local search [10]

In the proposed algorithm, the modification step is performed by swapping two

jobs chosen randomly from the current solution (the so-called exchange neighbour-

hood). The number of swaps has been set experimentally at 2n. A modified solution

is accepted if it is better than the current best solution, b, or if an acceptance crite-

rion is met. The acceptance criterion is identical with that used in a basic simulated

annealing algorithm. A worse solution, s, is accepted with a probability of:

pa= e
(b−s)/T . (1)

Temperature, T , has been set at 0.4 on the basis of experiments performed.

The main idea of building the ILS algorithm was to keep it as simple as possible.

It had to follow the local search scheme of HGA RMA and not necessarily give

the best possible results. The most complex step in the proposed ILS algorithm is

the acceptance scheme of a newly generated solution based on simulated annealing.

However, it can be replaced with any other acceptance mechanism preventing the

algorithm from being stuck in a fragment of the search space.

2.3. HGA RMA versus ILS NEH

A set of Taillard standard problems [11] has been used to compare the hybrid

HGA RMA algorithm and the simple iterated local search algorithm deisigned by the

author. Problems with 20, 50 and 100 jobs were calculated in 10 reruns, while only

5 independent runs were calculated for problems with 200 jobs due to the noticeably

longer computational time (up to 150–300 sec). In each experiment 5000 iterations

were computed.

A Critical Review of the Newest Biologically-Inspired Algorithms. . . 11

The parameters for GA were set at the values provided by Ruiz et al. [3]:

– selection type: binary tournament,

– crossover type: SBOX with probability pc=0.4,

– mutation type: insert with probability pm=0.01,

– population size: 20 individuals,

– restart parameter, Gr: 25,

– enhancement probability, pe: 0.05,

– percentage of individuals generated by modified NEH procedure (Bi): 25%.

The results showing a relative advantage over the best solutions known as of

April 2005 are reported in Table 1. The current list of best solutions can be found

on-line at Taillard’s homepage [12]. The column marked as avg presents the average

increase from all 10 or 5 runs, while the min column presents minimal deviation

achieved in the best of 10 or 5 runs.

Table 1. Average percentage increase over the best known solutions for GA and ILS

instance HGA RMA ILS NEH

n×m avg min avg min

20×5 0.12 0.04 0.10 0.04

20×10 0.21 0.07 0.20 0.07

20×20 0.22 0.12 0.21 0.09

50×5 0.03 0.01 0.07 0.00

50×10 1.28 1.09 1.02 0.86

50×20 2.23 1.76 2.20 1.92

100×5 0.06 0.00 0.09 0.05

100×10 0.45 0.23 0.48 0.28

100×20 2.30 2.00 1.99 1.65

200×10 0.28 0.24 0.33 0.22

200×20 2.20 2.13 1.87 1.79

average 0.85 0.70 0.78 0.63

The average results obtained by the HGA RMA algorithm are slightly worse

than those achieved in experiments performed by its authors [3]. This may be

due to two reasons. Firstly, Ruiz et al. did not provide iteration numbers but

computational time only, which is difficult to compare on different machines, using

different programming languages. Secondly, they compared their results with the best

results known in April 2004, i.e. a year before the date of the current list of best

known solutions, and some of them have been updated during this time.

Nevertheless, the most important conclusion is that hybrid GA does not perform

any better than the proposed iterated local search algorithm, save for problems limited

to 5 machines. Based mainly on the local search procedure used in the hybrid GA,

the proposed ILS algorithm is much easier to implement and requires only half the

HGA RMA time to count the same number of iterations. However, this does not mean

that the genetic algorithm proposed by Ruiz et al. is a poor performer. The variant

of genetic algorithm without local search called GA RMA is the best pure genetic

algorithm for the flowshop scheduling problem presented in literature so far. It is

outperformed only by hybrid algorithms, such as HGA RMA or PACO, described in

the next section.

12 J. Duda

The idea of applying ILS to the flowshop scheduling problem was investigated

earlier by Stuetzle in [10]. He used the same local search procedure and acceptance

criterion (though a different temperature value), but a different modification method.

Contrary to the modification method proposed in this paper, Stuetzle’s ILS algorithm

used only small modifications: just 3 swaps, preferably between direct neighbours.

The results for ILS shown in Table 1 are better than those obtained by Stuetzle [10].

However, also in this case it is difficult to compare the two algorithms directly for

reasons as above.

3. Ant colony optimization

Ant colony optimization was proposed by Dorigo et al. in 1996 [13]. Its main

idea is to treat the solution construction process as movements of a single ant. A colony

of ants can consist of many ants and each ant leaves its pheromone on the path it

traverses while building a solution. The pheromone evaporates in next generations.

A general scheme of ant colony optimization is shown in Figure 3.

Initialize pheromone table τij
For each iteration do
For each ant do
Do
Build the solution for the ant
Until solution is built
Evaluate the fitness value of the ant
Apply local search algorithm (optionally)
Next ant
Update pheromone values τij
Next iteration

Figure 3. General scheme of the basic ACO algorithm

Only few algorithms have so far been proposed for solving the flowshop

scheduling problem. The first of these was the Max-Min Ant System (MMAS)

developed by Stuetzle [14]. It builds a solution on the basis of the best solution

found earlier. MMAS also makes use of a local search algorithm based on insertion

neighbourhood. The pheromone for the first ant is initialized on the basis of the

solution generated by the NEH algorithm.

Rajedan and Ziegler proposed two ant colony algorithms for flowshop scheduling

problems in [4]. One of them, called M-MMAS, is an extended version of the Stuelze

MMAS algorithm, using the so-called summation rule of ant pheromones and a local

search procedure based on job indices. These features are also found in the other

algorithm, called PACO (Proposed Ant Colony Optimization). PACO performs better

than M-MMAS and is presented in detail in the following section.

3.1. PACO

Both PACO and M-MMAS algorithms build only one ant in each iteration, which

means that each ant lays its pheromone on the solution path and undergoes a local

optimization process. The first ant is initialized using the NEH algorithm followed by

a local search algorithm being applied thrice. The local search algorithm is based on

insertion neighbourhood, but this time jobs are inserted on the basis of their index

A Critical Review of the Newest Biologically-Inspired Algorithms. . . 13

in a sequence and not jobs’ order. A detailed scheme of this algorithm is given in

Section 3.2.

Once the sequence for the first ant has been created, the pheromone values are

initialized according to the following rule:

τ0ij = f
−1, if |pos(i)−k|+1≤n/4,

τ0ij =(2×f)
−1, if |pos(i)−k|+1≤n/2,

τ0ij =(4×f)
−1, otherwise,

(2)

where f is the objective function for the ant sequence and pos(i) returns the position

of job i in the ant sequence.

In next iterations, ant sequences are constructed mainly on the basis of

pheromone values. In the MMAS algorithm, each pheromone value, τij , indicates a

‘desire’ of placing job i in position j. PACO and M-MMAS use the so-called summation

rule for pheromone calculation. The sum of pheromone is calculated in the following

way:

Tij =

j∑

k=1

τik. (3)

The value of pheromone now represents a ‘desire’ of placing job i not farther than in

position j.

There are three possibilities for choosing a yet unscheduled job i for position j

in PACO:

– take the first unscheduled job from the best sequence obtained so far,

– choose the sequence with the highest Tij from the set of the first five unsched-

uled jobs in the best sequence, or

– draw one job from the set of the first five unscheduled jobs in the best sequence

with the probability proportional to its Tij .

The first two possibilities have a probability of 0.4, while the latter can occur

with a probability of 0.2.

Right after the ant sequence building process has been completed, the local

search procedure is applied thrice and the pheromone values are updated according

to the following schema:

τ tij = ρ×τ
t−1
ij +((|posb(i)−j|+1)

0.5×f), if |pos(i)−j| ≤ 1,

τ tij = ρ×τ
t−1
ij , otherwise,

(4)

where ρ is the evaporation rate of the pheromone value and posb(i) returns the position

of job i in the best sequence found so far. The remaining symbols are the same as in

Formula (2).

When all iterations are finished yet another local search algorithm is applied to

the final solution. This time it is based on the exchange neighbourhood presented in

Section 4.2 but, like the first local search algorithm, it works with job indices instead

of a job order.

3.2. Iterated local search with job-based-insertion

The iterated local search built by the author of this paper uses the same

job-index-based local search procedure as PACO. A detailed scheme of this procedure

is shown in Figure 4.

14 J. Duda

s=global best
For i=1 to n
For j=1 to n
if index(j)<>i then
s1=insert(s,i,j)
if f(s1)<f(s) then
f(s)=f(s1)
n1=i; n2=j

j=j+1
Next j
Next i
if f(s)<f(global best) then
global best=insert(s,n1,n2)

Figure 4. Detailed scheme of job-index-based local search used in PACO based on [4]

The job-index-based local search is a variant of the well-know job insertion

neighbourhood used in NEH. According to the Rajendran and Ziegler experiments,

it performs better than other simple local search strategies for job sequencing. The

results presented in this paper do not suggest any superiority of this approach com-

paring to the classical, i.e. job-order-based, local search. Moreover, the computational

complexity of this algorithm step is O(n2m), while Taillard had shown in [15] that an

insertion neighbourhood can be evaluated in O(nm).

For the purpose of comparing the PACO algorithm with its local search engine,

a simple iterated local search has been created by the present author, generally

following the basic iterated local search scheme presented in Section 2.2. However,

in this case the modification step is performed by simply swapping two randomly

chosen jobs in the sequence, only the better solution being accepted in each iteration

(no acceptance criterion is used).

3.3. PACO versus ILS JBI

In order to compare PACO with ILS based on job index insertion, the same

experiments were performed as in the case of HGA RMA and ILS. Although the

number of iterations in PACO had originally been set at 40, in order to maintain

computational time similar to that of the previous experiment, 200 iterations were

calculated instead. Notably, the local search algorithm used in PACO was more

computational expensive than the other LS algorithms presented in this paper.

The remaining parameters of PACO were set according to Rajendran and

Ziegler [4] as follows:

– ant colony size: 1 ant,

– evaporation rate: q=0.75.

The relative increase over the best known solutions provided by both algorithms

is shown in Table 2.

The quality of the obtained results depends on the size of the test problems.

For problems with 20 jobs, as well as for problems with 50 and 100 jobs with

smaller numbers of machines, the ILS algorithm has performed better than the PACO

algorithm, especially for 20 job problems, where ILS outperforms PACO by a large

margin, no matter whether the average result or the best solution are considered.

This indicates that the pheromone table, which is in fact long term memory

for the search procedure, may help ILS or another simple algorithm to achieve better

A Critical Review of the Newest Biologically-Inspired Algorithms. . . 15

Table 2. Average percentage increase over the best known solutions for PACO and ILS

instance PACO ILS JBI

n×m avg min avg min

20×5 0.78 0.33 0.16 0.04

20×10 1.06 0.33 0.31 0.07

20×20 0.78 0.31 0.28 0.03

50×5 0.12 0.05 0.09 0.03

50×10 1.21 0.85 1.18 0.82

50×20 3.64 3.01 3.69 3.11

100×5 0.11 0.04 0.08 0.02

100×10 0.56 0.38 0.57 0.33

100×20 2.96 2.62 3.03 2.64

200×10 0.28 0.14 0.34 0.17

200×20 2.07 1.88 2.11 1.91

average 1.23 0.90 1.08 0.83

results for large-size problems. At the same time, the version of ILS with NEH-based

local search presented in Section 2.2 has achieved better results than PACO except

for 200×10 problem instances. This algorithm does not use any long-term memory

mechanism.

4. Particle swarm optimization

Like ACO, particle swarm optimization (PSO) is a relatively new biologically-

inspired metaheuristic, developed by Kennedy and Eberhard in 1995 [16]. It is based

on the observation of social behaviour of animals like birds and fish. Its main idea is

that members of a swarm (particles) can cooperate with each other, adjusting their

positions (by increasing or decreasing their speeds in a particular dimension) in order

to avoid a predator or find food.

The basic PSO algorithm is based on the so-called global neighbourhood model

of swarm particles moving towards the global best solution and their own best

positions (solutions) found so far. A scheme of such a PSO algorithm is shown in

Figure 5.

Initialize particles
Evaluate the fitness values of the swarm
Do
Find the personal bests
Find the global best
Update velocity of the particles
Update positions of the particles
Evaluate their fitness values
Apply local search algorithm (optionally)
Until Termination criteria are met

Figure 5. General scheme of the basic PSO algorithm

4.1. PSO VNS

The first PSO algorithm to solve the permutation flowshop scheduling problem

has been proposed by Tasgetiren et al. [5].

16 J. Duda

One problem with applying the basic PSO algorithm to flowshop sequencing

was that it worked with real representation of solutions. Thus, the authors proposed

a simple algorithm, which transformed a sequence of real numbers into a correct

permutation. The Smallest Position Values (SPV) rule places the jobs according to

their position on the sorted list. For example, a sequence of particle values of (2.03,

−1.82, 3.25, −0.54, 0.15) yields a sequence of jobs of (2, 4, 5, 1, 3). The translation

stage is performed before the fitness value is evaluated. Although the SPV algorithm

appears to be efficient, the author of this paper has developed other translating

strategies, including a self-optimizing one. Unfortunately, they did not improve the

PSO algorithm, even when they were more time consuming.

During initial generation of PSO, each particle is given a position in n dimen-

sions (where n is the number of jobs), chosen randomly from the range of [0.0, 4.0].

Their initial velocities are also generated randomly from a uniform distribution in the

range of [−4.0,4.0]. The velocities are adjusted in next generations using the following

formula:

vtij =w
t−1vt−1ij +c1r1(p

t−1
ij −x

t−1
ij)+c2r2(g

t−1
j −x

t−1
ij), (5)

where:

t – current generation,

ij – jth dimension of the ith particle,

w – inertia weight, decreased in every generation by a β factor,

c1, c2 – social and cognitive parameters, respectively,

r1, r2 – random numbers from a uniform distribution,

p, g – the particle personal best and the global best, respectively,

x – current position of a particle regarding the jth dimension.

After velocity has been updated, the particles’ positions are updated as well,

according to the following formula:

xtij =x
t−1
ij −v

t
ij . (6)

The best performing PSO presented in [5] is a variant of the PSO hybridized

with variable neighbourhood search (PSO VNS). The details of this VNS algorithm

are presented in the following section.

4.2. Variable neighbourhood search initialized with NEH

The algorithm used in PSO VNS is a reduced version of the variable neighbour-

hood method based on the insert+interchange variant of VNS described in [17].

Variable neighbourhood search (VNS) is similar to the iterated local search

algorithm, but its search procedure works differently. In the case of ILS, the algorithm

seeks a local optimum for the solution generated in the modification step, i.e. in

a single iteration the exploitation of the search space is performed after its exploration.

In VNS, the search procedure is mainly based on intensive exploration of the search

space. In the so-called reduced VNS (cf. [17]), no local optimization method is utilized.

Neither does VNS in its basic version use any acceptance criterion for a solution worse

than the current found solution.

A detailed scheme of the algorithm is shown in Figure 6.

A Critical Review of the Newest Biologically-Inspired Algorithms. . . 17

s=global best
n1=rand(1,n)
n2=rand(1,n)
s=insert(s,n1,n2)
loop=0
Do
k=0
max method=2
Do
n1=rand(1,n)
n2=rand(1,n)
if k=0 then
s1=insert(s,n1,n2)
if k=1 then
s1=interchange(s,n1,n2)
if f(s1)<f(s) then
k=0; s=s1
else
k=k+1

While k<max method
loop=loop+1
While loop<n*(n-1)
if f(s)<f(global best) then
global best=s

Figure 6. Detailed scheme of VNS used in PSO [5]

The insert operation removes the job from position n1 and puts it in position n2.

The interchange operation simply swaps two jobs in positions n1 and n2.

Contrary to the local search algorithms used in HGA RMA and PACO, VNS can

be applied not only to exploit the search space, but also directly to explore it. Thus,

the only modification of the VNS algorithm used in PSO VNS in order to be run as an

independent optimization algorithm was the initialization of the starting solution with

the solution obtained by the NEH method. This is not obligatory, as the algorithm

may start with a random solution, but it speeds up convergence in a relatively good

point.

4.3. PSO VNS versus VNS

The same set of Taillard’s benchmarks was used in all other tests presented ear-

lier. This time, 1200 iterations were computed to maintain comparable computational

time of all experiments. The parameters of PSO VNS were set according to Tasgetiren

et al. [5] as follows:

– swarm size: 2n,

– social and cognitive parameters: c1= c2=2.0,

– initial inertia weight (w0): 0.9; wt≥ 0.4, decrement factor (β): 0975.

The relative increase over the best known solutions provided by both algorithms

is shown in Table 3.

The results demonstrate that variable neighbourhood search completely domi-

nates the main search process of the PSO metaheuristic, rendering it virtually mean-

ingless. There is no difference between the results achieved with a hybrid PSO and

those generated only by its local search algorithm. In all cases except for the 200×10

instances, VNS achieved slightly better results on its own than combined with PSO.

The VNS algorithm also performed twice faster on its own than combined with PSO.

18 J. Duda

Table 3. Average percentage increase over the best known solutions for PSO and VNS

instance PSO VNS VNS

n×m avg min avg min

20×5 0.10 0.04 0.10 0.04

20×10 0.22 0.09 0.15 0.04

20×20 0.25 0.05 0.18 0.02

50×5 0.05 0.01 0.05 0.02

50×10 0.97 0.67 0.81 0.54

50×20 1.84 1.22 1.57 1.14

100×5 0.06 0.02 0.04 0.00

100×10 0.35 0.23 0.22 0.13

100×20 1.92 1.53 1.80 1.48

200×10 0.22 0.17 0.25 0.18

200×20 1.64 1.52 1.59 1.48

average 0.69 0.50 0.61 0.46

Pan, Tasgetiren and Liang [18] have recently proposed a new PSO algorithm

called discrete particle swarm optimization (DPSO). It is completely a different version

of the PSO proposed earlier, though it still follows the general PSO scheme. First of

all, the algorithm makes use of some operators more typical for genetic algorithms

like crossover (based on simple two-cut crossover) and mutation (insert mutation is

used). The best performing variant of DPSO also uses a local search procedure very

similar to the iterated local search procedure presented in Section 2.2 above.

5. Summary

The most recently proposed hybrid algorithms for the flowshop scheduling

problem, based on three different biologically-inspired metaheuristics, have been

investigated. The aim of the conducted experiments was to asses the performance

margin of the main search scheme of a metaheuristic over its local search procedure,

theoretically used merely to improve to the main algorithm.

The presented results indicate that there is no gain from using hybrid

biologically-based metaheuristics compared with pure neighbourhood search meth-

ods. Algorithms based on metaheursitics are usually more difficult to implement and

computationally more expensive.

The above conclusion is further confirmed by a careful study of the latest

papers concerning the application of metaheursitics in flowshop scheduling problems.

A discrete version of particle swarm optimization presented in [18] performs almost

equally well as the iterated greedy (IG) algorithm proposed recently by Ruiz and

Stueltzle [19]. The latter is yet another local search-based metaheuristic, very similar

to the iterated local search presented in Section 2.2 above. Instead of performing

several mutations of the sequence (the modification phase of ILS), it removes some

randomly chosen jobs from the sequence (the so-called destruction phase of IG) and

reinserts them using the NEH procedure (the so-called construction phase). Likewise,

IG outperforms the HGA RMA algorithm, also developed by Ruiz.

Nevertheless, it is the author’s opinion that the above conclusion may not

be necessarily true for more complex scheduling problems, e.g. those with limited

A Critical Review of the Newest Biologically-Inspired Algorithms. . . 19

resources or time windows. Nature-inspired metaheuristics, including biologically-

inspired ones, may prove their real value if the search algorithm has to deal with

many different constraints or problems of very large size (see the case of PACO and

ILS JIB in Section 3.3 above). This will be the subject of the author’s forthcoming

experiments.

Results achieved for the flowshop scheduling problem certainly cannot be

directly generalized to other combinatorial problems. However, the author believes

that they are of interest to all researchers in the field of discrete optimization.

Acknowledgements

This study was supported by the State Committee for Scientific Research (KBN)

under Grant No. H02D 086 29.

References

[1] Garey M R, Johnson D S and Sethi R 1976 Math. Oper. Res. 1 117

[2] Ruiz R and Maroto C 2005 Eur. J. Oper. Res. 165 479

[3] Ruiz R, Maroto C and Alcaraz J 2006 OMEGA 34 461

[4] Rajendran C and Ziegler H 2004 Eur. J. Oper. Res. 115 426

[5] Tasgetiren M F, Liang Y-C, Sevkli M and Gencyilmaz G 2007 Eur. J. Oper. Res. 177 1930

[6] Chen C-L, Vempati V S and Aljaber N 1995 Eur. J. Oper. Res. 80 389

[7] Reeves C 1995 Comput. Oper. Res. 22 5

[8] Iyer S K and Saxena B 2004 Comput. Oper. Res. 31 593

[9] Nawaz M, Enscore E and Ham I 1983 OMEGA Int. J. Manage. Sci. 11 91

[10] Stuetzle T 1998 Technical Report AIDA-98-04 FG, Intellektik, TU Darmstadt

[11] Taillard E 1993 Eur. J. Oper. Res. 64 278

[12] Taillard E 2005 Summary of Best Known Lower and Upper Bounds for Taillard’s Instances,

http://ina2.eivd.ch/collaborateurs/etd

[13] Dorigo M, Maniezzo V and Colorni A 1996 IEEE Trans. Syst. Man, and Cybernetics 26 29

[14] Stuetzle T 1998 Proc. th Eur. Congress on Intelligent Techniques and Soft Computing, Verlag

Mainz, pp. 1560–1564

[15] Taillard E 1990 Eur. J. Oper. Res. 47 65

[16] Kennedy J and Eberhart R C 1995 Proc. IEEE Int. Conf. on Neural Networks, Piscataway,

pp. 1942–1948

[17] Mladenovic N and Hansen P 1997 Comput. Oper. Res. 24 1097

[18] Pan Q-K, Tasgetiren M F and Liang Y-C 2007 Comput. Oper. Res. (to be published)

[19] Ruiz R and Stuetzle T 2007 Eur. J. Oper. Res. 177 2033

20 TASK QUARTERLY 11 No 1–2

