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Abstract: Applying a non-orthogonal tight-binding method to calculate ionic forces in a molecular-
dynamics simulation vastly improves the transferability the model’s transferability to different
environments, compared with the traditional empirical potential-driven molecular-dynamics. In this
paper we present the details of computing derivatives of Hamiltonian and overlap matrix elements
appearing in the Hellmann-Feynman expression for ionic forces in the NRL-TB model of tight-
binding. The presented expressions are validated with the results obtained using a tight-binding-
driven molecular-dynamics program.
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1. Introduction

The molecular-dynamics (MD) method is a powerful simulation tool of useful-
ness proven over the last thirty years. However, its traditional formulation, in which
empirical potentials are used to drive the system, suffers from well-known limita-
tions. Since the parameters of the potential are usually fitted to reproduce the bulk
properties of material under study, the model behaves poorly when applied to sys-
tems considerably far from the bulk structure. Assuming a particular functional form
for the potential and neglecting the electronic structure altogether is another factor
accounting for the poor transferability of empirical potential-driven MD.

To allay these difficulties one can explicitly include electrons in the picture
and extract ionic forces using a quantum mechanics-based MD formulation. One
of the computationally cheapest approaches, which still manages to qualitatively
capture the relevant electronic effects uses the tight-binding (TB) method. NRL-TB,
or total-energy tight-binding, is one of the more successful TB variants, offering
substantial transferability and ready-to-use parametrizations for a wide spectrum of
elements [1–5].
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2. Obtaining ionic forces by the NRL-TB

total-energy method

In the non-orthogonal tight-binding formulation, the Schrödinger equation is
solved by expanding the one-electron wavefunction Ψn as a linear combination of
atomic orbitals φi,α centered on all atoms i:

Ψn=
∑

i,α

cni,αφi,α, (1)

with α describing the symmetry of the basis functions. In the sp3d5 model typically
used for d-band metals, α∈{s, x, y, z, xy, yz, zx, x2−y2, 3z2−r2}.

The Hamiltonian and overlap operators are thus replaced by a Hamiltonian
matrix, H, and an overlap matrix, S, and the secular equation,

HC= εSC, (2)

is solved for eigenenergies ε= {εn} and expansion coefficients C= {cni,α}.
In the NRL-TB formulation [1–5], the on-site terms for atom i depend on its

associated local density, ̺i, and are of the following form:

Hiα,iα= 〈φi,α|Ĥ|φi,α〉= aq+bq̺2/3i +cq̺
4/3
i +dq̺

2
i , (3)

where i denotes the atom’s number and aq, bq, cq and dq, with q ∈ {s, p, d}, act as
parameters. The local density at atom i, ̺i, is defined as:

̺i=
∑

j 6=i

exp(−λ2Rij)Fc(Rij), (4)

where λ is a parameter, Rij is the Cartesian distance between atoms i and j, and
Fc(·) is a cutoff function of the following form:

Fc(R)=
Θ(Rc−R)

1+exp
(

(R−Rc)/ℓ
)

+5
, (5)

where Θ is the step function, ℓ is a constant and Rc denotes the cutoff radius, beyond
which the function vanishes. The non-diagonal on-site elements (i.e. Hiα,iβ , α 6= β)
are assumed to be zero.

The NRL-TB method employs the two-centre approximation for the off-site ele-
ments of the Hamiltonian, Hiα,jβ = 〈φi,α|Ĥ|φj,β〉, j 6= i. These terms are linear combi-
nations of up to three two-center integrals, Hγ(R), γ ∈{ssσ, spσ, ppσ, ppπ, sdσ, pdσ,
pdπ, ddσ, ddπ, ddδ}, with the combination’s coefficients, Φαβ(l,m,n), describing the
angular momentum dependence of the orbital interactions in terms of the direction
cosines l, m, n of the vector between atoms i and j. We thus have:

Hiα,jβ =
3
∑

s=1

Φs,αβ(l,m,n)Hγs(Rij). (6)

The original paper of Slater and Koster [6] gives the expansion of Hiα,jβ for all
combinations of α and β in terms of two-centre integrals. The exact analytical form
assumed for these integrals varies depending on the variant of the TB method. The
NRL-TB method uses the following form:

Hγ(R)=
(

eγ+fγR+gγR2
)

exp
(

−h2γR
)

Fc (R), (7)

eγ , fγ , gγ and hγ being parameters.
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The situation for the overlap matrix is similar. The on-site terms are, trivially,
Siα,iβ = δαβ , while the form of the off-site elements is the same as for the Hamiltonian,
except that the overlap two-center integrals have a slightly modified form:

Sγ(R)=
(

δqq′+pγR+qγR2+rγR3
)

exp
(

−s2γR
)

Fc (R) , (8)

pγ , qγ , rγ and sγ being parameters. δqq′ assumes the value of 1 if the orbital types in γ
are alike (i.e. γ ∈{ssσ, ppσ, ppπ, ddσ, ddπ, ddδ}) and 0 otherwise – this modification
helps to keep the overlap matrix positive definite.

To calculate the force acting on any atom k in a TBMD simulation, Equa-
tion (2) is solved by direct diagonalization and the Hellmann-Feynman theorem [7] is
employed, yielding:

~Fk =−
〈Ψ|∇k(Ĥ−εŜ)|Ψ〉

〈Ψ|Ψ〉 =−2
[ occ
∑

n

∑

α

cnkα
∑

j 6=k

∑

β

cnjβ

(∂Hkα,jβ
∂ ~Rk

−εn
∂Skα,jβ
∂ ~Rk

)

]

. (9)

The sums in Equation (9) run over all occuppied eigenstates n, all orbitals α of
the atom k, all other atoms j and all their orbitals β, respectively. The factor of
2 is a consequence of spin degeneracy. In this non-self-consistent formulation, the
derivatives of the basis set (Pulay contributions [8]) vanish identically [9, 10]. It is
important to note that in the NRL-TBmethod the expression for the total energy lacks
the otherwise typical repulsive potential part, due to clever shifting of eigenvalues
in the underlying Kohn-Sham equation [1]. Thus, there is also no derivative of the
repulsive potential present in the above expression for the ionic force.

In practical calculations the above expression is rearranged to take advantage
of the fact that neither ∂Hkα,jβ

∂~Rk
nor ∂Skα,jβ

∂~Rk
depend on n and these derivatives need

to be calculated only once for each matrix element.

3. Calculation of the matrix element derivatives

Let us first consider the derivatives of the on-site terms of the Hamiltonian
matrix. Applying the chain rule to Equation (3) yields an expression for the gradient:

∂Hiα,iβ
∂ ~Rk

=
∂Hiα,iβ
∂̺i

∂̺i

∂ ~Rk

=
2
3

(

bq̺
−1/3
i +2cq̺

1/3
i +3dq̺i

) ∂

∂ ~Rk

(

∑

j 6=i

exp(−λ2Rij)Fc (Rij)
)

. (10)

Two points should be noted here. First, only the neighbours of atom i that are closer
than Rc need to be included in the above sum, since the cutoff function makes the
other terms vanish. Second, only terms with k= i or k= j remain in the sum, since
∀
k 6=i
k 6=j

∂Rij

∂ ~Rk
=0. Therefore, Equation (10) becomes

∂Hiα,iβ
∂ ~Rk

=
2
3

(

bq̺
−1/3
i +2cq̺

1/3
i +3dq̺i

)

×
∑

j 6=i
Rij<Rc

[

(δki+δkj)exp(−λ2Rij)Fc (Rij)

×
(

ℓ−1 exp
(

Rij−Rc
ℓ
+5
)

Fc (Rij)+λ2
)

∂Rij

∂ ~Rj
(−1)δkj

]

, (11)
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where ∂Rij
∂~Rj
= [l, m, n] is the vector of direction cosines of the bond joining atoms i

and j.
Let us now turn to the off-site elements of the Hamiltonian. Differentiating

Equation (6), we first obtain:

∂Hiα,jβ
∂ ~Rk

=
3
∑

s=1

∂Φs,αβ

∂ ~Rk
Hγs(Rij)+

3
∑

s=1

Φs,αβ
∂Hγs (Rij )

∂ ~Rk
. (12)

We note that the above derivative is non-zero only if k= i or k= j. Let us consider
the case where k= i and denote the gradient represented by the first sum in the above
equation by 1

Rij

[

D
(x)
α,β , D

(y)
α,β , D

(z)
α,β

]

. The formulae for the components D(x)α,β , D
(y)
α,βand

D
(z)
α,β are presented in the Appendix. For k= j the negative of the respective formula
should be taken.

Considering the second sum, we note that it is the same as Equation (6) (these
are the formulae given in the original Slater-Koster paper [6]), save that the two-center
integrals Hγ(Rij) are replaced by their gradients with respect to ~Rk. Each of these
gradients can be computed as:

∂Hγ(Rij )

∂ ~Rk
= [l,m,n]exp

(

−h2γRij
)

Fc (Rij)

×
[

(

eγ+fγRij+gγR2ij
)

(

ℓ−1 exp
(

Rij−Rc
ℓ
+5
)

Fc (Rij)+h2γ

)

− (fγ+2gγRij)
]

, (13)

if k= i, the negative of the above if k= j, or zero otherwise.
Let us now focus on the derivatives of the overlap matrix elements. The

derivatives of the on-site terms all vanish identically. The derivatives of the off-site
terms behave in the same manner as those of the Hamiltonian matrix, but since the
form of the overlap two-center integrals is slightly different (cf. Equation (8)), so is
the form of their gradients, given by:

∂Hγ(Rij )

∂ ~Rk
= [l,m,n]exp

(

−h2γRij
)

Fc (Rij)

×
[

(

δqq′+eγRij+fγR2ij+gγR
3
ij

)

(

ℓ−1 exp
(

Rij−Rc
ℓ
+5
)

Fc (Rij)+h2γ

)

−
(

eγ+2fγRij+3gγR2ij
)

]

. (14)

In practice, it is advantageous to store precalulated derivatives of all non-zero
matrix elements, since they do not depend on eigenlevels, n, and are needed many
times during the evaluation of the forces.

4. Conclusion

In this paper we have shown a prescription to calculate ionic forces in an MD
simulation driven by the NRL-TB model. The forces have been obtained using the
Hellmann-Feynman theorem and formulae for all matrix element derivatives have been
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given. Derivatives of the on-site elements and the two-centre integrals, specific to the
NRL-TB formulation, have been shown. Derivatives of the angular part of the off-site
elements, characteristic of all TB formulations, have been included in the Appendix.
We have assumed the system under study to be monoatomic: binary alloys and other
systems containing more that one species remain beyond the scope of this paper.

The expressions presented have been incorporated into a TBMD program,
nanoTB [11], capable of performing both cross-scaling TB+MD simulations (in which
only a subset of the system is treated with the TB method) and non-cross-scaling
TBMD simulations (in which forces on all atoms within the system are obtained from
the TB method). Using this program, we have managed to reproduce the results
of Kirchhoff et al. [4] for liquid gold, presented elsewhere [12]. The program has also
been used with success to investigate the process of nanoindentation of copper (results
presented in [13]). This validates the expressions given in this paper and attests to
the usefulness of TB-driven molecular-dynamics.
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Appendix

This appendix contains explicit expressions for the x, y and z components of
the gradient appearing in Equation (12) for all combinations of basis functions α and
β. Notably, permuting indices α and β results in a sign change if and only if the sum
of the parities of the orbitals is odd.

D
(x)
s,s =0

D
(x)
s,x =(−1+ l2)Hspσ
D
(x)
s,y = lmHspσ

D
(x)
s,z = lnHspσ

D
(x)
s,xy =

√
3(−1+2l2)mHsdσ

D
(x)
s,yz =2

√
3lmnHsdσ

D
(x)
s,zx =

√
3(−1+2l2)nHsdσ

D
(x)
s,x2−y2 =

√
3l(−1+ l2−m2)Hsdσ

D
(x)
s,3z2−r2 =−l(−1+ l2+m2−2n2)Hsdσ
D
(x)
x,x =−2l(−1+ l2)(Hppπ−Hppσ)
D
(x)
x,y =−(−1+2l2)m(Hppπ−Hppσ)
D
(x)
x,z =−(−1+2l2)n(Hppπ−Hppσ)
D
(x)
x,xy = lm((5−6l2)Hpdπ+

√
3(−2+3l2)Hpdσ)

D
(x)
x,yz =−(−1+3l2)mn(2Hpdπ−

√
3Hpdσ)

D
(x)
x,zx = ln((5−6l2)Hpdπ+

√
3(−2+3l2)Hpdσ)

D
(x)
x,x2−y2 = 12 (−2(−1+3l2)(−1+ l2−m2)Hpdπ+

√
3(3l2 l2+m2−3l2 (1+m2))Hpdσ)

D
(x)
x,3z2−r2 = 12 (−2

√
3(−1+3l2)n2Hpdπ+(m2−2n2−3l2 (−1+ l2+m2−2n2))Hpdσ)

D
(x)
y,y =2lm2 (−Hppπ+Hppσ)
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D
(x)
y,z =2lmn(−Hppπ+Hppσ)
D
(x)
y,xy =(−1+2m2+ l2 (1−6m2))Hpdπ+

√
3(−1+3l2)m2Hpdσ

D
(x)
y,yz = ln((1−6m2)Hpdπ+3

√
3m2Hpdσ)

D
(x)
y,zx =−(−1+3l2)mn(2Hpdπ−

√
3Hpdσ)

D
(x)
y,x2−y2 = 12 lm((2−6l2+6m2)Hpdπ+

√
3(−2+3l2−3m2)Hpdσ)

D
(x)
y,3z2−r2 =− 12 lm(6

√
3n2Hpdπ+(−2+3l2+3m2−6n2)Hpdσ)

D
(x)
z,pz =2ln2 (−Hppπ+Hppσ)
D
(x)
z,xy =−(−1+3l2)mn(2Hpdπ−

√
3Hpdσ)

D
(x)
z,yz = lm((1−6n2)Hpdπ+3

√
3n2Hpdσ)

D
(x)
z,zx =(−1+2n2+ l2 (1−6n2))Hpdπ+

√
3(−1+3l2)n2Hpdσ

D
(x)
z,x2−y2 =− 12 l(−2+3l2−3m2)n(2Hpdπ−

√
3Hpdσ)

D
(x)
z,3z2−r2 = 12 (l(−2+3l2+3m2)n(2

√
3Hpdπ−Hpdσ)+6ln2nHpdσ)

D
(x)
xy,xy =2l(((−1+2l2)m2+n2)Hddδ+(−1+ l2+5m2−8l2m2)Hddπ

+3(−1+2l2)m2Hddσ)
D
(x)
xy,yz =n((1−m2+ l2 (−2+4m2))Hddδ+(−1+4m2+2l2 (1−8m2))Hddπ

+3(−1+4l2)m2Hddσ)
D
(x)
xy,zx =2lmn(2(−1+ l2)Hddδ+(5−8l2)Hddπ+3(−1+2l2)Hddσ)
D
(x)
xy,x2−y2 = 12m(4l

2 l2+m2− l2 (3+4m2))(Hddδ−4Hddπ+3Hddσ)
D
(x)
xy,3z2−r2 =− 12

√
3m((1+n2−2l2 (1+2n2))Hddδ+4(−1+4l2)n2Hddπ

+(−m2+2n2+ l2 (−3+4l2+4m2−8n2))Hddσ)
D
(x)
yz,yz =2l((−1+ l2+2m2n2)Hddδ+(m2+n2−8m2n2)Hddπ+6m2n2Hddσ)
D
(x)
yz,zx =m((1−n2+ l2 (−2+4n2))Hddδ+(−1+4n2+2l2 (1−8n2))Hddπ

+3(−1+4l2)n2Hddσ)
D
(x)
yz,x2−y2 = lmn((1+2l2−2m2)Hddδ+2Hddπ−2(l−m)(l+m)(4Hddπ−3Hddσ)−3Hddσ)
D
(x)
yz,3z2−r2 =

√
3lmn((1−2l2−2m2)Hddδ+(−2+4l2+4m2−4n2)Hddπ
−2(l2+m2−2n2− 12 )Hddσ)

D
(x)
zx,zx =2l((m2+(−1+2l2)n2)Hddδ+(−1+ l2+5n2−8l2n2)Hddπ+3(−1+2l2)n2Hddσ)
D
(x)
zx,x2−y2 = 12 n((2+4l

2 l2+m2− l2 (7+4m2))Hddδ−2(1+8l2 l2+2m2−8l2 (1+m2))Hddπ
+3(4l2 l2+m2− l2 (3+4m2))Hddσ)

D
(x)
zx,3z2−r2 = 12

√
3n(−2(−1+4l2)n2 (Hddπ−Hddσ)

−(4l2 l2−m2+ l2 (−3+4m2))(Hddδ−2Hddπ+Hddσ))
D
(x)
x2−y2,x2−y2 = l((l

2 l2+m2+m2m2− l2 (1+2m2)+2n2)Hddδ
−2(1+2l2 l2+m2+2m2m2− l2 (3+4m2))Hddπ
+3(l−m)(l+m)(−1+ l2−m2)Hddσ)

D
(x)
x2−y2,3z2−r2 =

1
2

√
3l((−1+ l2−m2+(−1+2l2−2m2)n2)Hddδ−4(−1+2l2−2m2)n2Hddπ

+2(l2− l2 l2+m2m2+(−1+2l2−2m2)n2)Hddσ)
D
(x)
3z2−r2,3z2−r2 = l(−6n2Hddπ+3(l2+m2)((−1+ l2+m2)Hddδ+4n2Hddπ)

+(−1+ l2+m2−2n2)(l2+m2−2n2)Hddσ)
D
(y)
s,s =0

D
(y)
s,x = lmHspσ

D
(y)
s,y =(−1+m2)Hspσ
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D
(y)
s,z =mnHspσ

D
(y)
s,xy =

√
3l(−1+2m2)Hsdσ

D
(y)
s,yz =

√
3(−1+2m2)nHsdσ

D
(y)
s,zx =2

√
3lmnHsdσ

D
(y)
s,x2−y2 =−

√
3m(−1− l2+m2)Hsdσ

D
(y)
s,3z2−r2 =−m(−1+ l2+m2−2n2)Hsdσ
D
(y)
x,x =2l2m(−Hppπ+Hppσ)
D
(y)
x,y =−l(−1+2m2)(Hppπ−Hppσ)
D
(y)
x,z =2lmn(−Hppπ+Hppσ)
D
(y)
x,xy =(−1+m2+ l2 (2−6m2))Hpdπ+

√
3l2 (−1+3m2)Hpdσ

D
(y)
x,yz =−l(−1+3m2)n(2Hpdπ−

√
3Hpdσ)

D
(y)
x,zx =mn((1−6l2)Hpdπ+3

√
3l2Hpdσ)

D
(y)
x,x2−y2 = 12 lm((−2−6l2+6m2)Hpdπ+

√
3(2+3l2−3m2)Hpdσ)

D
(y)
x,3z2−r2 =− 12 lm(6

√
3n2Hpdπ+(−2+3l2+3m2−6n2)Hpdσ)

D
(y)
y,y =−2m(−1+m2)(Hppπ−Hppσ)
D
(y)
y,z =−(−1+2m2)n(Hppπ−Hppσ)
D
(y)
y,xy = lm((5−6m2)Hpdπ+

√
3(−2+3m2)Hpdσ)

D
(y)
y,yz =mn((5−6m2)Hpdπ+

√
3(−2+3m2)Hpdσ)

D
(y)
y,zx =−l(−1+3m2)n(2Hpdπ−

√
3Hpdσ)

D
(y)
y,x2−y2 = 12 (−2(1+ l2−m2)(−1+3m2)Hpdπ+

√
3(−l2+3(1+ l2)m2−3m2m2)Hpdσ)

D
(y)
y,3z2−r2 = 12 (−2(−1+3m2)n2 (

√
3Hpdπ−Hpdσ)+ l2Hpdσ−3m2 (−1+ l2+m2)Hpdσ)

D
(y)
z,z =2mn2 (−Hppπ+Hppσ)
D
(y)
z,xy =−l(−1+3m2)n(2Hpdπ−

√
3Hpdσ)

D
(y)
z,yz =(−1+2n2+m2 (1−6n2))Hpdπ+

√
3(−1+3m2)n2Hpdσ

D
(y)
z,zx = lm((1−6n2)Hpdπ+3

√
3n2Hpdσ)

D
(y)
z,x2−y2 = 12m(−2−3l2+3m2)n(2Hpdπ−

√
3Hpdσ)

D
(y)
z,3z2−r2 = 12 (m(−2+3l2+3m2)n(2

√
3Hpdπ−Hpdσ)+6mn2nHpdσ)

D
(y)
xy,xy =2m((l2 (−1+2m2)+n2)Hddδ+(−1+m2+ l2 (5−8m2))Hddπ

+3l2 (−1+2m2)Hddσ)
D
(y)
xy,yz =2lmn(2(−1+m2)Hddδ+(5−8m2)Hddπ+3(−1+2m2)Hddσ)
D
(y)
xy,zx =n((1−2m2+ l2 (−1+4m2))Hddδ+(−1+2m2+4l2 (1−4m2))Hddπ

+3l2 (−1+4m2)Hddσ)
D
(y)
xy,x2−y2 = 12 l(3m

2−4m2m2+ l2 (−1+4m2))(Hddδ−4Hddπ+3Hddσ)
D
(y)
xy,3z2−r2 =− 12

√
3l((1+n2−2m2 (1+2n2))Hddδ+4(−1+4m2)n2Hddπ

+(l2 (−1+4m2)+2n2+m2 (−3+4m2−8n2))Hddσ)
D
(y)
yz,yz =2m((l2+(−1+2m2)n2)Hddδ+(−1+m2+5n2−8m2n2)Hddπ

+3(−1+2m2)n2Hddσ)
D
(y)
yz,zx = l((1−n2+m2 (−2+4n2))Hddδ+(−1+4n2+2m2 (1−8n2))Hddπ

+3(−1+4m2)n2Hddσ)
D
(y)
yz,x2−y2 = 12 n((−2+7m2−4m2m2+ l2 (−1+4m2))Hddδ

+2(1+2l2−8(1+ l2)m2+8m2m2)Hddπ+3(3m2−4m2m2+ l2 (−1+4m2))Hddσ)
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D
(y)
yz,3z2−r2 =

√
3 12 n(−2(−1+4m2)n2 (Hddπ−Hddσ)
−(−l2+(−3+4l2)m2+4m2m2)(Hddδ−2Hddπ+Hddσ))

D
(y)
zx,zx =2m((−1+m2+2l2n2)Hddδ+(l2+n2−8l2n2)Hddπ+6l2n2Hddσ)
D
(y)
zx,x2−y2 = lmn((−1+2l2−2m2)Hddδ−2Hddπ−2(l−m)(l+m)(4Hddπ−3Hddσ)+3Hddσ)
D
(y)
zx,3z2−r2 =

√
3lmn((1−2l2−2m2)Hddδ+(−2+4l2+4m2−4n2)Hddπ+Hddσ
−2(l2+m2−2n2)Hddσ)

D
(y)
x2−y2,x2−y2 =m((l

2 l2−m2+m2m2+ l2 (1−2m2)+2n2)Hddδ
−2(1+ l2+2l2 l2−(3+4l2)m2+2m2m2)Hddπ+3(l−m)(l+m)(1+ l2−m2)Hddσ)

D
(y)
x2−y2,3z2−r2 =

1
2

√
3m((1+ l2−m2+(1+2l2−2m2)n2)Hddδ−4(1+2l2−2m2)n2Hddπ

+2(−l2 l2−m2+m2m2+(1+2l2−2m2)n2)Hddσ)
D
(y)
3z2−r2,3z2−r2 =m(−6n2Hddπ+3(l2+m2)((−1+ l2+m2)Hddδ+4n2Hddπ)

+(−1+ l2+m2−2n2)(l2+m2−2n2)Hddσ)
D
(z)
s,s =0

D
(z)
s,x = lnHspσ

D
(z)
s,y =mnHspσ

D
(z)
s,z =(−1+n2)Hspσ
D
(z)
s,xy =2

√
3lmnHsdσ

D
(z)
s,yz =

√
3m(−1+2n2)Hsdσ

D
(z)
s,zx =

√
3l(−1+2n2)Hsdσ

D
(z)
s,x2−y2 =

√
3(l−m)(l+m)nHsdσ

D
(z)
s,3z2−r2 =n(−2− l2−m2+2n2)Hsdσ
D
(z)
x,x =2l2n(−Hppπ+Hppσ)
D
(z)
x,y =2lmn(−Hppπ+Hppσ)
D
(z)
x,z =−l(−1+2n2)(Hppπ−Hppσ)
D
(z)
x,xy =mn((1−6l2)Hpdπ+3

√
3l2Hpdσ)

D
(z)
x,yz =−lm(−1+3n2)(2Hpdπ−

√
3Hpdσ)

D
(z)
x,zx =(−1+n2+ l2 (2−6n2))Hpdπ+

√
3l2 (−1+3n2)Hpdσ

D
(z)
x,x2−y2 = 12 ln((2−6l2+6m2)Hpdπ+3

√
3(l−m)(l+m)Hpdσ)

D
(z)
x,3z2−r2 =− 12 ln(2

√
3(−2+3n2)Hpdπ+(4+3l2+3m2−6n2)Hpdσ)

D
(z)
y,y =2m2n(−Hppπ+Hppσ)
D
(z)
y,z =−m(−1+2n2)(Hppπ−Hppσ)
D
(z)
y,xy = ln((1−6m2)Hpdπ+3

√
3m2Hpdσ)

D
(z)
y,yz =(−1+n2+m2 (2−6n2))Hpdπ+

√
3m2 (−1+3n2)Hpdσ

D
(z)
y,zx =−lm(−1+3n2)(2Hpdπ−

√
3Hpdσ)

D
(z)
y,x2−y2 = 12mn((−2−6l2+6m2)Hpdπ+3

√
3(l−m)(l+m)Hpdσ)

D
(z)
y,3z2−r2 =− 12mn(2

√
3(−2+3n2)Hpdπ+(4+3l2+3m2−6n2)Hpdσ)

D
(z)
z,z =−2n(−1+n2)(Hppπ−Hppσ)
D
(z)
z,xy =−lm(−1+3n2)(2Hpdπ−

√
3Hpdσ)

D
(z)
z,yz =mn((5−6n2)Hpdπ+

√
3(−2+3n2)Hpdσ)

D
(z)
z,zx = ln((5−6n2)Hpdπ+

√
3(−2+3n2)Hpdσ)

D
(z)
z,x2−y2 =− 12 (l−m)(l+m)(−1+3n2)(2Hpdπ−

√
3Hpdσ)
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D
(z)
z,3z2−r2 = 12 (2

√
3(l2+m2)(−1+3n2)Hpdπ+(l2+m2−3(2+ l2+m2)n2+6n2n2)Hpdσ)

D
(z)
xy,xy =2n((−1+2l2m2+n2)Hddδ+(l2+m2−8l2m2)Hddπ+6l2m2Hddσ)
D
(z)
xy,yz = l((1−2n2+m2 (−1+4n2))Hddδ+(−1+2n2+4m2 (1−4n2))Hddπ

+3m2 (−1+4n2)Hddσ)
D
(z)
xy,zx =m((1−2n2+ l2 (−1+4n2))Hddδ+(−1+2n2+4l2 (1−4n2))Hddπ

+3l2 (−1+4n2)Hddσ)
D
(z)
xy,x2−y2 =2l(l−m)m(l+m)n(Hddδ−4Hddπ+3Hddσ)
D
(z)
xy,3z2−r2 =−2

√
3lmn(−n2Hddδ+(−2+4n2)Hddπ+(1+ l2+m2−2n2)Hddσ)

D
(z)
yz,yz =2n((l2+m2 (−1+2n2))Hddδ+(−1+n2+m2 (5−8n2))Hddπ

+3m2 (−1+2n2)Hddσ)
D
(z)
yz,zx =2lmn(2(−1+n2)Hddδ+(5−8n2)Hddπ+3(−1+2n2)Hddσ)
D
(z)
yz,x2−y2 = 12m((−2− l2+m2+4(1+ l2−m2)n2)Hddδ

−2(−1−2l2+2m2+2(1+4l2−4m2)n2)Hddπ
+3(l−m)(l+m)(−1+4n2)Hddσ)

D
(z)
yz,3z2−r2 = 12

√
3m(−(l2+m2)(−1+4n2)Hddδ

+(−2(l2+m2)+2(3+4l2+4m2)n2−8n2n2)Hddπ
+(l2+m2−2(3+2l2+2m2)n2+8n2n2)Hddσ)

D
(z)
zx,zx =2n((m2+ l2 (−1+2n2))Hddδ+(−1+n2+ l2 (5−8n2))Hddπ+3l2 (−1+2n2)Hddσ)
D
(z)
zx,x2−y2 = 12 l((2+m

2−4(1+m2)n2+ l2 (−1+4n2))Hddδ
−2(1−2l2+2m2+2(−1+4l2−4m2)n2)Hddπ+3(l−m)(l+m)(−1+4n2)Hddσ)

D
(z)
zx,3z2−r2 = 12

√
3l(−(l2+m2)(−1+4n2)Hddδ

+(−2(l2+m2)+2(3+4l2+4m2)n2−8n2n2)Hddπ
+(l2+m2−2(3+2l2+2m2)n2+8n2n2)Hddσ)

D
(z)
x2−y2,x2−y2 =n((−2+ l2 l2−2l2m2+m2m2+2n2)Hddδ

+2(l2−2l2 l2+m2+4l2m2−2m2m2)Hddπ
+3(l2−m2)(l2−m2)Hddσ)

D
(z)
x2−y2,3z2−r2 =−

√
3(l−m)(l+m)n(−n2Hddδ+(−2+4n2)Hddπ+(1+ l2+m2−2n2)Hddσ)

D
(z)
3z2−r2,3z2−r2 =n(3(l

2+m2)(l2+m2)Hddδ+6(l2+m2)(−1+2n2)Hddπ
+(l2+m2−2n2)(2+ l2+m2−2n2)Hddσ)
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