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Abstract: We consider impulsive excitation of slow magnetosonic standing waves in a two-dimen-

sional hot solar coronal slab. Results of numerical simulations have revealed that initially launched

pulses trigger mainly fundamental slow mode and its first harmonic, depending on the pulses’ spa-

tial location. Our parametric study has shown these slow standing waves to exhibit wave periods of

about 13min. The slow standing waves are accompanied by fast modes simultaneously present in the

system.
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1. Introduction

It has been verified through observations that the solar corona consists of

myriads of coronal loops which are able to sustain oscillations (Nakariakov and

Verwichte [1]). Observations from the SUMER SOHO/EIT and TRACE/EUV have

suggested that loop oscillations are often triggered impulsively by micro- or sub-flares

near a loop’s foot point and are attenuated over several wave periods (Wang et al. [2]).

Apart from propagating standing wave modes, fast kink (Aschwanden et al. [3], Wang

and Solanki [4]) and slow (Wang et al. [5]) magnetosonic waves have been observed

in coronal loops. As wavelengths of these standing waves are determined by a loop’s

length, we can estimate wave periods with given phase speeds (Roberts et al. [6]).

Recently, slow standing waves have been discussed theoretically by several

authors. In particular, Mendoza-Bricenõ et al. [7] have presented results of numerical

calculations describing the response of coronal plasma to micro scale heating pulses

in a magnetic loop. In particular, they have studied the effects of energy input
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pulses injected randomly near the two foot points of a semi-circular loop. They have

found that successive random pulses are capable of maintaining the plasma’s average

temperature at typical coronal values. In another study, Nakariakov et al. [8] and

Tsiklauri et al. [9] have demonstrated that an impulsive energy released in a coronal

loop excites the second spatial harmonic. The considered model included the effects of

gravitational stratification, heat conduction, radiative losses, external heat input and

the Braginskii bulk viscosity. An extensive review of longitudinal intensity fluctuations

observed in coronal loops has been presented by De Moortel et al. [10].

Several attenuation mechanisms of slow waves have been proposed: wave leakage

into the chromosphere (Ofman [11], Van Doorsselaere et al. [12]), lateral wave leakage

due to the curvature of loops (Roberts [13]), phase mixing (Nakariakov et al. [14],

Ofman and Aschwanden [15]), resonant absorption (Ruderman and Roberts [16])

and non-ideal MHD effects (Roberts [13]). Ofman and Wang [17] have found that

thermal conduction leads to rapid damping of slow standing waves, with a less

significant contribution from compressive viscosity. Ofman et al. [15] have shown that

a nonlinear steepening of slow waves leads to their enhanced dissipation. Nakariakov

et al. [18] have inferred that dissipation and stratification are the main factors

influencing the slow evolution of waves. De Moortel et al. [19] have deduced that

thermal conduction may account for the observed damping times. Selwa et al. [20]

have performed parametric numerical studies of slow standing waves in the limit of

one-dimensional approximation, the model they have developed is seriously flawed.

Its main disadvantage is that it takes into account slow magnetosonic waves only,

neglecting the presence of fast magnetosonic and Alfvén waves in the system. As

a consequence, the model excludes the possibility of slow wave generation either

through a linear coupling process with fast waves or through nonlinear ponderomotive

effects exerted by an Alfvén wave.

The aim of this paper is to generalize the study of Selwa et al. [20]. The general-

ization is based on taking into account two-dimensional geometry to explain excitation

of slow magnetosonic waves in solar coronal loops. We have found that the presence

of a fast wave is an important factor in generating standing slow waves. A system in

which Alfvén waves are present remains to be studied in the future.

The numerical model is described in the following section. Numerical results are

presented in Section 3. This paper is concluded with a summary of the main results

in Section 4.

2. The numerical model

We describe coronal plasma by the time-dependent ideal MHD equations:

∂̺

∂t
+∇·(̺V ) = 0, (1)

̺
∂V

∂t
+̺(V ·∇)V = −∇p+ 1

µ
(∇×B)×B , (2)

∂p

∂t
+∇·(pV ) = (1−γ)p∇·V , (3)

∂B

∂t
= ∇×(V ×B), (4)
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∇·B = 0, (5)

where ̺ is mass density, V is flow velocity, B is magnetic field, p is gas pressure,

µ is magnetic permeability and γ=5/3 is the adiabatic index.

In the above equations, we have neglected the effect of gravity and non-ideal

plasma, which is not entirely justifiable physically. Indeed, Mendoza-Bricenõ et al. [21]

have found that stratification results in a 10%–20% reduction of the wave-attenuation

time compared to non-stratified loop models due to increased dissipation by compres-

sive viscosity due to gravity.

2.1. The slab equilibrium

We limit our discussion to a two-dimensional magnetically structured atmo-

sphere. As the plasma quantities are assumed to be independent of the spatial co-

ordinate y, ∂/∂y=0, and Vy =By =0 the Alfvén wave is removed from the system.

Additionally, we assume that the initial, unperturbed (i.e. equilibrium) magnetic field

is directed in the z direction (Figure 1). A coronal slab is approximated by plasma

profiles in which inhomogeneity occurs in the x direction only, i.e. B0=
(

0,0,B0(x)
)

.

In particular, we consider a loop in the form of a slab with half-width w, field strength

Bi at the center of the slab and mass density ̺ i= r̺e, embedded in a magnetic envi-

ronment of field strength Be and mass density ̺e. Here, r is the loop density contrast,

which we set at r=10 (Figure 1). Although the actual behavior of the kink mode in

the slab geometry differs from its behavior in the cylinder, (Roberts et al. [22]), the

slab model consists the ingredient necessary in the study of a complex loop structure.

Figure 1. The model’s geometry; the Zd symbol denotes the detector’s position

The speeds of the Alfvén, VAi,e, and sound, csi,e, are defined as V
2
Ai,e =

B2i,e/(µ̺ i,e), c
2
si,e= γpi,e/̺ i,e, where the ‘i’ and ‘e’ indices correspond to the slab and

the ambient medium, respectively.

We choose the following parameters: VAe = 2Mms
−1, ̺e = 10

−15 kgm−3,

temperature ratio Ti/Te = 2, mass density ratio r = ̺ i/̺e = 10, Alfvén speed ratio

v = VAe/VAi =
√
10.1 and half-width of the slab w = 2Mm. The plasma’s β in the

ambient medium is defined as β=2µpe/B
2
e .
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The pressure, pe, and magnetic field, Be, in the ambient medium are then

described by the following formula:

pe=
1

γ
c2se̺e, Be=

√

2µ

β
pe, (6)

and the corresponding plasma quantities inside the slab are computed from:

Bi=Be

√
r

v
, pi= pt−

B2i
2µ
. (7)

Here, pt denotes the total pressure defined as the sum of the gas and magnetic

pressures, viz.:

pt= pe+
B2e
2µ
. (8)

2.2. Perturbations

Perturbations of the slab equilibrium can be triggered in numerous ways. As

we are interested in impulsively excited slow waves, we launch a hot pulse in mass

density and pressure at t=0, of the following form:

[δ̺(x,z),δp(x,z)]= [A̺,Ap]exp

[

−
(

x−x0
wx

)2

−
(

z−z0
wz

)2
]

, (9)

where A̺ and Ap=10 A̺ denote relative amplitudes of the initial pulse, (x0,z0) – its

position, and w – its width. In our studies, we choose and maintain fixed A̺=0.5̺e
and wx=wz =L/40= 1.25Mm, where L is the length of the loop, set at L=50Mm.

Notably, the pulse given by Equation (9) triggers magnetosonic waves. In our system,

β is small but, as it differs from zero, slow and fast waves are present in the

model simultaneously. For low β plasma, the slow and fast magnetosonic waves

are weakly coupled and are approximately described by Vz and Vx, respectively.

These components of velocity can be described with a linearized Euler Equation

(2) (Murawski and Roberts [23]):

̺
∂2Vz
∂t2
=
B0
µ

dB0
dx

∂Vx
∂z
, (10)

̺
∂2Vx
∂t2
=
1

µ

∂

∂x
[B0
∂

∂x
(B0Vx)]+

B20
µ

∂2Vx
∂z2
. (11)

If B0 depends on the x coordinate, Vz and Vx are connected.

3. Numerical results

In our study, we adopted the EMILY numerical code developed by Jones

et al. [24]. In this code an explicit-implicit algorithm is implemented to solve

time-dependent, non-ideal magneto-hydrodynamic equations. We used the explicit

algorithm for ideal magneto-hydrodynamic equations. It is second-order accurate

in space and time and based on a finite-volume scheme that uses an approximate

Riemann solver for hyperbolic fluxes and central differencing applied on nested control

volumes for parabolic fluxes arising from the non-ideal terms (i.e. resistivity and

viscosity).
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We solved Eqations (1)–(4) numerically using an Eulerian grid with the x and z

dimensions (−16l,16l)×(0,50l), where l is a spatial unit, chosen to be l=1Mm. This
Eulerian box was covered by a uniform grid of 400×300 numerical cells. We performed
grid convergence studies based on grid refinement to show that the numerical results

were unaffected by insufficient spatial resolution.

A time step, ∆t, results from the stability (CFL) condition, which basically says

that ∆t is expressed by a quotient of a cell’s width and a maximum value of velocity.

It is evaluated by the code. We apply open boundary conditions with zero-gradient

extrapolation of all plasma variables allowing a wave signal to leave the simulation

region freely. These conditions are applied along the lines given by x=±16l.
As the coronal loop is embedded in much denser photosphere, in which waves

are essentially reflected, we set the reflecting boundary conditions at z=0 and z=L.

3.1. The fundamental mode

Let us first discuss the case of the initial pulse of Equation (9), launched at

the point of x0 = 0, z0 = L/4. Spatial profiles of the parallel component of velocity

Vz at given moments of time are shown in Figure 2, where we can see that the

fundamental mode is excited. These results are confirmed by slices of Vz made along

x= 0 (Figure 2). They exhibit spatial profiles of Vz(x= 0,z), which are in opposite

phases. The profiles of Vz are less regular than in the one-dimensional case considered

by Selwa et al. [20] (cf. their Figure 2). This irregularity is due to the presence of fast

magnetosonic waves interacting with slow waves and modifying their profiles.

Figure 2. Spatial profiles of the parallel component of velocity Vz (top panels) at t=8.78P1
(left panels) and at t=9.4P1 (right panels) for the initial pulse position, x0=0,z0=L/4; slices of

Vz drawn along x=0 are shown in the bottom panels

As the pulse’s initial amplitude is large, nonlinearity also plays a role in the

distortion of a wave signal. Indeed, time signatures of parallel velocity, Vz, and mass

density, ̺ i, collected at (x=0,z=L/4), can be seen in Figure 3. They are reminiscent

of attenuated oscillations. A sign of third-order nonlinearity is noticeable in the right

panel of Figure 3, leading to a steepening of the wave’s trailing parts.
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Figure 3. Temporal evolution of parallel velocity, Vz , (left panel) and mass density, ̺ i,

(right panel) collected at (x=0,z=L/4) for the initial pulse position, x0= z0=L/4

This irregular pattern of time signatures of wave signal (Figure 3) may also

result from the presence of fast magnetosonic waves interacting with the slow mode.

Spatial profiles of the perpendicular component of velocity, Vx, are shown in Figure 4,

reminiscent of the fundamental mode. We can thus conclude that oscillation of slow

waves is dominant in the system.

Figure 4. Spatial profiles of the perpendicular component of velocity, Vx, at t=8.87P1
(left panel) and t=9.38P1 (right panel) for the initial pulse position, x0=0,z0=L/4

The presence of standing waves in a physical system can be determined by the

normalized phase shift between oscillations in Vz and ̺ i, δφ. Analytical evaluations

have shown that δφ should be equal to a quarter of a wave’s period (Nakariakov and

Verwichte [1]). We have used an excitation criterion according to which a standing

wave is present in the system if δφ departs from 1/4 by 20% (Selwa et al. [20]):

1

4
·80%≤ δφ≤ 1

4
·120% . (12)

According to this criterion, which is fulfilled for t > tmin, we have found that the

fundamental standing wave is excited at t≈ 4.3P1, where the analytically evaluated
period P1 follows from:

Pn≃
2L

ncsi
. (13)

Here, n is a standing wave number, while csi =
√

γpi/̺ i = 0.059Mms
−1 denotes the

sound speed inside the loop. For these settings, we obtain P1=1694.91s. In the 1D case

discussed by Selwa et al. [20], fundamental standing waves were excited at t≃ 6P1.
Consequently, we infer that in the 2D case the fundamental sound wave is excited

earlier than in the 1D case.

The Fourier spectrum of Vz(x = 0,z = L/4,t) is shown in Figure 5. It yields

a wave period of 1693.45s, close to the analytically determined value, and reveals

the presence of the first harmonic mode, n= 1, and the n= 3 harmonic mode. We
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Figure 5. Fourier spectrum of Vz(x=0,z=L/4,t) illustrated in Figure 3, in the range

500≤P ≤ 2000s. The Fourier and wavelet analyses (not shown) yield wave period P1=1693.45s

infer that the presence of the second harmonic results from the amplitude of the

pulse greater than in the one-dimensional case (Selwa et al. [20]), which perturbs the

regularity of evolution of slow standing waves.

3.2. The first harmonic mode

Figure 6. Top panels: spatial profiles of the parallel component of velocity, Vz at t=16.82P2
(left panels) and Vz at t=17.32P2 (right panels) for the initial pulse position, z0=L/2. The

corresponding slices of Vz along x=0 are shown in the bottom panels

In this part of the paper we consider the case of the initial pulse launched at

x0 = 0,z0 = L/2. Spatial profiles of the parallel component of velocity, Vz, and its

slices along x= 0 and z = L/2 are shown in Figure 6 at two moments of time. For

this pulse position we obtain the first harmonic mode, n = 2, excited at t ≈ 4.1P2
according to the excitation criterion of Equation (12). Fourier (Figure 9) and wavelet

spectra (the latter not shown) yield the wave period of 841.05s, close to the analytical

value obtained from Equation (13), viz. P2=847.45s.

As in the case discussed above, a fast magnetosonic wave is present in the

system. Spatial profiles of the perpendicular component of velocity, Vx, are shown

in Figure 7 at two given moments of time. The profiles correspond to the opposite

phases of a standing fast wave.
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Figure 7. Spatial profiles of the perpendicular component of velocity, Vx, at t=16.82P2
(left panel) and at t=17.32P2 (right panel) for initial pulse position x0=0,z0=L/2

Figure 8. Temporal evolution of velocity, Vz(x=0,z=L/4,t), (left panel) and mass density,

̺ i(x=0,z=L/4,t), (right panel) for the initial pulse position, x0=0,z0=L/2

Figure 9. Fourier spectra of Vz(x=0,z=L/4,t) of Figure 8. The Fourier and wavelet analyses

(the latter not shown) yield a wave period of P2=841.05s

Time signatures of parallel velocity, Vz(x = 0,z = L/4), and mass density,

̺(x = 0,z = L/4), are shown in Figure 8. These curves illustrate the initial stage

of slow standing waves’ evolution.

4. Summary

We have developed a two-dimensional model of a coronal slab to study nu-

merically standing slow waves. Such waves are triggered by a pulse initially launched

in the system, exciting magnetosonic waves among which slow waves are dominant.

Depending on the position of this pulse, either fundamental or first harmonic slow

modes are generated, associated with standing fast waves. Spectral analysis of time

signatures of the magnetosonic waves reveal the presence of several modes, attenu-

ated as a result of energy leakage into the ambient medium. As fast magnetosonic

waves are capable of propagation across magnetic field lines, they carry some energy

away from the slow modes. Fast magnetosonic waves are coupled as a consequence

of a fine value of plasma, β. As a result, slow waves are attenuated further than in
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the one-dimensional case discussed by Selwa et al. [20]. Our numerical results demon-

strate that slow modes are excited faster than in the one-dimensional case. This is

a consequence of the presence of fast waves, which distribute energy over a physical

system at a speed close to VA. The Alfvén speed is greater than the speed of sound,

a characteristic speed of slow waves. Interestingly, the excitation time is shorter de-

spite wave periods being longer. More realistic models of slow wave development are

being developed.
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