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Abstract: A new approach is presented to modelling intelligent admission control and congestion

avoiding mechanism, without rejecting new requests, embedded into a priority closed computer

network. Most Call Admission Control (CAC) algorithms treat every request uniformly and hence

optimize network performance by maximizing the number of admitted and served requests. In

practice, requests have various levels of importance to the network, for example priority classes. Here,

the investigated closed network with priority scheduling has been reduced to two service centres,

which allows for decomposition of a larger network into a chain of individual queues, where each

queue can be studied in isolation. A new algorithm (approach) of this special type of closed priority

queuing systems is presented, including a node consisting of several priority sources generating tasks,

designated as an Infinite Server (IS), and a service centre with a single service line. This model type is

frequently described as a finite source, pre-emptive-resume priority queue (with general distribution

of service time). The pre-emptive service discipline allows a task of lower priority to be returned to

the head of a queue when a new task of higher priority arrives. A mathematical model of provisioning

and admission control mechanism is also described. The idea behind this mechanism has been derived

from the Hidden Markov Model (HMM) theory. It is crucial in the CAC process that the network

manager obtains correct information about the traffic characteristics declared by the user. Otherwise,

the quality of service (QoS) may be dramatically reduced by accepting tasks based on erroneous traffic

descriptors. Numerical results illustrate the strategy’s effectiveness in avoiding congestion problems.

Keywords: pre-emptive-resume queuing model, mean value analysis (MVA), congestion problem,

call admission control (CAC), hidden Markov models (HMM’s)

1. Introduction

Overload of computer networks is observed when there is long-term demand

for service resources which exhausts or exceeds their operational capacity. In order to

avoid such problems, special mechanisms of resource management and provisioning

are used, classified as Topology, Capacity and Flow Assignment (TCFA) methods.
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Their solutions are often rough estimates or are based on inexact approximations.

To counteract network congestion, restrictive procedures are introduced that regulate

the intensity of information flow from the source, referred to as admission controls

(CAC). It is important to remember that the activity of sources varies in time and

the ability to predicate the consequences of the current flow of information from

a source is directly related to the overall network’s health. It is also required that

each of the control mechanisms operates in real time and maximizes the network’s

resources. Therefore, call admission control is introduced as a preventive measure

against overload in order to enforce a pre-negotiated level of quality of service (QoS)

parameters.

Various admission control algorithms have been proposed in the literature [1].

The deterministic approach derives a formula of the maximum number of admitted

requests (tasks) under the worst-case load, since the admission control policy is based

on worst-case scenarios. The approach is based on predication from measurements

of the resource usage status. The statistical approach assumes that the average data

access time does not change significantly and it admits new tasks as long as the

network server can meet the statistical estimation of the total data rate. Adaptive

CAC admits new tasks on the basis of an extrapolation from past measurements of

the storage server’s performance.

The above-mentioned research does not consider different priorities of client

tasks and attempts to admit as many tasks as possible without considering the

importance of each task. A majority of priority service schemes proposed and studied

in the past can be classified either as “time-priority” or “space-priority” ones.

Recently, attempts have been made to incorporate both space- and time-priority

policies to deliver a diversified service [2].

Generally, call admission control algorithms are responsible for determining

if a new request can be accepted when server load does not exceed the available

node capacity or rejected otherwise. In this paper, a new approach for modelling an

intelligent admission control mechanism is proposed based on the Hidden Markov

Model (HMM) theory embedded into pre-emptive priority computer networks. The

proposed analytical models aim at finding the best partition of input streams,

optimizing the network’s performance by avoiding congestion, without rejecting new

requests (tasks). In the process of call admission control and congestion avoidance, it

is crucial that the network manager obtains correct information about the traffic

characteristics declared by the group of priority users. The pre-emptive priority

scheduling described here, allows tasks of higher priority to temporarily interrupt

lower-priority services and resume their execution after they have been completed.

The performance evaluation of an extensive computer network with multiple

nodes is extremely difficult and is usually an approximation obtained by decomposing

such network into a sequence (or set) of individual queues, so that each of them can be

investigated in isolation [3–8]. A mathematical study that measures the effectiveness

of a closed (finite task population) computer network described by the queuing theory

as the finite source model with pre-emptive priority task scheduling is presented in

the next section. The analysis is based on a network containing embedded intelligent

admission control mechanisms for avoiding sustained network overload.
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The remainder of the paper is organized as follows. An exact analysis of the

priority network is given in Section 2. The algorithm of calculating the main measures

of effectiveness is developed in Section 3. An analytical model of the intelligent CAC

mechanism based on the theory of Hidden Markov Models is described in Section 4.

The numerical experiment results obtained from the analytical model of the priority

network and the CAC mechanism are presented in Section 5. Final conclusions are

drawn in Section 6.

2. A closed two-centre network’s model

and its exact analysis

Let us consider a two-node closed network (sources limited calling population)

with an absolute (pre-emptive) priority task selection policy as shown in Figure 1.

Unlike single queues, there is no easy notation to specify the type of a queuing network.

The simplest classification of a queuing network is as either open or closed: an open

queuing network has external arrivals and departures, a closed network has none. As

shown in Figure 1, the tasks circulate in the system from one station to another, the

total number of tasks in the system remaining constant. Tasks exiting the system

immediately re-enter it. Users generate requests (tasks, jobs) at the terminals (Source

Centre) serviced at the Service Centre. After a job is done, it waits at the user terminal

for a random “think-time” interval before cycling again. The station-to-station flow

of tasks defines the closed model’s throughput. Here, the source centre is designated

as an infinite server (IS), while the service centre consists of a single service line.

In such a network with absolute priority, any task of higher priority is allowed to

enter service immediately even if another lowers priority task is already present at

the service station (node). When such a task arrives at the service node, the current

one, with lower priority, is returned to the head of the queue [9–13].

Figure 1. Closed two-centre network with pre-emptive resume priority

The general assumptions of the presented model with pre-emptive priority are

as follows:
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1. there are m task priority sources;

2. the source of class k (for k=1, . .. , m) is finite, say of size Nk;

3. any source unit of class k generates tasks independently (with exponential

distributed inter-arrival time ak) and the arrival process is depicted with

parameter λk =1/ak;

4. each service time is generally distributed (type G) with the first two moments

given, s
(1)
k = sk and s

(2)
k (k=1, . .. , m).

The mean response time of a service centre (waiting + service times), qk, for a

k priority task is as follows:

qk =wk+sk+uk, (1)

where:

wk – mean waiting time for the task to be serviced,

sk – mean service time (without interruption periods),

uk – mean interruption time (when a task of class k is interrupted by a higher priority

task and returned to the head of the k-class queue).

The interruption time, uk, is not applicable to the highest class of tasks (k=1),

since they are serviced as FIFO. Generally, the value of mean interruption time is

determined by stream intensity of the higher priority task and equals:

uk =

k−1
∑

i=1

li ·
k−1
∑

i=1

Λi

(1−
k−1
∑

i=1

li) ·
k−1
∑

i=1

(Ni ·λi)

·si, (2)

where:

lk – the utilization factor for k priority tasks,

Λk – the mean rate of k-class task arrivals at the service station.

The wk parameter of Equation (1) can be divided into three components:

(a) the mean time of waiting for a task of higher priority, or that of equal priority

already present at the service station, to be serviced:

t1k = t11k+ t12k =

k−1
∑

i=1

(li ·∆i)+ lk ·∆k, (3)

where

∆i=
s
(2)
i

2 ·si
,

(b) the mean time of waiting for pre-empted and resumed tasks from 2 to k classes

to be serviced:

t2k = t21k+ t22k =

k−1
∑

i=2

(ui ·Λi ·∆i)+uk ·Λk ·∆k, (4)

(c) the mean time of waiting for tasks of priorities from 1 to k already present in

the queue to be serviced (vi being the average queue length with i priority):

t3k = t31k+ t32k =
k−1
∑

i=1

(vi ·si)+vk ·sk, (5)
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(d) the average time required to service tasks of higher priority which have joined

the queue during the waiting time, wk, of task k (Λi being the total arrival rate

for i-priority tasks):

t4k =wk ·
k−1
∑

i=1

(Λi ·si). (6)

The analysis of such systems becomes complicated as the Λk parameter (for

k = 1,. . ., m) and the above-described constraints are directly dependent on the

number of k-priority tasks present at the service node, which is often unknown.

Parameter Λk can be calculated from the following equation:

Λk =(Nk−nk) ·λk, (7)

where nk is the average number of k-class tasks present at the service node.

Algorithms for calculating the effectiveness of a two-node closed network are

presented in the next section.

3. MVA recursive algorithm

The presented recursive algorithm for analysis of a network with two service

centres belongs to Mean Value Analysis (MVA) methods [14–18]. Basing on this

approach, we can start network analysis for each priority class from higher priorities,

i.e. from Nk =1 with step 1 and continue until Nkmax by incrementing Nk by 1 (for

k = 1, . .. , m). As the model is pre-emptive, k-class tasks are unaffected in any way

by the existence of classes k+1, k+2,. . .. In particular, class 1 tasks behave as they

would in a single-class queuing system. Thus, we can start computing the effectiveness

of a two-node closed network basing solely on the highest priority tasks (k=1).

ALGORITHM. Calculate the mean waiting and response times (wk,qk), through-

puts (lk), the mean queue lengths (vk) and the common mean arrival rate, Λk
(k = 1, .. ., m), for all priority classes. Here, parameters with an additional (N −1)

symbol (e.g. lk(N−1)) belong to the net of source size reduced by 1.

(a) Part 1. Let k=1 (higher priority class)

Step 1. Let N1=1, which means v1=0.0, w1=0.0,

Λ1=
1

(a1+s1)
,

l1=Λ1 ·s1 .

Step 2. Let N1=2

w1= l1(N−1) ·
s
(2)
1

2 ·s1
,

q1=w1+s1 ,

Λ1=
N1
a1+q1

,

v1=w1 ·Λ1 ,

l1=Λ1 ·s1 .
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Step 3. Let N1=3

w1= l1(N−1) ·
s
(2)
1

2 ·s1
+v1(N−1) ·s1 .

Calculations for parameters q1, Λ1, v1, l1, are the same as in

step 2.

Step 4. Let N1=4 – identical calculation as in step 3 and so forth.

Last step. Let N1=N1max – identical calculation as in step 3.

Stop.

For lower priority classes (k > 1), the calculation algorithm requires a modifi-

cation to allow lower priority tasks to be omitted, interrupted or even returned to

the queue if currently served. As above, our analysis starts from the source size equal

to 1, which means that Nk =1.

Let Nk = 1. If there are no other k-class tasks, the waiting time, wk, is

determined only by higher-priority classes. In this case Equation (6) must be modified

to reflect the change (wk−1 is related to a network with source size reduced by 1) and

has the following form:

wk = t11k+ t21k+ t31k+wk−1 ·
k−1
∑

i=1

(Λi ·si). (8)

As the mean interruption time, Equation (2), is dependent on the highest-

priority tasks, we can calculate the response time according to the following formula:

qk =wk+uk+sk, (9)

while the mean task arrival rates areas follows:

Λk =
1

ak+qk
. (10)

The remaining measurements can be calculated in the following way (lk being

throughputs, vk – mean queue lengths):

lk =Λk ·sk, (11)

vk =wk ·Λk. (12)

Let Nk > 1, up to Nkmax . In this case the waiting time for k-class tasks will

be calculated from Equations (3)–(6) (the diminishing source size is factored in the

equation, as all arriving tasks recursively see its related source reduced to Nk−1):

wk = t1k+ t2k+ t3k+ t4k , (13)

or more precisely:

wk = t11k+ lk(N−1) ·∆k+ t21k+uk ·Λk(N−1) ·∆k+

+ t31k+vk(N−1) ·sk+wk(N−1) ·
k−1
∑

i=1

(Λi ·si).
(14)

Therefore, the mean response time is obtained as:

qk =wk+uk+sk, (15)
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and the mean arrival rate is:

Λk =
Nk
ak+qk

. (16)

The other parameters can be calculated as follows:

lk =Λk ·sk, (17)

vk =wk ·Λk. (18)

ALGORITHM (continued):

(b) Part 2. Let k > 1 (for lower priority classes):

Step 1. Let Nk =1.

Parameters qk, wk, Λk, lk, vk are calculated from Equa-

tions (8)–(12).

Step 2. Let Nk =2.

Use Equations (14)–(18) to calculate parameters wk, qk, Λk,

lk, vk.

Step 3. Let Nk =3 – identical calculations as in step 2, etc.

Last step. Let Nk =Nkmax – identical calculations as in step 2.

Stop.

A set of experiments was performed for the above-presented algorithm, with

selected distribution of service time (type G) in each priority class. The analytical re-

sults were compared with experimental simulation results. Mean waiting and response

times, mean queue lengths and a server throughput were chosen in this validation for

all priority classes. The simulation models were written in the SIMSCRIPT II.5 lan-

guage. The warm-up period was rejected during the simulation experiments and their

duration was chosen so as to warrant high reliability of the obtained results. A compar-

ison of the mathematically calculated and simulation results (95% confidence interval)

exhibit good resemblance in a wide spectrum of various input parameters (from small

to high server utilization).

The recursive algorithm presented in this section is used for evaluating a set of

possible combination variants of input streams, sub-optimally allocating the service

resources to several classes of users. When performing call admission control (CAC)

in priority networks, users are requested to declare their traffic descriptors, on the

basis of which the aggregated load is estimated. Obviously, source groups cannot

demand the maximum input stream at the same time, as that would lead to an

instant network overload. Based on the assumption related to the Quality of Service

(QoS) principle, the maximum permissible input stream must be chosen from the

set of all possible combinations of arriving input streams. Consequently, CAC must

be viewed as deciding whether to accept or reject a certain traffic configuration. Of

course, in this type of computer network, priority classes may be assigned to groups of

users according to a regular rule (i.e. permanently) or may be regulated dynamically.

4. Intelligent Call Admission Control (CAC) mechanisms

An approach to modelling provisioning and call admission control mechanisms

in closed-type computer networks based on the theory of Hidden Markov Models
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(HMM’s) [19–24] is proposed in this paper. Hidden Markov Models are a new class

of Markov chains which can be described as an extension of the classical chain,

where observation is a probabilistic function of state. In HMM, the resulting model

is a doubly embedded stochastic process with an underlying stochastic process that

is not observable or hidden. The nature of the hidden process can be deduced from

another process, producing a sequence of observations.

Any HMM is characterized by the following set of parameters:

1) N – the number of states in a Markov chain (The states are hidden and are

denoted by X = {X1, X2,. . ., XN}, a state in time t is denoted as qt.);

2) M – the number of events per state, denoted as V = {v1, v2,. .. , vM};

3) the state transition probability distribution matrix, A= {aij}, where:

aij =P (qt+1=Xj |qt=Xi), for i, j=1,. . ., N ; (19)

4) matrix B of event (observation symbol) probability distribution for each state

(As an example, for a state with index j it is B= {bj(k)}, where:

bj(k)=P (vk at t|qt=Xj), for j=1, . .. , N and k=1, .. ., M ; (20)

5) the initial state distribution, π= {πi}, where:

πi=P (q1=Xi), for i=1,. . ., N. (21)

The given values of N , M , A, B, π are used to generate an output sequence of

observation symbols from the given alphabet, as follows:

O=O1O2O3 .. . OT , (22)

where T is the number of observations in this sequence.

This means that the full specification of an HMM requires detailed information

about N and M as the model dimension parameters, the probability distributions

related to the A, B and π matrices, collectively described as λ = (A, B, π), and

generating a set of events (observation symbols). Additionally, in order to create an

intelligent admission control mechanism based on the HMM theory it is necessary

to realize a training procedure. During the training process, the λ = (A, B, π)

model parameter is adjusted so as to enable optimization of P (O|λ) (the estimation

problem). The training process optimally adopts the model parameters to an observed

output sequence producing the best model for real phenomena [21, 23, 25, 26].

Prior to adjustment, we compute for any given observation sequence O =

O1 O2 . .. OT and model λ= (A, B, π) the P (O|λ) function, the probability that the

observed sequence produced by the given model represented by N (number of states)

and set of parameters in matrices A, B, π.

Let us consider a fixed state sequence:

Q= q1 q2 .. . qT , (23)

where q1 is an initial state.

The probability of this observation sequence can be calculated by using the

forward procedure presented in [19] and [23]. A definition of forward variable αt(i),
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the probability of the partial observation sequence O1O2 . .. OT until time t and state

Xi at time t, can be obtained from the model:

αt(i)=P (O1O2 .. . Ot, qt=Xi|λ). (24)

Calculating P (O|λ) requires the following steps:

1. initialization of forward probabilities as joint probabilities of stateXi and initial

observation O1:

α1(i)=πibi(O1), for i=1,. . ., N ; (25)

2. iterative calculation of αt+1(j) by multiplication of a quantity. This character-

izes all possibilities of reaching state Xj at time t+1 from N possible states,

Xi (i=1,. .. , N), at time t and probability of observation Ot+1 in state j:

αt+1(j)=

[

N
∑

i=1

αt(i)aij

]

bj(Ot+1), for t=1, .. ., T −1 and j=1, .. . , N ; (26)

3. termination with the following given definition:

αT (i)=P (O1O2 . . . OT , qT =Xi|λ) (27)

summing all of the forward variables αT (i):

P (O|λ)=
N
∑

i=1

αT (i). (28)

The second part of the forward procedure is the backward procedure, as

explained in [23, 24]. Both procedures are used in the training processes.

Let a backward variable be defined as follows:

βt(i)=P (Ot+1, Ot+2 . .. OT |qt=Xi, λ), (29)

the probability of the partial observation sequence from t+1 till the end, given state

Xi at time t and the model λ.

Calculation of βt(i) consists of two steps only:

1. initialization:

βT (i)= 1, for i=1,. .. , N, and (30)

2. looping:

βt(i)=
N
∑

j=1

aijbj(Ot+1)βt+1(j), for t=T −1, T −2, .. ., 1 and i=1,. .. , N. (31)

The later equation describes how HMM can be in the state Xi at time t, from

all possible states at time t+1.

Another question related to the adjustment procedure is the computation

of variable γt(i), where the probability of being in state Xi at time t, given the
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observation sequence O and the model λ [23] can be derived from the following

formula:

γt(i)=P (qt=Xi|O, λ). (32)

Let us define variable ξt(i,j), the probability of being in state Xi at time t, and

in state Xj at time t+1, given the model and the observation sequence:

ξt(i,j)=P (qt=Xi, qt+1=Xj |O, λ)=
αt(i)aijbj(Ot+1)βt+1(j)

N
∑

i=1

N
∑

j=1

αt(i)aijbj(Ot+1)βt+1(j)

(33)

and the previously defined value will be equal to:

γt(i)=
N
∑

j=1

ξt(i,j). (34)

The summation of γt(i) over time index t, can be interpreted as:

T−1
∑

t=1

γt(i)= expected number of times that state Xi is visited. (35)

Similarly, summation ξt(i,j) over time t can be interpreted as:

T−1
∑

t=1

ξt(i,j)= expected number of transitions from state Xi to state Xj . (36)

Formulae (35)–(36) allow us to re-estimate the HMM parameters as follows:

(a) the expected frequency of being in state Xi for time t=1:

πi= γ1(i), for I =1,. . ., N ; (37)

(b) the state transition probability distribution:

aij =

T−1
∑

t=1
ξt(i,j)

T−1
∑

t=1
γt(i)

, for i, j=1,. .. , N ; (38)

(c) the observation symbol probability distribution in state j:

bj(k)=

T
∑

t=1,s.t.Qt=vk

γt(j)

T
∑

t=1
γt(j)

. (39)

In conclusion, on the basis of current model parameters, λ= (A, B, π), values

from formulae (37)–(39) can be computed and a re-estimated model can be defined,

described as λ = (A, B, π). The new model λ is more likely than the λ model,

P (O|λ)>P (O|λ), which means that a new model has been found from which a better

observation sequence can be obtained. The final result of this iterative re-estimation

procedure is called the maximum likelihood estimate of HMM.
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The process of modelling and implementing the dynamic resource management

and provisioning algorithms embedded in the computer network QoS manager, based

on the main principles of Hidden Markov Models, requires the following steps:

1. establishing and building a list (set) of input streams from each priority source

acceptable by a QoS manager in the service station. The list is related to the

number of distinct observation symbols per state, M , from Hidden Markov

Models. Another important HMM parameter will be the number of states, N ,

related to the number of priority classes in a closed network;

2. using the theory and algorithms presented in Sections 2 and 3, a set (ta-

ble) of possible variants (combinations) of input streams must be obtained,

sub-optimally allocating the service resources to several classes of users. The

table must be located in the network QoS manager, where requests of input

streams coming from each priority class relate to the O=O1 O2 O3 .. . OT ob-

servation sequence described in the HMM theory;

3. on the basis of statistical investigation of input stream intensities from each

source and their modifications, we can create a matrix B from HMM’s –

a sequence of probability distribution in each state;

4. we have to choose a type of HMM suitable for this kind of application (for

example a left-right model or its modification) and establish coefficients of

matrix A and an initial state of distribution π;

5. for each variant of the input stream from the selected set of possible variants,

we must build a Hidden Markov Model where its parameters will be adjusted

to create an optimal function of P (O|λ);

6. each intelligent admission control mechanism (QoS manager) in the network

should regularly collect and detect the demands of input streams coming from

priority sources. The QoS manager must recognize each input steam set by

computing probabilities P (O|λ) for each trained HMM and choosing the most

adequate variant with the highest likelihood.

The workload characteristics of such a network are changeable so that a static

admission control algorithm is not feasible and unable to adapt to the changes in run

time. The server of such a network requires dynamic admission control policies to

guarantee the delivery of on-demand priority input streams with QoS requirements.

The QoS manager estimates the aggregated traffic based on the traffic descriptors

declared by priority users and compares this estimation with the node’s capacity.

5. Numerical example

In this section, numerical results of investigating a pre-emptive priority

two-centre network (configured as shown in Figure 1) with embedded intelligent ad-

mission control mechanisms are presented to illustrate the potential effectiveness of

the studied strategy in avoiding congestion problems.

For example, an engineering firm running several different laboratories provides

each of its analysts with a personal computer, all of which are hooked up to a database

server over an LAN. In addition, there is an expensive, standalone graphics workstation

used for special-purpose design task. Engineers complain to their manager that the

waiting time to use the workstation is too long. The manager is surprised, as the
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utilization of the workstation is far from full, say 6/8 (6 hours out of 8). To convince

the manager, one of the engineers performs a queuing analysis in which it is desirable

to use priorities to resolve this problem. Priorities may be assigned in a variety of ways.

For example, priorities may be assigned on the basis of traffic type. An important case

is priority being assigned on the basis of the average service time. Often, tasks with

shorter expected times are given priority over tasks with longer service times, etc.

The following configuration parameters are chosen:

– 4 priority classes of tasks,

– size of each source capacity – from 1 to 10 (ten acceptable values of input

streams, M =10),

– mean source time ak =1/λk =35.2, for k=1, 2, 3, 4,

– service parameters: s1=1.0; s
(2)
1 =2.00 (exponential distribution),

s2=1.2; s
(2)
2 =2.44 (normal distribution),

s3=2.0; s
(2)
3 =4.00 (constant distribution),

s4=1.6; s
(2)
4 =3.41 (uniform distribution).

In this kind of network, tasks of varying priority classes enter the service centre

via the QoS manager. The main responsibility of the QoS manager is admission control

and dynamic assignment of suitable intensities of the input stream to priority sources

with changing workload. One way to control call admission intelligently is to identify

the possible workload conditions before the server is up for service. The sub-optimal

partition of the priority stream intensities is maintained in a table such that the QoS

manager is capable of watching workload change. The limitation of this approach is

the contents of the table. At the same time, CAC algorithms are capable of finding

a sub-optimal solution in such networks as workload changes in real time.

Analysis: step 1

A set of possible input stream variants is chosen (a special table created for

the QoS manager), which properly (sub-optimally) allocate the service resources

to several user classes on the basis of the acceptable server utilization parameter,

l= l1+ l2+ l3+ l4 = [0.85 − 0.90], and the permissible relation for the lowest priority

class of the mean delay time to mean service time < 12. The results are presented in

Table 1.

Selected streams intensities, being the O=O1 O2 O3 .. . OT sequence processes

by the HMM.

Analysis: step 2

Initial parameters of the Hidden Markov Model are established.

(a) HMM type (see Figure 2):

For applications discussed in this paper, other than ergodic (fully con-

nected) types of HMM have been found with the state transmission probability

distribution, A, equal to:

A= {aij}=







0 0 0 0
0 0 0 1
0 1 0 0
1 0 0 0







and the initial state distribution π= {0, 0, 1, 0}.
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Table 1. Variants of possible input streams

Stream intensities for each priority Delay
Variant Utilization

1 2 3 4 time (max)

1 10 3 5 8 0.89 11.988

2 4 3 6 10 0.88 9.416

3 3 10 4 7 0.85 10.288

4 8 2 10 4 0.90 16.280

5 6 9 4 7 0.88 12.491

6 9 7 8 2 0.90 18.411

7 2 4 7 9 0.87 9.633

8 5 8 9 1 0.86 14.245

9 1 6 10 5 0.89 14.154

10 9 5 3 9 0.87 10.143

The HMM type presented here is a slight modification of the well-known

left-right model (without the ability to transit to a previously visited state). The

values of parameters of matrix A and vector π can be treated only as examples

demonstrating the main idea of the intelligent admission control mechanism.

Figure 2. Illustration of a 4-state model without repeated state transition

(b) Coefficients of matrix B:

Table 2. Network stream intensities

Stream intensities variants
Priority

1 2 3 4 5 6 7 8 9 10

1 0.10 0.05 0.05 0.20 0.05 0.30 0.05 0.10 0.05 0.05

2 0.05 0.05 0.20 0.05 0.05 0.05 0.05 0.40 0.05 0.05

3 0.10 0.05 0.10 0.30 0.05 0.10 0.10 0.05 0.05 0.10

4 0.10 0.05 0.20 0.05 0.10 0.10 0.05 0.05 0.20 0.10

The values shown present the stream intensities and their relationship to

priority classes.

Analysis: step 3

The probability of the O=O1 O2 O3 . . . OT observation sequence is calculated

given the Hidden Markov Model, which means computing the P (O|λ) function using

the algorithm presented in Section 4.
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Table 3. Probabilities of the observation sequence

Variant Probability P (O|λ)

1 0.0002000000

2 0.0003000000

3 0.0000125000

4 0.0000500000

5 0.0000125000

6 0.0000062500

7 0.0000062500

8 0.0004000000

9 0.0000250000

10 0.0000250000

Analysis: step 4

The model parameters are adjusted to maximize the P (O|λ) function by

training procedure with the algorithm presented in Section 4. Each variant of input

stream intensities from Table 1 is adjusted separately to guarantee optimal selection

all coefficients for matrices A, B and vector π for each input stream variant.

The results for variant 3 are given below for example. Table 4 contains

coefficients of matrix B:

Table 4. Adjusted model parameters

Stream intensity variants
Priority

1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 1 0 0 0

2 0 0 0 0 0 0 0 0 0 1

3 0 0 1 0 0 0 0 0 0 0

4 0 0 0 1 0 0 0 0 0 0

All the coefficients of matrix A and vector π remained unchanged, with the

value of Pmax(O|λ) equal to 1.00.

Analysis: step 5 (a recognition mechanism for the stream demand vector)

A recognition and collection mechanism should be used periodically to digest

all input streams. This can be achieved with trained Hidden Markov Models by

calculating the functions of the largest probabilities and selecting the vector with

the greatest value.

Let us choose variant 7 for example. In this instance, the P (O|λ) sequence is

calculated ten times by each trained HMM, as there are ten possible demand variants.

The result is as follows: only for 7 variants the P (O|λ) probability value is equal to

1.00, the remaining model probabilities are zero, which proves that the demand vector

has been recognized properly.
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6. Conclusions

A new approach to investigating a closed two-centre network with an intel-

ligent control admission mechanism has been proposed. Starting from a theoretical

study, a special type of queuing network with pre-emptive priority scheduling was

proposed and efficient numerical procedures developed calculating the main measures

of effectiveness in this type of network.

Following a formal verification, the analytical results of these values were

compared with SIMSCRIPT II5 language simulation results for identical models and

their initial parameters. The comparison (95% confidence interval) has shown good

resemblance in a wide spectrum of various input parameters (from small to high server

utilization).

A new approach for modelling an intelligent call admission control mechanism

based on the theory of Hidden Markov Model (HMM) has also been presented. The

mechanism is used for periodical collection and recognition of input stream demands

from priority sources. It is also used to analyze and select optimal variants using the

proposed HMM control mechanism.
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