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Abstract: Double-porosity soils consist of two interacting porous systems corresponding to weakly
conductive aggregates and highly conductive inter-aggregate regions. The flow of water in such media
can be described with a two-scale model obtained by homogenization. The model consists of a single
macroscopic equation for the flow in the highly conductive porous system coupled with a number
of micro-scale equations for the flow in the weakly conductive aggregates. In this paper we present
a numerical algorithm to solve the resulting system of equations for the case of macroscopically
two-dimensional flow. It is based on the finite volume approach for unstructured grid of triangular
cells. Special attention is paid to the coupling of the micro- and macro-scale equations. An exemplary
calculation is presented, concerning infiltration and redistribution of water in a hill-slope of double-
porosity structure with cubic aggregates.

Keywords: double-porosity soils, Richards equation, unsaturated zone, finite volume method,
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1. Introduction

Numerical simulations of soil water flow are required in many civil engineering
applications, including prediction of such risks as groundwater contamination or slope
failure. The flow of water in a partially saturated porous medium is routinely described
with the following Richards equation:

∂θ(h)
∂t
−∇x ·(K (h)∇(h+z))= 0. (1)

In Equation (1), h is the water potential head, which assumes negative values
under unsaturated conditions, θ is the volumetric water content, K is the hydraulic
conductivity tensor, t is time and x =(x,y,z)T is the spatial variable, z being oriented
positively upwards. Equation (1) is nonlinear and the solution requires the knowledge
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of its constitutive functions, i.e. the relations between the potential head, water
content and conductivity. Their form depends on the type of the porous material.

In this paper we consider double-porosity soils, an example of heterogeneous
porous media. Such soils, often encountered in nature, contain aggregates of fine-
grain material with very small pores, while the space between the aggregates is filled
with coarse material with larger pores (see Figure 1). The constitutive functions of
the two materials are very different in form and their conductivities differ by several
orders of magnitude. Since the characteristic size of the aggregates is much smaller
than the domain of interest, it is usually impossible to represent the heterogeneous
structure explicitly in a numerical solution. An alternative approach would be to
perform a kind of averaging of the constitutive functions and use the averaged
functions in Equation (1), but due to large local differences in conductivity such
method often produces inaccurate results. A two-scale modeling approach has been
proposed in order to overcome this problem, e.g. [1–3], which postulates simultaneous
solution of a macroscopic equation for the flow in the highly conductive system and
a number of microscopic scale equations for the flow in aggregates. However, numerical
implementation of such models is challenging and has received only limited attention
in the literature [4, 5].

The main objective of this paper is to present a numerical algorithm for
a two-scale model of unsaturated water flow in double-porosity soil. The algorithm is
suitable for two-dimensional domains. It is based on the cell-centered finite-volume
approach for unstructured grids proposed in [6] for the standard Richards equation.
In the following sections we present the governing equations, the numerical solution
algorithm and two examples of calculations.

2. Governing equations

The details of the model presented here can be found in papers [2, 3]. The
medium is conceptualized as a continuous macroporous region, ΩM , with embedded,
disconnected, periodically arranged, microporous aggregates, Ωm (see Figure 1). The
volumetric fractions of the two sub-domains are respectively denoted by fM and
fm. Two observation scales can be distinguished in such media: the macroscopic
scale corresponding to the modeled domain and the microscopic scale corresponding
to a single aggregate. Since the aggregates are separated from each other, at the
macroscopic scale the flow occurs only in the macroporous region, ΩM . The aggregates
act as a source or sink term, absorbing or releasing water to the macroporous sub-
domain, depending on the actual condition of the flow. Thus, the macroscopic flow
equation has the following form:

fM
∂θM (hM )
∂t

−∇x ·
[

K eff(hM )∇x(hM +z)
]

+Q=0, (2)

where θM and hM are the water content and the water potential head in the
macroporous sub-domain, K eff is the effective conductivity tensor and Q is the
source term representing water transfer between the macroporus and the microporous
regions. The effective conductivity, K eff , depends on the conductivities of the two
porous materials and on the micro-scale geometry. In a general case, it is computed
from the solution of the so-called local boundary value problem, specified for the
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Figure 1. General scheme of the two-scale numerical approach

given geometry of the periodic cell [3, 7]. In this paper, we consider only media
that are macroscopically isotropic, i.e. containing cubic or spherical, isotropically-
spaced aggregates. The effective conductivity for such geometry is a scalar and can
be computed from the Hashin-Shtrikman formula [8]:

Keff(hM )=KM (hM )+
2fmKM (hM )(Km(hM )−KM (hM ))
2KM (hM )+fm (Km(hM )−KM (hM ))

, (3)

where Km is the conductivity of the microporous aggregates.
The source term Q represents the amount of water exchanged between the

macropores and the aggregates. It equals the rate of change of the aggregates’ average
water content:

Q=
1
|Ω|

∫

Ω

∂θm
∂t
dΩ= fm

∂θ̄m
∂t
, (4)

where |Ω| is the volume of the periodic cell and θ̄m is the average water content in the
aggregates. In order to calculate the average value of water content in the aggregates,
one has to consider the micro-scale flow inside a single aggregate, described by the
following equation:

∂θm(hm)
∂t

−∇x′ ·(Km(hm)∇x′hm)= 0, (5)

where the ∇x′ operator denotes differentiation with respect to the microscopic spatial
variable, x ′=(x′,y′,z′), associated with the aggregate (see Figure 1). Gravity is absent
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from Equation (5). In order to compute the value of the source term at a given point x
of the macroscopic domain, one has to solve Equation (5) for the aggregate associated
with point x . Since the water potential is continuous at the interface between the
macroporous and microporous regions, the boundary condition for equation (5) is:

hm(x ,x ′,t)=hM (x ,t) on Γ, (6)

where Γ denotes the aggregate’s external surface. Equation (5) has to be solved for
each cell of the macroscopic numerical grid.

3. Numerical algorithm

The model’s numerical implementation requires solution of Equation (2) on
a macroscopic grid and simultaneous solution of a number of micro-scale equations (5),
each with its own microscopic grid. Equation (2), similarly to Equation (1), is
a nonlinear partial differential equation of parabolic type and can be solved using
any numerical method developed for Richards equation. In this paper, we have used
the cell-centered finite volume scheme for unstructured triangular grids developed
in [6]. In order to facilitate the numerical solution, the three-dimensional micro-scale
equations (5) have been reduced to their one-dimensional forms as proposed in [9].
The solutions of macro and micro-scale equations have been coupled using an iterative
procedure proposed in [5].

3.1. Finite-volume formulation

The macroscopic equation is solved in a two-dimensional domain, x−z. The
domain is covered with an unstructured triangular grid (see Figure 2). Following
the standard finite-volume approach, we can transform Equation (1) for each of the
triangular cells into the following balance equation:

FifM
∂θM
∂t
+Fifm

∂θ̄m
∂t
+Lijqij+Likqik+Lilqil=0, (7)

where Fi is the area of cell i, q marks the components of fluxes normal to the edges
(see Figure 2) and L – the length of the respective edges. The repeating indices in
Equation (7) do not represent summation. The fluxes are given by Darcy’s law:

qij =−Keff,av
∂hM
∂n
−Keff,avnz, (8)

(a) (b)

Figure 2. Discretization of the macroscopic flow equation for a single triangular cell:
(a) edge fluxes, (b) cells involved in the numerical stencil
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where Keff,av is the value of effective conductivity at the edge and n denotes the unit
vector normal to the edge and oriented outwards from cell i. The potential derivative
in the normal direction is approximated by a differential formula involving the cell-
centered values of potential from cell i and the surrounding cells (see Figure 2). The
first step of the flux approximation is a reconstruction of the potential values at the
vertices.

3.2. Approximation of potential at grid vertices

The values of water potential at the vertices are expressed as linear combi-
nations of the cell-centered values from cells sharing the considered vertex (see Fig-
ure 3). The linear coefficients are obtained with the least-squares reconstruction tech-
nique [10, 11]. Using the Taylor expansion of function hP in the neighborhood of
vertex P , we can approximate the potential values at the neighboring cell centers as:

hk ≈hM,P +
∂hM
∂x

∣

∣

∣

∣

P

∆xk+
∂hM
∂z

∣

∣

∣

∣

P

∆zk, (9)

for k=1.. .NP , where NP denotes the set of cells sharing vertex P . In the following
part, we omit the M subscript at the potential head to simplify presentation.
Application of the expansion (9) to all neighboring cell centers leads to the following
system of equations:
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, (10)

or, in a more concise form:
AX =B , (11)

where ∆xk =(xP −xk), ∆zk =(zP −zk). The system is over-determined. We seek the
value of hP and its derivatives that minimize ‖AX −B‖2 in the least-square sense.
They can be found from the solution of the following set of normal equations [10, 11]:

(ATWA)X =(ATWB), (12)

where matrixW = diag(wk). The components wk of the diagonal matrixW represent
the weights assigned to each of the neighboring cells. In our case, they are equal to the

(a) (b)

Figure 3. Numerical stencil for reconstruction of the potential head
at (a) internal and (b) boundary vertices
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inverse of distance between the vertex and the center of a given cell, normalized with
respect to the sum of inverses of distances from the centers of all cells surrounding P .
Inverting the coefficient matrix at the left-hand side of Equation (12), we obtain the
following formula for hP :

hP =
∑

k=1...NP

α
(P )
k hk, (13)

where the α(P )k coefficients are constants depending on the grid’s geometry. If the
vertex is located at the boundary with a Dirichlet boundary condition, we simply
have:

hP =hbound, (14)

where hbound is the value of potential imposed at the boundary. In the case of
a Neumann boundary condition (see Figure 3b), system (10) should be completed
with equations resulting from the imposed conditions, in the following form:

−KeffP
∂h

∂x
n(1)x −K

eff
P

∂h

∂z
n(1z −K

eff
P nz = q

(1)
n , (15a)

−KeffP
∂h

∂x
n(2)x −K

eff
P

∂h

∂z
n(2)z −K

eff
P nz = q

(2)
n , (15b)

where superscripts (1) and (2) refer to the two boundary edges sharing vertex P . The
resulting formula is:

hP =
∑

i=1...NP

α
(P )
k hk+β

(P ), (16)

where β(P ) depends on the boundary flux values. Conductivity KeffP depends on hP ,
and thus β(P ) is obtained by an iterative method.

3.3. Approximation of edge fluxes

The edge flux from cell i to cell j is defined using the diamond scheme [6]
(see Figure 4a). The values of potential gradients on each side of the edge can be
approximated as:

Gi=
hEi−hi
di

, Gj =
hj−hEj
dj

. (17)

The hEi and hEj values are obtained by linear interpolation of the potential values
at vertices P1 and P2:

hEi=
li2
li1+ li2

hP1+
li1
li1+ li2

hP2, hEj =
lj2
lj1+ lj2

hP1+
lj1
lj1+ lj2

hP2. (18)

The average gradient is calculated as follows:

Gij =
di
di+dj

Gi+
dj
di+dj

Gj . (19)

In contrast to the approach presented in [6], the average conductivity is computed
here as the arithmetic (and not harmonic) mean of the cell-centered values, which
ensures better results for infiltration in dry soil [12]:

Keff,av=
1
2

(

Keff(hi)+Keff(hj)
)

. (20)
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(a) (b)

Figure 4. Approximation of edge fluxes: (a) the four-point diamond scheme,
(b) the cells involved in the numerical stencil

The vertex values of potential are given by linear combinations of the cell-centered
values of the surrounding cells, according to Equation (16). Thus, the integral of flux
along the edge, required in Equation (7), can be written as follows:

qijLij =−Keff,av
(

Gij+n(ij)z
)

Lij =
∑

k=1...NE

α
(E)
k hk+β

(E), (21)

where NE is the number of cells sharing at least one vertex with the ij edge (see
Figure 4b). The α(E)k and β(E) coefficients depend on hi and hj via Equation (20).

3.4. Discretization in time and linearization scheme

Discretization with respect to time is performed using the implicit Euler scheme.
A fully discrete form of Equation (7) is obtained for each grid cell i by replacing
the time-derivative with the first-order difference approximation and introducing the
discrete approximations of the three edge fluxes given by Equation (21). The result
is the following equation:

fM
θq+1M,i −θ

q
M,i

∆t
+fm
θq+1m,i −θ

q
m,i

∆t
+

∑

k=1...NC

αq+1k h
q+1
k +β

q+1
i =0, (22)

where ∆t is the time step, q is the time level index,NC is the number of grid cells in the
stencil shown in Figure 2b, while α and β are coefficients resulting from summation
of the three fluxes given by Equation (21). Equation (22) is nonlinear as θM , α and
β are functions of h. Moreover, θm also indirectly depends on h, via the solution of
Equation (5) with boundary condition (6).

In order to solve the system of nonlinear equations arising from the dis-
cretization, we have adapted the approach proposed in [13] to the case of double-
porosity. Equation (20) has been reformulated so that the primary unknown is
the correction of the macroscopic capillary pressure head in the current iteration,
δhq+1,r+1i =hq+1,r+1i −hq+1,ri , where r is the iteration index. The following lineariza-
tion schemes have been used:

θq+1,r+1M,i ≈ θq+1,rM,i +
∂θM
∂h

∣

∣

∣

∣

q+1,r

i

δhq+1,r+1i , (23a)
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θ̄q+1,r+1m,i ≈ θ̄q+1,rm,i +
∂θ̄m
∂h

∣

∣

∣

∣

q+1,r

i

δhq+1,r+1i , (23b)

∑

k∈TC

αq+1,r+1k hq+1,r+1k +βq+1,r+1i ≈
∑

k∈TC

αq+1,rk hq+1,rk +
∑

k∈TC

αq+1,rk δhq+1,r+1k +βq+1,ri .

(23c)
The ∂θM/∂h derivative in Equation (23a) can be calculated from the analytical for-
mula describing the θM (hM ) relation, while the ∂θ̄m/∂h derivative in Equation (23b)
has to be computed numerically. To this end, one has to solve the micro-scale equa-
tion at the macroscopic cell i twice: first with the hm = hM,i boundary condition
and then with the hm = hM,i+σ condition, where σ is a small number. Introducing
Equation (23) into Equation (22) yields the following equation for δhq+1,r+1i :
(

FifM
∂θM
∂h

∣

∣

∣

∣

q+1,r

i

+Fifm
∂θ̄m
∂h

∣

∣

∣

∣

q+1,r

i

)

δhq+1,r+1i +
∑

k∈TC

αq+1,rk δhq+1,r+1k =Rq+1,ri ,

(24)
where Rq+1,ri is the residual, i.e. the numerical value of the left-hand side of
Equation (22) calculated at the previous iteration. We use the value of hM from
the previous time step as the first approximation of the solution. The iterations are
stopped when the maximum difference of the potential head values in the macroscopic
equation are less than the required error tolerance.

3.5. Solving the micro-scale equations

At each macroscopic iteration, the micro-scale equation for flow in the aggre-
gates has to be solved twice for each macroscopic grid cell. Equation (5) represents
a general case of three-dimensional flow. However, since gravity is neglected and the
potential at the outer surface of the aggregate is assumed to be uniform, the flow can
be described with reasonable accuracy as a one-dimensional process. It is assumed
that the potential and water content depend primarily on the distance from the outer
surface of the aggregate. This approach has been introduced to simulate flow in frac-
tured rocks and is known as Multiple Interacting Continua or MINC [8]. The aggregate
is divided into a set of concentric shells (see Figure 1) and it is assumed that potential
hm is constant within each shell. A balance equation is formulated for each shell along
the lines of the finite volume approach:

vp
θq+1(m)p−θ

q
(m)p

∆t
−sp+1/2

1
2

(

Kq+1(m)p+1+K
q+1
(m)p

) hq+1(m)p+1−h
q+1
(m)p

∆x′
+

+sp−1/2
1
2

(

Kq+1(m)p−1+K
q+1
(m)p

) hq+1(m)p−h
q+1
(m)p−1

∆x′
=0, (25)

where p is the spatial index related to the microscopic spatial variable x′, vp is the
volume of the corresponding grid block and sp±1/2 are the block’s external surfaces.
The boundary condition applied at the external surface is hm(x,z,x′,t)=hM (x,z,t),
while we have the ∂hm/∂x′=0 symmetry condition at the aggregate’s centre.

The resulting set of linear equations resembles that obtained by discretiza-
tion of the one-dimensional flow equation in spherical coordinates. Numerical ex-
periments presented in [14] demonstrate that the error introduced by the MINC
approximation with respect to full 2D or 3D solutions is negligible. Equation (25)
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is solved with an iterative procedure similar to that employed for the macroscopic
equation.

4. Examples

4.1. Example 1

The purpose of the first example is to verify the numerical algorithm, especially
the spatial discretization method, by comparison with an analytical solution. Since
no analytical solutions exist for double-porosity media, we have to consider a simple
case of homogeneous soil, i.e. we introduce Keff =KM , fM =1.0, fm=0.0 and Q=0
in Equation (2). The chosen test case is widely used as a benchmark for verification
of numerical codes [13]. It concerns one-dimensional vertical infiltration into a soil
profile. The soil constitutive functions are given by the van Genuchten [15] formulae:

θ(h)= θR+(θS−θR)[1+(αv|h|)nv ]
−mv , (26a)

K(h)=KS
[

1−(αv|h|)nv−1 [1+(αv|h|)nv ]
−mv

]2

[1+(αv|h|)nv ]
−mv/2 , (26b)

where θS is the water content at saturation, θR is the residual water content, KS is
the hydraulic conductivity at saturation, αv and nv are parameters related to the soil
type and mv =1−1/nv. The parameter values are shown in Table 1. The soil had an
initial uniform potential of hM,0=−1000cm (Figure 5a). At the surface the value of
hM =−75cm was imposed.

Table 1. Parameters of the constitutive relationships used in the examples

Parameter θS θR αv nv KS

Unit [−] [−] [m−1] [−] [m/h]

Example 1 0.368 0.102 3.35 2.00 0.33

Example 2 (macroporous region) 0.430 0.045 14.50 2.68 0.30

Example 2 (microporous region) 0.430 0.089 1.00 1.23 7.00 ·10−5

The numerical simulations were performed for a rectangular domain of 40×
10cm (Figure 5a). We used two numerical grids: a coarse one with 958 cells (average
cell size of 1cm) and a fine one with 3714 cells (average cell size of 0.5cm). The time
step varied in the range from 10−12h to 0.02h. Error tolerance for the iterative solver
was specified using a mixed absolute/relative criterion: ∆h= 0.1cm+0.005|h|. The
same tolerance was used for macro-scale and micro-scale equations.

The pressure profiles after 1 hour and 6 hours of infiltration are shown
in Figure 5b; the reconstructed values at grid vertices along the x = 0 line are
marked with points. The solid line represents Philip’s analytical solution [16–18].
The numerical solution converges with the analytical one as the grid size is reduced.

4.2. Example 2

Our second example shows the numerical code’s capability of simulating water
flow in double-porosity soils in an irregular domain. We consider a vertical cross-
section of a hill-slope with variable inclination (see Figure 6a). The soil has double-
porosity structure with 10 cm cubic aggregates (see Figure 1). The aggregates’
volumetric fraction is fm = 0.8. The two materials’ parameters, given in Table 1,
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(a) (b)

Figure 5. Example 1: (a) initial and boundary conditions;
(b) comparison of numerical results with Philip’s analytical solution

(a) (b)

Figure 6. Example 2: (a) numerical grid and boundary conditions;
(b) initial distribution of the water potential head

are respectively representative for coarse-textured and fine-textured soils. The slope
is drained by a stream located in the lower part of the right-hand boundary. The
water level in the stream is assumed to be constant and equal to 1.5m above the
reference level. The initial distribution of the soil water potential is non-uniform and
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Figure 7. Example 2: distribution of the potential head in the macroporous system, t=6h;
the insets show micro-scale variability of the potential head in the aggregates

at two selected macroscopic points

Figure 8. Example 2: spatial distribution of the values of source term Q, representing
the intensity of water transfer between macroporous and microporous regions.

Results for t=6h

depends on elevation (see Figure 6b). A linearly variable distribution is assumed in
the lower part of the slope, corresponding to the hydrostatic conditions which occur
near the stream. In the upper part of the slope (z > 2.5m), a constant initial value is
assumed, h0 =−1m, equal to the so-called water field capacity. The same value has
been assumed for macroporous and microporous regions, but due to the differences in
the θ(h) functions, the corresponding water contents in the two materials are different:
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Figure 9. Example 2: distribution of the potential head in the macroporous system, t=72h.
The insets show micro-scale variability of the potential head in the aggregates

at two selected macroscopic points

Figure 10. Example 2: spatial distribution of the values of source term Q, representing
the intensity of water transfer between macroporous and microporous regions.

Results for t=72h

0.049 in the macroporous region, 0.388 in the aggregates. Such type of potential
distribution is a reasonable approximation of natural conditions. We have assumed
no-flow boundary conditions at the bottom (due to the presence of an impermeable
layer) and at the left-hand side (due to symmetry). The upper surface of the slope
is subject to infiltration by rainfall; the effective rainfall intensity has been assumed
equal q0=0.01m/h. The actual intensity of infiltration depends on slope inclination,
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qn= q0 cosφ, where φ is the inclination angle. The rain duration is 6 hours, following
which it is assumed that q0=0, i.e. evaporation is neglected.

The simulation was performed using the grid shown in Figure 6a, consisting
of 7104 cells of the average size of about 0.1m. At the microscopic level, the cubic
aggregates were discretized with 11 grid blocks (“shells”). The limit values of time
step and error tolerance were the same as in Example 1.

The results of the simulation are shown in Figures 7–10. The distribution of the
soil water potential in the macroporous region at the end of the infiltration phase is
presented in Figure 7 (t=6h). In the upper part of the slope, just below the surface,
the potential reaches values close to zero, i.e. the soil is nearly saturated. The wet
and dry zones are separated by a sharp infiltration front. The insets show micro-scale
distributions of the water potential inside the aggregates at two selected macroscopic
cells. The potential is non-uniform and close to the initial value in the central part
of the aggregate. The weakly conductive aggregates require relatively long time to
reach a potential equilibrium with the surrounding highly conductive material. The
intensity of water transfer from the macroporous region to the aggregates for the
same time t=6h is shown in Figure 8. The transfer rate is the highest at the wetting
front and is gradually reduced behind it. Water transfer can also be observed in the
vicinity of the groundwater table (z=1.5m), because the water table elevation inside
the slope has risen slightly due to infiltration.

After the rainfall, the water inside the hill-slope is subject to redistribution
due to the force of gravity; the potential and transfer intensity for time t= 72h are
shown in Figures 9 and 10. The water moves towards the groundwater table and
the upper part becomes dry. Compared with the previous figures, the wet zone is
wider, but the maximum value of the potential is lower. We can also observe negative
values of transfer intensity, which means that now the aggregates release water to
the macroporous regions. As can be seen in the insets, the micro-scale differences
of potential inside the aggregates are now much smaller than during the infiltration
phase. At the wetting front, the potential at the aggregates’ surface is greater than
in their centers, but the opposite situation is the case in the upper part of the slope.
There, the potential at the aggregates’ surface decreases relatively quickly due to
drainage of the macroporous region, while it is greater on the inside. Thus, the
direction of water transfer is from the aggregates to the macroporous regions. The
above results demonstrate how aggregates act as a source or sink term for highly
conductive macroporous systems.

5. Conclusions

A numerical approach to solving a two-scale model describing flow in structured
soils has been presented. The macroscopic equation is two-dimensional and is solved
on an unstructured grid with a cell-centered finite volume scheme. The microscopic
flow in aggregates is modeled using a one-dimensional approximation (MINC). The
solutions at the two scales are coupled using an iterative procedure. The examples
show that the proposed algorithm is suitable for modeling flow in structured porous
media. The approach can be extended to account for macroscopic-scale heterogeneity
and anisotropy of soils.
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