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Abstract: The paper is concerned with solving the transport pollutant problem for a steady,

gradually varied flow in an open channel network. The 1D advective-diffusive transport equation is

solved using the splitting technique. An analytical solution of the linear advective-diffusive equation

in the form of an impulse response function is used to solve the advection-diffusion part of the

governing equation. This approach, previously applied in solutions of the advection-diffusion equation

for a single channel, is extended to a channel network. Numerical calculations are only required

to compute the integral of convolution. The finite difference method is used to solve the second

part of the governing equation, containing the source term. The applied approach has considerable

advantages, especially appreciable in the case of advection-dominated transport with large gradients

of concentration, since it generates no numerical dissipation or dispersion.

The flow parameters are obtained via solution of the steady, gradually varied flow equation.

In the final non-linear system of algebraic equations obtained through approximation of the ordinary

differential equation, the depths at each cross-section of channels and the discharge at each branch of

the network are considered as unknowns. The system is solved using the modified Picard iteration,

which ensures convergence of the iterative process for a steady, gradually varied flow solved for both

looped and tree-type open channel networks.

Keywords: steady gradually varied flow, advection-diffusion equation, splitting technique, integral

of convolution

1. Introduction

A passive substance dissolved in water is transported in an open channel

according to the following 1D equation:

∂(Af)

∂t
+
∂(Qf)

∂x
−
∂

∂x

(

DA
∂f

∂x

)

−ϕ=0, (1)

where t is time, x – a spatial coordinate, f – concentration, D – the coefficient of

longitudinal diffusion, A – cross-sectional area, Q – discharge, and ϕ – a source term.
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366 R. Szymkiewicz

The main problem of numerical solutions of Equation (1) with dominating ad-

vection is ensuring adequate accuracy of the solution. The truncation error introduced

with the approximation of derivatives in a transport equation is well known to change

the amplitudes and phase celerities of the waves representing the equation’s exact

solution. As the finite difference method uses the function’s Taylor series expansion,

truncation error will always occur and, consequently, numerical schemes will always

generate dissipation or dispersion errors. This is why strong smoothing or unphys-

ical oscillations of numerical solutions are often observed. Many algorithms, using

either finite difference or finite element methods, have been proposed in recent years

to improve the accuracy of numerical solutions. The nature of the advective-diffusive

transport equation and the problems connected with its numerical solution have been

discussed in detail by Fletcher [1], Gresho and Sani [2], and others.

The flow parameters present in Equation (1) can be obtained by solving the

flow equation. It has been assumed that a steady, gradually varied flow (SGVF) takes

place in the considered open channel network. The SGVF’s governing equations can be

obtained by simplifying the well-known system of de Saint-Venant equations [3]. The

derivatives over time disappear for a steady flow and the lateral inflow is assumed to

be negligible. Consequently, the continuity equation is reduced to the following form:

dQ

dx
=0, (2)

whereas the momentum equation becomes as follows:

d

dx

(

αQ2

A

)

+gA
dH

dx
=−gAS, (3)

with

S=
n2|Q|Q

R4/3A2
, (4)

where H is water surface elevation, S – slope friction, n – the Manning coefficient, g

– gravitational acceleration, α – the Coriolis coefficient. R=A/p is hydraulic radius

and p – the wetted perimeter.

Equation (3) can be further rearranged as follows:

d

dx

(

H+
αQ2

2gA2

)

=−S. (5)

The expression in brackets represents the total flow energy above the assumed value.

Equation (5) describes a flow profile, H(x), along the channels. The following

problem is formulated to calculate this function for a channel network: the H(x)

function should satisfy the governing equation and the imposed conditions at the

upstream and downstream ends of the channel network defined by water levels.

Moreover, discharges, Q, are unknown in all branches. The problem formulated in

this manner can be considered as a boundary problem for the system of ordinary

differential Equations (2) and (3). Unfortunately, while the shooting method, in which

an initial value problem for an ordinary differential equation is solved repeatedly, can

be used to solve the classical two-points boundary problem [4–6] it is useless for

channel networks and thus the solution becomes more complicated.

Naindu, Murty Bhallamudi and Narasimhan [7] have proposed solving the SGVF

equation for a channel network by decomposing the network into smaller units, solving
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them using the IV order Runge-Kutta method and connecting the solutions to obtain

the final solution for the whole network using the shooting method. However, the

proposed algorithm holds for tree-type networks only.

A more general approach, suitable for any tree-type or looped network, is to

solve the energy Equation (5) directly. To this order, the equation is simultaneously

approximated for the entire network. Since natural rivers have variable cross-sections,

only the Adams-Moulton method of lowest order (the trapezoidal rule) can be applied

in this instance. It is absolutely stable and uses cross-sectional parameters at grid

points only. In this approach, only depths at each grid point and discharge over an

entire branch are considered as unknowns. This process produces a large system of

non-linear algebraic equations, which should be solved by an iterative method. Since

the Newton method often suffers from slow convergence or even lack of convergence,

the modified Picard iteration is applied, which ensures a convergent solution of the

SGVF equation for an open channel network of any type and any boundary conditions.

In the steady flow case, the 1D linear advective-diffusive equation of pollutant

transport can be solved without approximation of derivatives. In this approach, the

exact solution of the advective-diffusive equation, with constant coefficients obtained

for the upstream boundary condition in the form of a Dirac delta function, is used.

Therefore, instead of a system of algebraic equations given by the finite difference or

element method, an integral of convolution must be calculated numerically using the

quadrature method only. The convolution approach, successful for SGVF in a single

channel [8], is developed below for an open channel network.

2. Solution of the SGVF equation

for an open channel network

The finite difference method is applied to solve the boundary problem for

the ordinary differential equations. A channel of length 〈0,L〉 is divided by N

nodes into N −1 intervals ∆xi. Equation (5) is approximated in the middle of each

interval xi+∆xi/2 by centred difference, coincident with the implicit trapezoidal

rule, a method with two important advantages: it is absolutely stable and ensures

approximation of the second order of accuracy [4]. Its application to solve Equation (5)

with the friction slope, S, defined by Equation (4) yields:
(

Hi+1+
αQ2

2gA2i+1

)

−

(

Hi+
αQ2

2gA2i

)

+
∆xi
2

(

n2Q|Q|

R
4/3
i A

2
i

+
n2Q|Q|

R
4/3
i+1A

2
i+1

)

=0, (6)

where i is the index of a cross-section and ∆xi – the length of interval of number i.

Similar equations can be written for each interval ∆xi(i= 1,2, .. . ,N −1). We

thus obtain a system of N −1 algebraic equations with N +1 unknowns. There are

N water levels Hi at the nodes and flow discharge Q in the channel. When flow in

a single channel is considered, this system needs to be completed with two additional

equations obtained from the imposed boundary conditions. Assuming subcritical flow

in the channel [9], the following conditions should be imposed at its ends:

H1=Hu, HN =Hd, (7)

where Hu and Hd are the water levels imposed at, respectively, the upstream and

downstream end of the channel.
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The final system of equations can be presented in matrix form as follows:

AX =B , (8)

where A – matrix of coefficients, B = (Hu,0, . .. ,0,Hd,0)
T – vector of the right hand

side,X =(H1,H2, .. . ,HN−1,HN ,Q)
T – vector of unknowns, T – transposition symbol.

Matrix A of dimensions (N+1)×(N+1) is very sparse (see Figure 1), with its

non-zero elements defined as follows:

a1,1=1, a1,N+1=
αQ

2gA21
, (9a)

ai,i=1, ai,i−1=−1 for i=2,3,. . .,N−1, (9b)

ai,N+1=−
αQ

2gA2i−1
+
αQ

2gA2i
+
∆xi−1
2

(

n2|Q|

R
4/3
i−1A

2
i−1

+
n2|Q|

R
4/3
i A

2
i

)

for i=2,3, .. . ,N−1,

(9c)

aN,N =1, aN,N+1=
αQ

2gA2N
, (9d)

aN+1,N−1=−1, aN+1,N =1, (9e)

aN+1,N+1=−
αQ

2gA2N−1
+
αQ

2gA2N
+
∆xN−1
2

(

n2|Q|

R
4/3
N−1A

2
N−1

+
n2|Q|

R
4/3
N A

2
N

)

. (9f)

Figure 1. Structure of matrix A; dots represent non-zero elements

When flow in a channel network is considered, subcritical flow is assumed in

all branches. A set of equations in the form of Equation (8) can be written for each

channel. Additionally, the following continuity equation is applicable for the junction

of channels I, J , K formed by nodes i, j, k (see Figure 2):

QK =QI+QJ , (10)

as well as the energy equations:

Hi+
αQ2I
2gA2i

=Hj+
αQ2J
2gA2j

=Hk+
αQ2K
2gA2k

. (11)

Losses have been neglected in the above equations; sometimes the velocity heads can

be also neglected, being relatively small.
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Three additional equations in the form of Equations (10) and (11) should be

written for each junction of the considered channel network, enabling us to close

the global system of equations for the entire network. The matrix of this system

contains submatrices describing each channel in the form presented in Equation (8),

connected by the junction equations. The final matrix may be quite large, but it is

always banded and very sparse.

Figure 2. Open channel network; arrows indicate positive flow direction

The Picard iterative scheme applied for Equation (8) yields:

A(X (l))X (l+1)=B , (12)

where l is the iteration index. Unfortunately, regardless of the first approximation

of discharge Q, it is impossible to obtain a solution of the considered system.

The computation shows that water levels tend to the expected values relatively

quickly, whereas discharge Q(l) oscillates during subsequent iterations with a constant

amplitude. In order to suppress these oscillations, Szymkiewicz and Szymkiewicz [10]

have proposed the following improvement of the Picard method:

A∗X (l+1)=B , (13)

where

A∗=A

(

X (l)+X (l−1)

2

)

(14)

is a modified matrix of coefficients. This means that, in order to calculate vector X in

iteration l+1, matrixA is calculated using the average value ofX from two preceding

iterations. For l=1, A∗=A(X (0)) is recommended.

Having assumed the first estimation of the unknown vector X (0), the iterative

process is continued until two succeeding solutions satisfy the following convergence

criteria:
∣

∣

∣
X
(l+1)
i −X

(l)
i

∣

∣

∣
≤ εH for i=1, .. . ,N and

∣

∣

∣
X
(l+1)
N+1 −X

(l)
N+1

∣

∣

∣
≤ εQ, (15)

where εH and εQ respectively represent the specified tolerances for water level Hi and

discharge Q.
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Although an iterative method seems suitable for solving Equation (12), which

is a system of linear algebraic equations with a very sparse matrix of coefficients,

attempts to solve it with the Gauss-Seidel or SOR methods have failed. Finally,

Equation (12) has been solved by the Gauss elimination method in its frontal version,

which uses non-zero elements of matrix A only.

3. Solution of the transport equation by splitting

After differentiating the first two terms of Equation (1) and taking into account

the continuity equation for open channel flow without lateral inflow [9], we obtain:

∂f

∂t
+U
∂f

∂x
−
1

A

∂

∂x

(

DA
∂f

∂x

)

−ϕ=0, (16)

where U =Q/A – cross sectional average velocity, ϕ – source term.

An approach based on the splitting technique is applied to solve the above

equation. Equation (16) can be rewritten in the following form:

∂f

∂t
+F (1)+F (2)=0, (17)

where

F (1)=U
∂f

∂x
−
1

A

∂

∂x

(

DA
∂f

∂x

)

and F (2)=−ϕ. (18)

Consequently, the solution of Equation (17) can be split in two stages for every time

step ∆t [8]. In the first stage, advective-diffusive transport without the source term

is solved:
∂f (1)

∂t
+U
∂f (1)

∂x
−
1

A

∂

∂x

(

DA
∂f (1)

∂x

)

=0, (19)

with the initial condition of f (1)(t)= f(t). In the second stage, the equation containing

only the source term:
∂f (2)

∂t
=ϕ, (20)

is solved with the initial condition being the solution of Equation (19), f (2)(t) =

f (1)(t+∆t). Finally, we obtain f(t+∆t) = f (2)(t+∆t). Equations (19) and (20) are

solved respectively using the convolution approach and the finite difference method.

Let us consider Equation (19) in which the superscript has been omitted for

the sake of simplicity:

∂f

∂t
+U
∂f

∂x
−
1

A

∂

∂x

(

DA
∂f

∂x

)

=0, (21)

where U =U(x) is the average cross-sectional velocity.

For constant coefficients (U =const, D=const, A=const) and the initial and

boundary conditions f(x,t= 0) = 0, f(x= 0,t) = δ(t) and f(x=∞,t) = 0 for t≥ 0,

Equation (21) has an exact solution [11]:

f(x,t)=
1

(4πD)1/2
x

t3/2
exp

(

−
(Ut−x)2

4Dt

)

. (22)

The f(x,t) function is the output at any cross-section located at x when the

Dirac delta function, δ(t) [12], is imposed at x= 0 as input. Therefore, f(x,t) can
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be considered as an impulse response of the system in the form of a channel section

of length x. Equation (22) holds for t > 0 and x> 0. This function is never negative

(f(x,t)≥ 0 for t> 0), has a single peak and its integral over time is equal to unity. Its

location along the time axis is determined by U and x, whereas its shape is determined

by the coefficient of diffusion, D. For decreasing values of D, the function becomes

ever sharper and more symmetrical. For D→ 0, the f(x,t) function tends to the Dirac

delta function, δ(t). In hydrology, Equation (22) is known as an instantaneous unit

hydrograph (IUH) for a linear diffusive wave [11].

Knowing the impulse response function and using the convolution, we can

calculate the output for any input. The convolution approach to solving the advection-

diffusion equation holds for steady uniform flows. However, in natural streams a steady

flow is spatially varied, i.e. its velocity and cross-sectional area vary along the x axis.

Fortunately, the convolution approach can also be adapted for steady, gradually varied

flows [8].

After differentiation of the diffusive term, Equation (21) assumes the following

form:
∂f

∂t
+

(

U−
∂D

∂x
−
D

A

∂A

∂x

)

∂f

∂x
−D
∂2f

∂x2
=0. (23)

In this equation, advective velocity and diffusivity vary in space. The U(x) and

A(x) functions are given by solutions of Equations (2) and (3). In order to solve

Equation (23) using convolution, we can freeze velocity and diffusivity locally as

follows. A channel of length L is divided into M intervals of length ∆xi as in the

finite difference or finite element method (see Figure 3a). Each channel section is

considered as a dynamic system in which advective velocity and the coefficient of

diffusion are assumed to be constant. Now, we introduce two new variables defined

as follows:

ui=
1

2

[

(

U−
∂D

∂x
−
D

A

∂A

∂x

)

i−1

+

(

U−
∂D

∂x
−
D

A

∂A

∂x

)

i

]

≈

≈
1

2

[(

Ui−1−
Di−Di−1
∆xi

−
Di−1
Ai−1

Ai−Ai−1
∆xi

)

+

(

Ui−
Di−Di−1
∆xi

−
Di
Ai

Ai−Ai−1
∆xi

)]

, (24)

di=
1

2
(Di−1+Di), (25)

where ui is the modified average advective velocity between node i−1 and node i and

di – the average coefficient of diffusion between node i−1 and node i.

Figure 3. A scheme of a channel: (a) divided into intervals of length ∆xi
and (b) represented by M subsystems [8]
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A river section of length ∆xi, bounded by cross-sections x= xi−1 and x= xi,

is considered as a dynamic, linear and time-invariant system. Therefore, accordingly

to Equation (22), its response function is as follows:

hi(t)=
1

(4πdi)1/2
∆xi
t3/2
exp

(

−
(uit−∆xi)

2

4dit

)

. (26)

The fi(t) function is calculated for nodes located along the channel axis

(i=1,2,3,. . ., see Figure 3b) using the following convolution integral:

fi(t)=

∫ mi

0

hi(τ)fi−1(t−τ)dτ, (27)

where mi is the memory of system i.

This means that an output at time t is determined by an input taken from time

interval 〈t−mi,t〉, as the h(t) function insignificantly differs from zero for t ≥mi.

Let us remember that a channel of length L, which has been divided into sections of

length ∆xi, is considered as a series of M subsystems, where the output from one

section is the input to the next (see Figure 3b). Integration can be performed with

the trapezoidal rule and time step equal to ∆τ . The value of fi(t−τ) is calculated

using linear interpolation. Application of Equation (27) will be successful provided

that the balance of mass is maintained [8].

At the second stage of solving the transport equation, Equation (20) must be

solved, using the solution of previously solved Equation (21). The domain of solution

(0≤x≤L and t≥ 0) is covered by grid points as in the finite difference method. The

mesh resulting of dimensions ∆x ·∆t is presented in Figure 4.

Figure 4. The grid points applied to solve Equation (20)

It should be remembered that a constant flow velocity U has been assumed

between cross-sections xi and xi+1. Let us also assume that concentration f is known

at all grid points until time level t and at point xi at time level t+∆t. The aim is

to calculate concentration f at point (xi+1,t+∆t). As Equation (21) has been solved

during the first stage using the convolution approach:

f
(1)
i+1(t+∆t)=

∫ mi

0

hi(τ)fi(t−τ)dτ, (28)

tq411e-e/372 30IX2008 BOP s.c., http://www.bop.com.pl



The Pollutant Transport Equation for a Steady, Gradually Varied Flow. . . 373

f (1)(t+∆t) is known. In the second stage, the final concentration at node (xi+1,t+∆t)

is obtained by solving Equation (20):

∂f (2)

∂t
=ϕ, (29)

with the initial condition f (2)(t)= f (1)(t+∆t).

In order to cover the distance between cross-sections xi and xi+1, a particle of

dissolved matter requires time equal to:

∆T =
∆x

Ui
. (30)

During this time, the pollutant decays and the effect of this process must be taken into

account when integrating Equation (29) in the second step of the solution process.

Solving Equation (29) by the trapezoidal rule yields:

f
(2)
i+1(t+∆t)= f

(1)
i+1(t+∆t)+

∆T

2

(

ϕ
(1)
i+1(t+∆t)+ϕ

(2)
i+1(t+∆t)

)

, (31)

where: i is a cross-section’s index, ∆T – the time of a particle travelling from cross-

section i to cross-section i+1 and ∆t – mesh dimensions in the t direction.

This method is absolutely stable and ensures the second order of accuracy with

regard to t [4]. If the source term depends on concentration f , Equation (31) will

become non-linear and, consequently, an iterative method will have to be applied for

its solution.

In order to solve the problem of pollutant transport in an open channel network,

additional relations resulting from the mass conservation principle must be introduced

for each junction or bifurcation of the channels. The following equation holds for

a junction of two channels, as presented in Figure 5a:

fk =
fiQi+fjQj
Qi+Qj

, (32)

whereas the following relations are valid for a channel bifurcation, as presented in

Figure 5b:

fk = fi and fk = fj . (33)

Figure 5. Junction (left) and bifurcation (right) of the channels;

arrows indicate the positive flow direction

Equations (32) and (33) allow us to solve the advective-diffusive transport

equation for the entire network.

tq411e-e/373 30IX2008 BOP s.c., http://www.bop.com.pl



374 R. Szymkiewicz

4. Numerical experiments

4.1. Test 1

SGVF is considered in the looped channel network shown in Figure 6.

Figure 6. Looped channel network

It consists of 10 branches of trapezoidal cross-sections. Each channel is divided

into sections of constant length. The network’s characteristics are presented in Table 1.

Table 1. Channel characteristics for the network shown in Figure 6

Length Bed width Side Bed ∆x
Channel n

[m] [m] slope slope [m]

1 500 5.0 1.5 0.0005 0.035 50

2 500 5.0 1.5 0.0005 0.035 50

3 500 5.0 1.5 0.0005 0.035 50

4 1000 5.0 1.5 0.0005 0.035 50

5 1000 5.0 1.5 0.0005 0.035 50

6 1000 5.0 1.5 0.0005 0.035 50

7 1000 5.0 1.5 0.0005 0.035 50

8 500 5.0 1.5 0.0005 0.035 50

9 500 5.0 1.5 0.0005 0.035 50

10 500 5.0 1.5 0.0005 0.035 50

The total number of nodes equals 159. Bed elevation is 10.000m at the upstream

end (point a) and 8.500m at the downstream end (point d). The boundary conditions,

specified in terms of water levels at the upstream and downstream ends of network,

are as follows: Ha=11.750m, Hd=11.500m.

Numerical tests have demonstrated that the modified Picard method is capable

of producing very good results. The proposed approach ensures a convergent solution

regardless of the first estimation of discharge in the channels. For Q
(0)
i (i=1,2,. .. ,10)

equal to 15m3/s, a solution of tolerances εH = 0.001m and εQ = 0.001m
3/s was

obtained after 16 iterations. The calculation results for the network shown in Figure 6

and characterized in Table 1 are presented in Table 2.
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Table 2. Results for the network shown in Figure 6

Discharge Upstream Downstream
Channel

[m3/s] water level [m] water level [m]

1 9.706 11.750 11.575

2 4.853 11.575 11.544

3 4.853 11.575 11.544

4 2.427 11.544 11.536

5 2.427 11.544 11.536

6 2.427 11.544 11.536

7 2.427 11.544 11.536

8 4.853 11.536 11.526

9 4.853 11.536 11.526

10 9.706 11.526 11.500

Let us now apply the convolution approach to solving the advective-diffusive

transport equation for a steady uniform flow in the considered channel network.

The flow’s velocity, U(x), and cross-sectional areas, A(x), are known since they were

calculated previously using the SGVF equation. The initial concentration is assumed

to equal zero along all of the network’s branches. The following fa(t) function is

imposed at the beginning of channel 1 (i.e. at point a, see Figure 6):

f1(t)=

{

0 for t< 0.5h
fm for 0.5h≤ t≤ 1.5h
0 for t> 1.5h

(34)

This means that a rectangular distribution of concentration is assumed (Figure 7,

point a), a highly challenging test for the numerical method of solution.

The f(t) functions at points b, c and d were calculated for a diffusion coefficient

equal to D = 0.00005m2s−1. As the source term was neglected, one could expect

that the imposed rectangular distribution of concentration would be transformed

insignificantly, since the accepted value of the diffusion coefficient was very low. The

obtained solutions are presented in Figure 7. Indeed, only the corners are rounded off

in the concentration distribution calculated at points b, c and d. Due to the considered

network’s structure (see Figure 6), the distributions of concentration in all branches

are deformed by diffusivity only. One may as well as suppose that the error generated

by the implicit trapezoidal method used to integrate convolution was very low. The

calculations were carried out for ∆τ =0.1s and ∆t=100s.

The Peclet number [13]:

Pc=
U∆x

D
, (35)

for the data accepted in the considered example was greater than 750000, which

involves absolute domination of advection in the transport process. Notably, no

oscillations, typical for the finite difference and finite element methods, were observed

in the calculated distributions.

Our next example deals with the application of the proposed method to solving

the advection-diffusion transport in the same network with the same set of data but
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Figure 7. Advective-diffusive transport of initially rectangular distribution of concentration

at selected points of the looped network with D=0.00005m2/s and without the source term
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Figure 8. Advective-diffusive transport of initially rectangular distribution of concentration

at selected points of the looped network with D=0.00005m2/s and β=0.00005s−1
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with a source term describing the transported substance’s decay. The simplest formula

of the source term:

ϕ=β ·f, (36)

where β is the constant of decay, was introduced into the transport equation. The

distribution of concentration at selected points of the network shown in Figure 6

is presented in Figure 8. In this case, the travelling rectangular distribution of

concentration is simultaneously subjected to two processes: smoothing due to diffusion

and reduction due to the source term, in which β=0.00005s−1. The obtained solution

presented in Figure 8 appears to be close to the exact one, since in this case the source

term has a linear form. Consequently, the splitting technique applied for the solution

of the transport equation does not generate any additional error [14].

4.2. Test 2

This example deals with a tree-type channel network. The SGVF is considered in

the channel network shown in Figure 9, consisting of 9 branches trapezoidal in cross-

sections. Each channel is divided into intervals of constant length. The network’s

characteristics are presented in Table 3. The total number of nodes is 189 and bed

elevations at the upstream ends are 5.000m at point a, 4.850m at point b, 4.800m at

point c, 4.750m at point d and 4.750m at point e. Bed elevation at the downstream

end (point f) is 3.500m. The boundary conditions are specified in terms of water levels

at upstream (a, b, c, d, e) and downstream (f) ends of the network (see Table 4).

Figure 9. Tree-type channel network

For the initially assumed Q
(0)
i (i= 1,2, .. . ,9) equal to 5m

3/s, a solution with

tolerances εH = 0.001m and εQ = 0.001 m
3/s was obtained after 15 iterations. The

results are given in Table 4.

As previously, the initial concentration of pollutant at t=0 was assumed to be

nil along all the network branches. Boundary conditions were imposed at the upstream

ends of all pending branches. The imposed fa(t) and fc(t) functions assume the form

of Equation (34) at points a and c, whereas at points b, d and e the corresponding

functions are fb(t) = 0, fd(t) = 0, fe(t) = 0 for t≥ 0, which means that the pollutant
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Table 3. Channel characteristics for the network shown in Figure 9

Length Bed width Side Bed ∆x
Channel n

[m] [m] slope slope [m]

1 500.0 2.50 1.5 0.0004 0.025 25.0

2 500.0 2.50 1.5 0.0003 0.025 25.0

3 500.0 2.50 1.5 0.0006 0.025 25.0

4 500.0 2.50 1.5 0.0006 0.025 25.0

5 500.0 4.00 1.5 0.0007 0.025 25.0

6 500.0 2.50 1.5 0.0005 0.025 25.0

7 500.0 3.00 1.5 0.0010 0.025 25.0

8 1500.0 5.00 1.5 0.00033 0.025 75.0

9 500.0 6.50 1.5 0.0005 0.025 25.0

Table 4. Results for the network shown in Figure 9

Discharge Upstream Downstream
Channel

[m3/s] water level [m] water level [m]

1 2.842 6.250 6.151

2 2.354 6.220 6.154

3 2.649 6.050 5.980

4 2.649 6.050 5.980

5 5.196 6.141 6.030

6 0.629 6.050 6.045

7 5.298 5.962 5.865

8 5.825 6.031 5.869

9 11.122 5.851 5.750

loads introduced at points a and c have been successively dissolved at each junction

through mixing with pure water. Consequently, the initial rectangular distribution

is reduced in the next branches even though the source term is omitted in the

governing equation. Moreover, the concentration distributions are transformed by the

diffusion process only. The computation results obtained for ∆τ =0.125s, ∆t=100s,

D=0.00005m2/s and β=0 are presented in Figure 10.

Results obtained for the same network (shown in Figure 9) and the same data

set but with a source term of β=0.00002s−1 are shown in Figure 11. In this case, the

initial rectangular distributions of concentration are reduced not only through mixing

at the channel junctions, but also by pollutant decay. The effect of decay can be

observed by comparing the corresponding graphs at points g, h, and f of Figures 10

and 11.

5. Conclusions

The equation of steady, gradually varied flow was integrated by means of

the implicit trapezoidal rule to determine flow profiles and discharges in an open

channel network. This approach yields a non-linear system of algebraic equations.

If the depths at each grid point and the discharge over the whole channel are
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Figure 10. Advective-diffusive transport of initially rectangular distribution of concentration

at selected points of the tree-type network with D=0.00005m2/s and without the source term
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Figure 11. Advective-diffusive transport of initially rectangular distribution of concentration

at selected points of the tree-type network with D=0.00005m2/s and β=0.00005s−1
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considered as unknowns, the system cannot be solved using standard, e.g. Newton

or Picard, methods due to the lack of convergence. Therefore, a modification of

the Picard method was applied to ensure convergent iteration. Averages from two

successive iterations were used to suppress saw-teeth. The Gauss elimination method

adapted for sparse matrices of coefficients was used as a linear solver. The proposed

improvement of the Picard method proved to be effective. The obtained calculation

results have confirmed that the proposed approach can be applied for tree-type and

looped networks when water levels or discharges at channel ends are imposed as

boundary conditions. The iterative process is almost always convergent, for channel

networks of any complexity.

The splitting technique was applied to solve the advective-diffusive transport

equation with a source term. For a channel section of length ∆x, considered as

a linear and time-invariant system, the solution of the advection-diffusion transport

equation may be presented in the form of a convolution integral. Considering a river

section as a linear and time-invariant system, pollutant transport can be described by

the differential advective-diffusive equation as well as the integral of convolution,

the two approaches being equivalent. Therefore, instead of solving a differential

equation with imposed initial and boundary conditions by the finite difference or

element method, the integral of convolution may be calculated using the quadrature

method only. Consequently, it will produce no numerical diffusion or dispersion. The

calculation carried out for transport caused by steady, gradually varied flow has

confirmed high accuracy of the obtained solution. The obtained results have shown

the proposed approach to be helpful in solving advective-diffusive transport. The

proposed algorithm has no limitations typical for numerical methods.
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