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Abstract: Determination of the model’s parameters is an important stage of mathematical models’
application. In the case of a free-surface 1D unsteady flow model defined by the de Saint-Venant
equations, one of the groups of parameters to be estimated is the set of parameters describing energy
losses due to friction. The parameters can be estimated in different ways, but in most cases the
task of their determination is an ill-posed problem. In such cases, optimization methods are the
most common approach. In spite of numerous examples of such applications, these techniques are
still not fully recognized, as there are several problems of different nature that require thorough
analysis. Automatic optimization methods are discussed in the paper. The most important questions
of choosing the objective function and the optimization algorithm are considered. Problems connected
with data reliability and accessibility and their influence on the solution are discussed. The most
common pitfalls of optimization applications are discussed. The analysis is supported with numerical
examples.

Keywords: determination of parameters, optimization procedures, well-posed and ill-posed prob-
lems, numerical methods

1. Introduction

A condition of proper and effective application of mathematical models is proper
estimation of its parameters. As the quality of such estimates obviously influences
the accuracy of results obtained from the model’s application, it is an important
stage in the process of model construction. From the formal point of view, the task
of parameter determination can be qualified as an inverse problem. Solving inverse
problems is generally more difficult than solving classical (or conventional, direct)
problems. As inverse problems must often be considered ill-posed, it is more difficult
to achieve uniqueness and stability of their solutions, which can be very sensitive to
minor changes of the model’s input.

In the case of problems of identification, the parameters to be estimated can
be diversified in character: from those which have a specified physical meaning and
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a clear physical interpretation to totally conceptual parameters, artificially introduced
to the model by its user. Thus, various methods are applied to determination and their
comprehensive and full classification would be difficult.

Several groups of parameters to be identified can be distinguished in the de
Saint-Venant equations, the most popular mathematical description of 1D free-surface
unsteady flow, which can be presented in the following form [1]:
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where Q is flow discharge, H – water depth at the cross-section, A – the cross-section’s
area, Sf – hydraulic slope, S0 – channel bottom slope, g – acceleration due to gravity,
x – space and t – time.

The basic groups of parameters are connected with channel geometry and
energy losses due to friction. If any additional factors influencing unsteady flow in
the channel are included in the phenomenon’s mathematical description, e.g. lateral
inflow to the channel or the influence of wind, the list of parameters to be estimated
will be extended to include values characterizing the analyzed factors. While the
parameters describing channel geometry are usually measurable and estimation of
their values is usually an experimental problem (or a question of approximation on
the basis of measurements), the other group of parameters – those characterizing
friction in the channel – are not measurable and require other methods to determine
their values.

The parameters connected with friction losses in the channel are the coefficients
appearing in the formula describing the friction term, or – more precisely – in
the formula for hydraulic slope, Sf , which can be presented in its general form as
follows [2, 3]:

Sf =
rU |U |r1−1

Rm
, (3)

where R is hydraulic radius, U – average flow velocity and r, r1 andm are coefficients,
of which r is dependent on m, r1 and the roughness of the channel. The r1 parameter
is connected with the type of flow in the channel and may assume the following
values [3]:

• r1=1.00 for laminar flow,
• r1=1.75 for flow with mild turbulences,
• r1=2.00 for fully developed turbulent flow

and values from the 〈1.75−2.00〉 range for intermediate forms of turbulent flow.
As it is well known [4] that every maxi-scale flow of surface water is turbulent,

it is most often assumed that r1=2.00. Then formula (3) assumes the following form:

Sf =
rU |U |

Rm
, (4)

which – by analogy to the commonly applied Manning formula – can be expressed as:

Sf =
n2U |U |

Rm
(5)

and r=n2. If m=4/3, n can be identified with Manning’s roughness coefficient.
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There are also empirical formulas, e.g. Pawlovsky’s formula [5], representing
the functional dependences between parameter m, hydraulic radius R and parameter
n. However, it is usually assumed that the mentioned parameters are independent
and the values of n and m (or n only, when the value of m is assumed, e.g. m=4/3)
are searched in the process of determination. The number of estimated parameters is
eventually reduced to a single coefficient n or a set of coefficients n when a channel
of variable roughness or a network of channels is considered.

In the general case, the roughness coefficient is variable along the channel. It
may also assume different values in a cross-section, due to diversified roughness of
various sections of the wetted perimeter. In natural conditions, the coefficient may be
a function of flow discharge, Q, or water stage, h [6]. Moreover, it usually depends
on many other factors [7], which renders accurate estimation of its value extremely
difficult or even impossible. Thus, the dependence of the roughness coefficient on flow
discharge and water stage is sometimes neglected and for estimated the analyzed
cross-section as a substitutive coefficient representative for the whole cross-section.
In order to simplify the problem, the channel is often segmented into several sections
of constant roughness or a uniform value of n is assumed for its whole length. Even
if such assumptions are made, the problem of estimation of roughness coefficients is
complicated. It becomes even more complex in the case of channel networks.

Determination of parameters describing friction in open channels is most often
an ill-posed problem. There are only several, very simplified cases of free-surface flow
for which proper formulation of the problem yielding a unique and stable solution is
possible [8, 9]. In most often cases, application of numerical methods in solving the
de Saint-Venant equations produces a set of algebraic equations in which the number
of equations is not equal to the number of unknowns [10]. The problem so formulated
does not have a unique solution [11] and other methods of parameter estimation must
be considered.

2. Methods of determining friction parameters

The ways of determining parameters describing friction evolved with the
technical progress in calculations and measurements. The first methods of roughness
estimation were connected with observations of the channel – its shape, condition,
cross-section dimensions, irregularities in cross-section shapes and the ground surface,
the intensity and kind of vegetation, additional obstacles in the channel, etc. [7, 10].
The observations were sometimes supported with analogy to other channels of known
roughness parameters. However, this kind of estimation suffers from relatively high
subjectivity its accuracy depends on the researcher’s experience. It is also possible to
estimate the value of roughness coefficient on the basis of observations according to
the procedure proposed by Cowan [7]. In this approach, the coefficient is calculated as
a sum of components taking into account various roughness-influencing factors and
the obtained sum is multiplied by a correcting coefficient, taking into account the
channel winding. The values of components are estimated on the basis of tables.

The methods connected with observations continue to be applied nowadays.
More accurate procedures of roughness estimation were developed on their basis,
including detailed analysis of vegetation of the flood plains as well as the main
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channel [12, 13], and thus requiring a detailed description of the vegetation’s structure
or application of its substitutive structure. This requires relatively large volumes of
reliable data.

A popular approach is to estimate roughness on the basis of tabular values.
Chow [7] also presents a method of its determination on the basis of velocity profiles
in channel cross-sections. Sometimes the formulas for steady flow are applied to
unsteady cases, an approach proposed by Vervey, Baltzer and Lai [10]. However,
the trial-and-error method persists as one of the most commonly used methods of
estimating roughness. It requires observed flow and/or stage hydrographic data, which
may render the estimation more difficult, but at the same time more adequate in the
case of unsteady conditions in the channel. However, this method is subjective, as
it requires visual comparison of simulated and observed values of flow and/or water
stage. It can also be difficult to recognize the model’s sensitivity to parameter changes,
especially when the number of parameters is high.

All the methods presented above suffer from a relatively high degree of subjec-
tivity, their accuracy is relatively low or they require large amounts of data (e.g. con-
nected with the structure of vegetation), experience, or numerous calculations (e.g. the
trial-and-error method). Moreover, most of the approaches presented above are oblivi-
ous to variations of parameters due to the type of flow in the channel. Values obtained
for steady flow can be totally different from those describing unsteady conditions. It
is therefore purposeful to search for other methods of solving this problem.

The ideas presented above can be replaced with a more formal approach, in
which the problem of parameter estimation is formulated as an inverse problem, well-
or ill-posed, depending on the analyzed case. As a result, the degree of subjectivity
decreases, the effectiveness of calculations increases and in some cases it is possible
to obtain a unique solution.

Unfortunately, cases for which well-posed problems can be formulated are quite
rare, though very interesting. A properly posed system of equations satisfies three
conditions: (i) there exists a solution, which is (ii) unique and (iii) stable [14]. One of
such cases is a steady flow in a single channel of constant roughness, n, for which
the flow discharge in the channel and water levels in upstream and downstream
cross-sections are known. In such a case, a well-posed boundary problem can be
formulated, the number of equations in the mathematical model is equal to the number
of unknowns and it is possible to obtain a unique and stable solution [8, 9]. However,
in most other cases, especially unsteady ones, the problem cannot be formulated as
well-posed. In such situations automatic optimization procedures can be applied.

3. Theoretical background of automatic optimization

Automatic optimization is an approach in which a systematic iterative proce-
dure is involved to search a set of parameter values for which a chosen function (called
the optimization criterion) assumes its extreme value. As the optimization criterion,
sometimes referred to as the “objective function”, is usually formulated as a chosen
error criterion, optimization is in such cases a problem of minimizing the objective
function. The function chosen as an optimization criterion compares the simulated
and observed values of flow and/or water stage for each set of parameters and the
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optimal values of parameters are found as a result, for which simulations are the clos-
est to observations. A schema of the optimization problem is presented in Figure 1.
The idea is similar to that of the trial-and-error method, but the whole process is au-
tomatic and parameter “improvement” is realized according to the chosen automatic
procedure. Moreover, the optimal set of parameters is found not on the basis of visual
comparison but on the basis of values of the objective criterion. Thus, the problems
of subjectivity and large number of trial-and-error calculations are overcome.

Figure 1. Schema of an automatic calibration (optimization) problem

When considering optimization procedures, an important aspect connected with
data quality should be taken into account. It is important to remember that both ob-
servations and simulations suffer from different kinds of errors, e.g. measurement er-
rors (including “gross errors” resulting from human mistakes, “random errors” result-
ing from a lack of precision, errors connected with irregular channel geometry, etc.),
model errors (associated with imperfection of the phenomenon’s mathematical de-
scription) and numerical errors (rounding errors, local truncation errors, etc.) [9, 10].
In the absence of such errors, automatic calibration would lead to exact, true values of
the searched parameters. However, in practice, due to errors the results of calibration
are “optimal” in the sense of minimizing the objective function and the “best” values
of parameters will suffer from the influence of the errors involved. While it appears
to be unavoidable in practical problems, the influence of the errors can be examined
in theoretical cases based on synthetic data.

Automatic calibration is a very popular approach to solving calibration prob-
lems of diverse nature, not only those connected with open channel flow. Optimization
procedures are widely applied in various ill-posed problems of many disciplines of sci-
ence, in civil engineering, ground water flow, conceptual models, etc. In this range of
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applications, investigations in the field of open channel flows are relatively rare [10],
however, many examples of such implementation can be found in the literature.

The first applications of free-surface flow model parameter optimization are
usually attributed to Becker and Yeh [15, 16]. Later examples were presented in [6,
10, 17–22] and many other works. The various approaches differ in their choice of the
optimization method, the objective function, flow conditions, error analysis, etc. After
more than thirty years of experience in application of automatic calibration in many
fields, there is a wide spectrum of analyzed types of objective functions and tested
optimization procedures. One could presume that the problem is well-recognized
now and easily solvable. However, despite the years of experience, the problem of
parameter optimization is still not an easy one, especially for more complex cases
(e.g. unsteady flow in a channel of variable roughness). This is due to various reasons,
mostly connected with practical aspects of properly choosing the objective function
and optimization procedures for particular cases and with limited accessibility and
reliability of data, often determining the choice of optimization method and the
calculations’ accuracy. Some of the problems mentioned above are described and
illustrated with numerical examples below.

4. Practical aspects of applying optimization procedures

As has been mentioned above, application of the optimization algorithm is
connected with two main problems: (a) the choice of an error criterion and an objective
function and (b) the choice of an optimization method, i.e. the algorithm of the
objective function’s minimization. Although there are many theoretical possibilities
in this respect, as there is a wide range of objective functions and optimization
methods, the problem is quite important and not trivial. The form of the optimization
criterion and the type of the optimization procedure not only influence the duration
and accuracy of calculations, but may produce incorrect parameter values if the choice
of method has been improper. Another limitation is the accessibility of measurement
data, key information in each optimization problem. The amount, kind and quality of
data have a strong influence on the calculation results and often determine the choice
of the objective function. Thus, a seemingly easy task of choosing the optimization
method and error criterion appears to be a fundamental aspect of properly run
calculations. As in many examples of automatic calibration applications, the most
popular and simplest form of error criterion is chosen. The optimization method
is chosen from a list of those most popular. Certain aspects of this choice will be
discussed more thoroughly on the example of roughness parameter identification for
the de Saint-Venant equations.

4.1. The choice of the objective function in friction parameter

determination

As has been mentioned above, there are many possible forms of objective
functions applicable in optimization problems for free-surface flow. The choice of the
right formula is very important. The shape of the objective function for a particular
case may facilitate and quicken the calculations or – on the contrary – complicate
them, in extreme cases rendering them entirely inefficient and leading to false
solutions. An objective function can have a single extreme or many local optima.
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Moreover, it may “judge” the quality of the chosen parameters more or less severely
and react with varying sensitivity to minor parameter changes. (It can even be
insensitive to some of the parameters). The objective function can exhibit varying
sensitivity to the bias of observation data, which can be examined if synthetically
generated observation data are applied. Last but not least, it can yield good matching
of one variable (e.g. water stages), while another (e.g. flow discharge) can be far from
the “true” one in the “optimal” case. Thus the choice of objective function may prove
to be essential, especially in more complex cases.

An ample survey of such functions can be found in [23]. An analysis of the
above-mentioned aspects can also be found in [9, 10]. Nevertheless, the most popular
optimization criterion continues to be the sum of squares of errors:

F =
N
∑

i=1

(

Ȳi−Yi
)2
, (6)

where Ȳi – an observed value, Yi – a simulated (calculated) value, i – the temporal
subscript (the index of the number of observations) and N – the total number of
observations.

The following modifications of criterion (6) can be found in the literature
(see [22, 24]):
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√

√
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, (7)
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√

√
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N
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w
(

Ȳi−Yi
)2
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where w is a weight coefficient enabling better fitting of the time of occurrence and
the maximum value of the observed variable, as well as many other forms of objective
functions of various complexity. Authors have concluded that, in spite of the numerous
possibilities of modification, there is often no justification for these forms and little
advantage over the “traditional” criterion (5). Khatibi et al. have presented two other
formulas for the error criterion (see [10]):

F =
N
∑

i=1

(

Ȳi−Yi
Ȳi

)2

, (9)

or

F =
N
∑

i=1

(

Ȳi−Yi
Yi

)2

. (10)

Although analyzed in the literature on synthetic observation data, most of the above-
mentioned formulas are very seldom applied in practice. The most popular formula
seems to be (6) [10, 15, 16, 18, 25], rarely (9) or (10) [10].

When parameter optimization for a free-surface flow is analyzed, the choice
of the error criterion is also connected with the physical aspects of the hydraulic
problem. Unsteady flow in an open channel is known to be described by two types
of unknowns (e.g. water stage and flow discharge, or water depth and flow velocity).
Two functions describing the evolution of these variables are obtained as the result
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of the classical unsteady flow problems’ solution. It is thus obvious that parameter
estimation (in this case – of friction parameters) should be realized on the basis of
information on measurements of both of the variables. In other words, in order to
determine the friction parameters properly, one should have both water stage and
flow discharge observations available. This involves two kinds of problems.

One of the problems is connected with the accessibility of data of both types
of variables. Most often, it is relatively easy to observe water stages at selected cross-
sections (usually only a few cross-sections along the channel). However, the practical
possibilities of obtaining flow discharge values are much more limited; in many cases
such measurements cannot be performed. Paradoxically, the sensitivity of water stages
to the friction parameter is subject to relatively small changes. If water stage is the
only variable observed, the optimization criterion usually assumes the following form:

F =
N
∑

i=1

(h̄i−hi)2 (11)

and „optimal” parameters values are obtained as a result of its application, but only in
the sense of convergence of the calculated and observed water stage values. However,
it is often relatively easy to find another set of parameter values (even by trial and
error), for which the observed and calculated stage hydrographs are also very well
matched, sometimes yielding visually identical result. As water stage observations are
always subject to measurement errors, the optimization run may thus lead to false
parameter values, especially when the number of observation samples is limited.

Variations of friction parameters have a stronger influence on flow discharge.
The shape of the discharge hydrograph is much more sensitive to even minor changes
of channel roughness. It complicates parameter estimation but can at the same
time enhance its accuracy and reliability. However, as the possibilities of discharge
measurements are much more limited than those of water stages, basing optimization
on water surface elevation only is often the only possibility. This is a paradox of the
practical side of optimization.

The other aspect of friction parameters’ optimization in an unsteady flow is
connected with the form of the objective function when both water stage and flow
discharge observations are available, a highly favorable situation due to reasons given
above. However, the use of the classical additive error criterion (6) for this case:

F =
Nh
∑

i=1

(

h̄i−hi
)2
+
NQ
∑

i=1

(

Q̄i−Qi
)2
, (12)

where Nh and NQ are respectively the numbers of observations of water stage and
flow discharge, may lead to incorrect parameter estimation. An interesting question
concerns the notation of Equation (12), where it is formally improper for two kinds
of variables of different physical meaning and units to be added. However, from
a mathematical point of view, the values of h and Q can be treated as non-dimensional
numbers, the physical interpretation of which is irrelevant for calculating the value of
the objective function. From this perspective, the values are additive and the notation
of Equation (12) can thus be considered proper and treated as an error criterion.
However, applying this formula can have serious consequences for the calculations. In
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many practical cases, the absolute values of water stage and flow discharge are known
to be quite different, often of different orders. As a result, the value of the objective
function can be dominated by the errors of one variable, the other having no influence
on the error criterion. Thus, when both water stage and flow discharge are observed,
which is beneficial for the optimization process, the efficiency of applying formula (12)
to a particular case should be analyzed or an alternative approach considered. One
of the following possible solutions can be applied [9]:

• modification of Equation (12) with a weight coefficient, taking into account the
variables’ unequal influence on the objective function’s value,
• applying a form of objective function based on relative errors (e.g. Equation (9)
or (10)),
• scaling the constitutive values of the objective function, or
• constructing two error criterions and applying the so-called multi-criterion
optimization.

The two first approaches appear to be the easiest to apply and thus particularly
worth considering. Examples of their application will be presented below.

4.2. The choice of the optimization method

Another important practical aspect of proper application of automatic calibra-
tion is the choice of the optimization procedure, which is an algorithm determining
the way in which the values of parameters will be corrected at next iterations and
how quickly optimal values will be found. The choice of the optimization method is
connected with the choice of the error criterion and the analyzed problem’s specific
features. One of the most important issues to be considered is whether the objective
function used in the considered case has one or more local optima. This determines
the method to be applied.

In general, optimization methods can be divided into two groups: (a) methods
of local optimization and (b) methods of global optimization [16–18]. Methods of local
optimization enable finding an optimum in the closest neighborhood of the starting
point. If there are many local optima in an objective function, these methods will find
the optimum closest to the point from which the searching has been started, which
may “falsify” the solution. For objective functions of many optima, application of local
optimization methods can lead to a local optimum being interpreted as the only one
in the search domain. However, local optimization methods are much easier to apply
than global optimization procedures and are often applied, even when more that two
parameters are searched (when assessing the number of local optima of an objective
function is difficult). The most popular local optimization methods are either non-
gradient (the successive searching method, the Gauss-Seidel method, etc.) or gradient
methods (e.g. the conjugate gradient method, the modified Newton-Raphson method
and the influence coefficient method). Local optimization methods were applied by
Becker and Yeh [15, 16], Wormleaton and Karmegam [19, 20], Wiggert et al. [17],
Fread and Smith [6], Khatibi et al. [10], Morris and Anastasiadou-Partheniou [22] and
many others (see [18]). Gradient methods are generally more effective and produce
solution more quickly. However, they are really effective for single-minimum objective
functions.
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Global optimization algorithms are mostly random methods of finding global
optima. However, random search is by no means chaotic; it means random procedures
supporting directed processes. The most interesting group of such methods are
evolution algorithms, in which an analogy to natural adaptation natural selection
processes is applied. Evolution algorithms are particularly effective when applied to
extremely complicated shapes of objective functions with many local optima [26–28],
solving of which requires relatively high expenditure and multiple calculations.
Obviously, such sophisticated methods are ineffective in simple single-optimum cases.

In unsteady flow problems, the choice of method must take into account the
degree of complication of a particular case, the number of searched parameters and the
chosen error criterion. The number of parameters is connected with assumptions made
for the analyzed task (parameters m and n can be searched or n only, roughness can
be constant or variable along the channel, etc.) and the channel or channel network’s
structure. Consequently, the various types of optimization problems in roughness
estimation be quite diversified: from relatively easy tasks of single-parameter search
and an objective function with a single optimum to complicated cases of multi-
parameter global optimization. Thus, each case should be analyzed on its own merits.

Examples of optimization applications in several cases of open channel flow
are presented in the following section. The above-mentioned practical aspects are
discussed, the chosen methods’ and objective functions’ effectiveness is analyzed, and
selected problematic aspects of the optimization techniques are presented. A more
detailed analysis of these issues may be found in [9].

5. Numerical examples

5.1. Steady flow in a simple channel network: synthetic data

Our first example will be the “artificial” case of steady flow in a simple channel
network consisting of three channels shown in Figure 2. The aim of our analysis is to
compare the effectiveness of applying different objective functions and optimization
methods and their mutual cooperation. The accuracy of the obtained solution will be
evaluated.

The most popular approach to steady flow is assuming that m in friction
term (5) is equal to 4/3, so that only roughness coefficients n are searched for in
the determination process. Three rectangular channels of width B =40m have been
assumed in the exemplary network of Figure 2. The bottom slopes of channels 1 (nodes
1–10) and 2 (nodes 11–20) are equal to 0.0001 and 0.0004 for channel 3 (nodes 21–
30). The distance between nodes, dx, is 2000 m. Assuming that “true” values of the
roughness coefficient are constant and equal to 0.03 for each channel and that three
conditions at boundaries are known, one can solve a properly-posed direct problem and
obtain the “real” values of water stage and discharge at all nodes of the network. The
calculated “real” values may be biased with noise representing measurement errors.
In practice, it is usually assumed that such errors have normal distribution [10, 29]
and may thus be easily generated in an artificial way. A more detailed description
of observation of data generation for this case (and the other ones discussed below)
may be found in [9]. In the presented case, the “real” data were biased with errors
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Figure 2. A schema of the channel network of example 5.1

of two different values: 10% and 5%. After such data preparation, the optimization
procedure was developed assuming that roughness parameters are unknown.

Three values of n were searched in the analyzed case, with five objective
functions chosen for analysis:

F1=
NH
∑

i=1

(

H̄i−Hi
H̄i

)2

+
NQ
∑

i=1

(

Q̄i−Qi
Q̄i

)2

, (13)

F2=
NH
∑

i=1

(

H̄i−Hi
Hi

)2

+
NQ
∑

i=1

(

Q̄i−Qi
Qi

)2

, (14)

F3=(1−λ)
NH
∑

i=1

(

H̄i−Hi
)2
+λ

NQ
∑

i=1

(

Q̄i−Qi
)2
, λ=

∑NH
i=1 H̄i

∑NH
i=1 H̄i+

∑NQ
i=1 |Q̄|i

, (15)

F4=(1−λ)
NH
∑

i=1

(

H̄i−Hi
)2
+λ

NQ
∑

i=1

(

Q̄i−Qi
)2
, λ=

∑NH
i=1(H̄i)

2

∑NH
i=1(H̄i)

2+
∑NQ
i=1(Q̄i)2

, (16)

F5=
NH
∑

i=1

(

H̄i−Hi
)2
+
NQ
∑

i=1

(

Q̄i−Qi
)2
. (17)

It was also assumed that all the necessary values of water stage and flow rate
could be measured, thus the number of discharge observations, NQ, being equal to 3
and the number of nodes at which the water stage was observed, Nh, being 30.

The number of optima was checked for each objective function. The values of
each objective function were calculated and analyzed in a search domain limited by the
range of possible n values assumed as 〈0.01,0.10〉. For the chosen channel, the value
of n was assumed and the dependence of the objective function’s value on the values
of two other n coefficients was considered. The analyzed functions proved to have
a single optimum for the considered case. Of course, such analysis is very complicated
and ineffective in practical cases. However, even when performed roughly, it may help
in properly choosing the optimization method or even indicate a potential optimum
location, thus limiting the search domain. If such analysis is impossible, e.g. due to
a large number of parameters, a local optimization method can be started multiple
times from different points (to check if the same optimum is found) or a global search
method can be used.
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Three local optimization methods were chosen in the analyzed case: the Gauss-
Seidel method (GS), the gradient method (GR) and the influence coefficient algorithm
(ICA), each in conjunction with objective functions (13)–(17). The calculations’
results were compared, the starting point for each case being n1 = n2 = n3 = 0.015.
The values of mean square errors were selected as the objective criteria of comparing
the quality of optimization in each case:

SBQ=

√

∑NQ
i=1

(

Q̄i−Q∗i
)2

NQ−1
, (18)

SBH=

√

∑Nh
i=1

(

H̄i−H∗i
)2

Nh−1
, (19)

where Q∗i and H
∗

i were the values of discharge and water depth calculated for the set
of parameters found as ‘optimal’.

An example of results obtained for a 10% error in the ‘observed data’ is
presented in Table 1,where the ‘optimal’ values of n found in each case, the number
of objective function calls, SBH and SBQ are shown.

Table 1. The results of roughness coefficient determination with 10% error in observations

number of optimi-
No. of

n1 n2 n3 SBQ SBH objective zation
function

function calls method

1 0.02791 0.02717 0.03109 3.00860 0.12110 141

2 0.02758 0.02684 0.03144 3.08001 0.12058 146

3 0.02893 0.02816 0.03064 2.50463 0.12732 752 GS

4 0.02803 0.02725 0.03182 2.50470 0.12054 154

5 0.03023 0.02947 0.02873 2.50462 0.16167 1090

1 0.02808 0.02732 0.03125 2.67329 0.12113 61

2 0.02771 0.02696 0.03157 2.79089 0.12057 37

3 0.03189 0.03114 0.02600 2.52663 0.23783 2269 GR

4 0.02806 0.02728 0.03178 2.50474 0.12055 103

5 0.03564 0.03490 0.01379 2.52250 0.63232 41

1 0.02757 0.02684 0.03129 3.28338 0.12057 4

2 0.02751 0.02677 0.03154 3.06532 0.12067 5

3 0.02801 0.02725 0.03182 2.50460 0.12054 6 ICA

4 0.02802 0.02725 0.03181 2.50460 0.12054 5

5 0.02802 0.02725 0.03187 2.50461 0.12054 6

The following conclusions can be formulated after the first part of the experi-
ment:

• the obtained values of roughness coefficients are sufficiently close to the ‘real’
ones. Their differences are mainly due to relatively large ‘measurement errors’,
the form of the applied objective function being another reason;
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• the calculations have proven limited efficiency of the Gauss-Seidel method,
a non-gradient procedure. A significantly quick convergence of ICA has been
observed;
• the form of the objective function significantly influences the quality and
duration of calculations, especially with less effective methods (GS and GR).
Generally, the best results are obtained for functions based on relative errors
(F1 and F2). The effectiveness of the ‘traditional’ F5 criterion is relatively poor;
in some cases it can be increased by a modification (e.g. F4).

Three objective functions, F1, F4 and F5, and the ICA method were chosen for
the experiment’s second stage. Parameters were determined for 5 different samples of
measurement data with 10% error: the results are presented in Table 2.

Table 2. The results of optimization of Manning roughness coefficients with the ICA method

Experiment objective number
n1 n2 n3 SBQ SBH

number function of steps

F1 0.02757 0.02684 0.03128 3.28338 0.12057 4

1 F4 0.02802 0.02725 0.03181 2.50460 0.12054 5

F5 0.02802 0.02725 0.03187 2.50461 0.12054 6

F1 0.02260 0.02687 0.02929 3.35593 0.17058 4

2 F4 0.02264 0.02688 0.02944 3.35593 0.17026 4

F5 0.02264 0.02688 0.02944 3.35593 0.17020 4

F1 0.03022 0.02887 0.02852 1.14294 0.12802 3

3 F4 0.03063 0.02924 0.02852 1.14249 0.12780 3

F5 0.03063 0.02924 0.02852 1.14249 0.12780 3

F1 0.02904 0.03140 0.03331 7.60753 0.26549 4

4 F4 0.02683 0.03117 0.03343 7.31351 0.26445 5

F5 0.02683 0.03117 0.03343 7.31351 0.26445 10

F1 0.03044 0.03057 0.02958 5.20078 0.12199 3

5 F4 0.03090 0.03129 0.02936 5.20078 0.12137 4

F5 0.03090 0.03129 0.02936 5.20078 0.12137 4

The mean values of ‘optimal’ n were calculated as follows, neglecting the results
of sample 2 (with values of n1 significantly different from the results obtained for other
samples):

n1=0.02917, n2=0.02963, n3=0.03077,

which can be considered as very good, taking into account the introduced magnitude
of measurement error. The results were verified (see Table 3).

In summary of the first experiment, optimization methods have been proved to
be an effective tool for identifying roughness parameters. The quality of identification
depends on the quality of measurement data, the form of the objective function and
the chosen optimization method. The form of the objective function is particularly
important when both discharge and water stage are measured,.
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Table 3. The results of verification of optimal Manning roughness coefficients with
the ICA method

Sample average average
SBQ SBH

number SBQ SBH

first step of verification

1 3.7777 0.1329

3 1.4425 0.1588
9.254 0.1748

4 26.5946 0.2670

5 5.2008 0.1403

second step of verification

6 3.8431 0.2354

7 2.4508 0.1882
13.335 0.2483

8 43.9049 0.4561

9 11.5460 0.1678

10 4.9337 0.1942

5.2. Steady flow in a channel network: water stage measurements

only

Our second example is connected with steady flow in a more complicated
channel network when observations of water stage at selected cross-sections are the
only measurement data accessible, a much more common case than that presented in
Subsection 5.1. Let us assume a channel network as shown in Figure 3, of characteristic
features shown in Table 4. As was the case in Subsection 5.1 above, the measurement
data were synthetically prepared on the basis of calculations for assumed ‘real’
roughness coefficients in the network.

Table 4. Characteristics of channels in the channel network shown in Figure 3

Channel number 1 2 3 4 5 6

Channel width, B [m] 10.0 10.0 8.0 6.0 10.0 10.0

Bottom slope, So [%%] 0.1 0.1 0.1 0.1 0.1 0.1

Channel length [km] 3.0 10.0 6.0 4.0 4.0 3.0

Number of upstream node 1 9 5 20 15 25

Number of downstream node 4 14 8 24 19 28

‘Real’ Manning roughness
0.022 0.020 0.020 0.015 0.018 0.018

coefficient

Flow discharge [m3/s] 4.561 2.511 2.050 0.394 1.656 2.904

The water surface elevations at boundary nodes were: h1=3.80m, h19=2.70m
and h28=2.70m.

Only water stage observations at channel junctions were assumed to be valid
and the observed values were: hI = 3.228m for nodes 4, 5 and 9, hII = 2.745m for
nodes 8, 15 and 20, and hIII=2.740m for nodes 14, 24 and 25.
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Figure 3. The channel network structure for experiment presented in Subsection 5.2

Six values of roughness parameters (one for each branch) were searched for in
the 〈0.010;0.035〉 range using the ICA method and the error criterion most popular
in such cases:

F =
III
∑

i=I

(

h̄i−hi
)2
. (20)

The experiment was repeated for various initial values of Manning roughness
coefficients and varying levels of measurement error. Exemplary results are presented
in Tables 5 and 6.

A comparison of calculated values with the ‘real’ ones leads to important
conclusions concerning the method of parameter estimation. First of all, different
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Table 5. The results of optimization of Manning roughness coefficients for a channel network

Values of parameters obtained in optimization

experiment 1 experiment 2 experiment 3 experiment 4
Parameters

‘Real’
values of
parameters

np=0.020,
np=0.012 np=0.015 np=0.020 measurement

error 1.5%

n1 0.022 0.01298 0.01637 0.02198 0.02151

n2 0.020 0.01199 0.01500 0.02000 0.02000

n3 0.020 0.01200 0.01500 0.02000 0.02000

n4 0.015 0.01200 0.01500 0.02000 0.02000

n5 0.018 0.01032 0.01270 0.01685 0.01480

n6 0.018 0.01124 0.01390 0.01851 0.02650

value of
objective 2 ·10−7 4.91 ·10−7 4.68 ·10−7 4.27 ·10−7 5.76 ·10−6

function

np – the initial value of Manning roughness coefficient (starting point of the optimization procedure)

Table 6. ‘Real’ and calculated values of flow discharge in channels and water stage at channel
junctions

Values for ‘optimal’ roughness coefficients

experiment 1 experiment 2 experiment 3 experiment 4Analyzed
variable

‘Real’
value np=0.020,

np=0.012 np=0.015 np=0.020 measurement
error 1.5%

Q1 [m3/s] 4.561 7.642 6.097 4.565 4.658

Q2 [m3/s] 2.511 4.214 3.359 2.514 2.560

Q3 [m3/s] 2.050 3.427 2.739 2.052 2.098

Q4 [m3/s] 0.394 0.493 0.390 0.291 −0.174

Q5 [m3/s] 1.656 2.934 2.349 1.761 2.273

Q6 [m3/s] 2.904 4.707 3.749 2.805 2.385

hI [m] 3.228 3.228 3.228 3.228 3.239

hII [m] 2.745 2.744 2.744 2.745 2.756

hIII [m] 2.740 2.739 2.739 2.739 2.758

sets of ‘optimal’ parameters were obtained in each experiment, depending on the
chosen starting point. This is hardly surprising, as local optimization methods yield
‘optimal’ points closest to the starting point. At the same time, it suggests that there
are many local optima, which renders optimization more difficult. An analysis of
the obtained values of objective functions demonstrates them to be similar to each
other and very small. Even more importantly, the values of water stage calculated
at junctions were in each case very close to the ‘observed’ ones. As these were the
only measurements accessible, optimization was formally successful in each case, as
the roughness parameters for which calculations were coincident with observations
were found. However, a practical problem persists, as the ‘real’ set and the Manning
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roughness coefficient are unknown. This means that there are many sets of n for
which the same water stages are possible. Unfortunately, the values of discharge are
different for each such set and as long as they cannot be measured the solution of
the optimization problem is unknown. The problem will not be solved even if a more
sophisticated optimization method is applied, as many sets of n values can give the
same water stage values at junctions.

The experiment has proven the importance of practical aspects of optimization
which can impose important limitations on solving the problem (especially accessibil-
ity of measurement data).

Finally, let us consider a real channel network case and the related problems of
roughness estimation.

5.3. Unsteady flow in a channel network: Vistula Lagoon–Nogat–

Jagielloński Channel–Elbląg–Lake Druzno

In this example, identification of roughness parameters for the Vistula Lagoon–
Nogat–Jagielloński Channel–Elbląg–Lake Druzno hydrographic network is consid-
ered. The network’s structure is presented in Figure 4. The system consists of:

• the Nogat – a regulated, cut-off arm of the Vistula, between the flood-gate
in Michałowo and its outflow to the Vistula Lagoon (length 22.7km, width
ca. 125m, maximum depth 2.5m),
• the Elbląg, a river connecting Lake Druzno with the Vistula Lagoon (length
17.7km, width at water level 35–64m, depth 2–4.25m) and
• the Jagielloński Channel, connecting the two (length 5.7km, width 36m, depth
ca. 2.70m).

Unsteady flows of variable directions through the network are determined by
changes of the water level in the Vistula Lagoon. Water-level fluctuations are mainly
generated by wind and may cause flow towards Lake Druzno or in the opposite
direction – during periods of low water level in the southern part of the Vistula
Lagoon.

Lake Druzno is a relic of old broads of the Vistula. Its characteristic features
are relatively small depth (ca. 1.20m on average) and great variation of the water
surface, depending on the water level. The dependence between water surface area,
F , and water stage, h, is as follows:

F (h)=







13.0km2 for h≤ 0 ,
(13.0+200h2.2)km2 0<h≤ 0.30m ,
27.0km2 h> 0.30m .

(21)

In the considered case, water stage observations were valid for four cross-
sections (see Figure 4): (A) Nowe Batorowo (water stages in the Vistula Lagoon,
the same as in (B)), (D) Żukowo at Lake Druzno and (E) the city of Elbląg at River
Elbląg.

For the purposes of numerical solution of an unsteady flow in the channel
system, the network was digitized as shown in Figure 5. The hydrostatic state was
assumed as the initial condition: for t= 0 h(x,t) = h0 = const and Q(x,t) = 0. The
boundary conditions were specified as follows:

• the observed water stages h1(t) and h28(t) were imposed for nodes 1 and 28,

tq411d-e/357 30IX2008 BOP s.c., http://www.bop.com.pl



358 K. Weinerowska-Bords

Figure 4. The system of channels connecting the Vistula Lagoon and Lake Druzno [30]

• theQ=−2m3/s condition at node 41 in Michałowo, being an approximate value
of discharge through the flood-gate (the ‘−’ sign representing the direction of
flow towards the Vistula Lagoon),

• at node 20, either function h20(t) or function Q20(t) is unknown and thus the
differential equation for lake retention was imposed as the boundary condition:

dh20
dt
=
1
F (h)
[Q20(t)+P (t)+q(t)], (22)

with the initial condition of h20(t=0)=h0, lateral inflow q(t)= 8m3/s and an
assumed lack of rainfall, P (t)= 0.
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In typical calculations of unsteady flow through the analyzed channel network,
the value of the Manning roughness coefficient was usually assumed to be constant
throughout the channel system and equal to 0.020 [31] or 0.022 [30]. Thus, the
optimized values of n in the analyzed example were referred to those assumed in
the literature.

The roughness coefficients were determined on the basis of water stage obser-
vations in Elbląg (node 15) and Żukowo (node 20). The traditional criterion (11) was
assumed as the objective function. The trial-and-error method was used first to find
the best value of n, assuming n to be constant throughout the system; the value of
0.017 was thus obtained. The next stage was automatic optimization of 5 values of n,
assuming the roughness coefficient to be constant for each of the 5 channel sections
shown in Figure 5. The local optimization method was applied. The search domain
was limited by the values of n from the 〈0.01,0.035〉 range. The roughness parame-
ters were determined and verified for another set of measurement data. Examples of
sets of roughness coefficients obtained for various starting points and values of m are
presented in Table 7.

It is interesting to compare the obtained values of objective functions with those
achieved for values of n constant throughout the system:

• for n=0.022 f =0.04985,
• for n=0.017 f =0.04552.

The results of optimization (see Table 7) are quite similar for each set. The
greatest differences can be found for branches 4 and 5, possibly due to the lack of
gauge stations at these branches, which makes the calculation results less sensitive to
the values of roughness coefficients in these channels. However, the obtained values
of n are significantly different from the assumed constant roughness coefficients of
n=0.022 and 0.017; the values of objective functions suggest that the sets obtained
through automatic calibration are better. An analysis of the calculation results for
experiment 1, presented in Figure 6, leads to interesting conclusions.

Table 7. Optimal values of roughness coefficients for the network shown in Figure 5

m=4/3 m=1.0
Optimal
values of
parameters

np=0.015 np=0.020 np=0.030 np=0.020

1 2 3 4

n1 0.03500 0.03500 0.03500 0.02654

n2 0.01518 0.01522 0.01518 0.01436

n3 0.01000 0.01000 0.01000 0.01000

n4 0.01144 0.01167 0.01154 0.01409

n5 0.01268 0.01716 0.02262 0.01829

value of
objective 0.03448 0.03460 0.03477 0.03648
function

The relatively small sensitivity of water stages to the changes of n was proved
once again. However, the value of n=0.022 proved not to be optimal; better values
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Figure 5. The schema of the digitized channel network of example presented in Subsection 5.3

of n could be found when optimization was applied (even the simple trial-and-
error method). Another conclusion is connected with the number of gauge stations.
Apparently, observations in Elbląg and Żukowo only are not enough to identify
the ‘true’ values of n properly. Unfortunately, these data were the only ones valid
for the analyzed channel system. Once again a practical aspect seems to be an
obstacle to calculations. When discharge hydrographs are compared (Figures 7 and 8),
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Figure 6. The roughness coefficients obtained for example presented in Subsection 5.3
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Figure 7. The roughness coefficients obtained for example presented in Subsection 5.3

their shapes are noticeably more sensitive to the changes of n. The differences are
significant, up to 50m3/s for node 28, but there are no observations of Q(t), thus
again (as in example presented in Subsection 5.3) the roughness parameters cannot
be determined in a satisfactory manner.

6. Concluding remarks

The theoretical analysis and examples presented in the paper prove that the
problem of roughness parameter identification is not trivial. Although it seems to be
well recognized, there are still some problems potentially leading to ‘false’ solutions.
Some of them are computational (e.g. the choice of the determination method and
the objective function and optimization algorithm when the automatic calibration
is applied) and controllable. However, unless carefully analyzed, they can lead to
solutions which – although seemingly proper – may prove to be far from the ‘true’ ones.

There are also practical problems, connected with the physical aspects of
unsteady flow, the sensitivity of discharges and water stages to parameter values,
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Figure 8. The roughness coefficients obtained for example presented in Subsection 5.3

accessibility of data, measurement problems, etc. Due to some of these problems
(e.g. the lack of discharge observations), even a formally properly run optimization
may not yield satisfactory solutions. Unfortunately, as such limitations are often
impossible to overcome, it is important to realize the nature of such problems, their
influence on the results and the potential consequences.
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