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Abstract: An analysis of the conservative properties of shallow water equations is presented, focused

on the consistency of their numerical solution with the conservation laws of mass and momentum.

Two different conservative forms are considered, solved by an implicit box scheme. Theoretical

analysis supported with numerical experiments is carried out for a rectangular channel and arbitrarily

assumed flow conditions. The improper conservative form of the dynamic equation is shown not

to guarantee a correct solution with respect to the conservation of momentum. Consequently,

momentum balance errors occur in the numerical solution. These errors occur when artificial diffusion

is simultaneously generated by a numerical algorithm.
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1. Introduction

Shallow water equations are widely used for solving unsteady flow problems in

open channels, rivers and water reservoirs of small depth. Analytical solutions of these

equations are limited to special and simplified cases, due to their nonlinear character.

Therefore, shallow water equations in engineering problems are solved by means of

appropriate numerical methods.

The system of shallow water equations comprises two partial differential equa-

tions derived from the conservation laws of mass and momentum. The solutions of

these equations should be consistent with the basic physical laws of conservation.

However, the results of their numerical solutions have demonstrated that this condi-

tion is not satisfied if the system of equations is written in an improper form, resulting

in errors of mass and momentum balance.

Shallow water equations are often used in a variety of forms, conservative or

non-conservative, and with varying dependent variables (see [1] for a review of these

forms). The use of an adequate conservative form of the differential equations and the

numerical algorithm will yield a solution free of balance errors, whereas the solution
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of the same equations written in the non-conservative form is usually inaccurate with

respect to its consistency with the conservation law [2]. The same governing equation

written in various conservative forms is also known to generate different solutions

if discontinuities such as shock waves or transient flow are present in the solution.

Different conservative forms of the shallow water equations are equivalent if and only

if their solutions are smooth. These problems were discussed by Cunge [3], Toro [4],

LeVeque [5], Lai [6] and others.

However, discontinuity is not the only cause of discrepancies between solutions

of equations written in different conservative forms. The study indicates that trunca-

tion errors in a Taylor series expansion can also produce balance errors in the solutions

of equations written in their improper form. This effect is particularly significant if the

leading term of the truncation error is first-order accurate, that is when the numerical

solution is dominated by artificial diffusion.

The present paper is focused on the above problem in the context of momentum

conservation in numerical solutions of one-dimensional shallow water equations. The

differential and integral forms with both sets of dependent variables of these equations

are discussed first. An implicit box scheme is considered in order to solve the equations.

The scheme’s accuracy and the influence of numerical diffusion on the momentum

balance error are examined using the modified equation method. Theoretical analysis

is supported with numerical tests carried out for a rectangular, frictionless channel

where unsteady flow conditions are simulated.

2. Conservative and non-conservative forms

of shallow water equations

One-dimensional shallow water equations without a source term are a hyper-

bolic system and can be written in the following form [7]:

∂h

∂t
+
∂(uh)

∂x
=0, (1)

∂u

∂t
+u

∂u

∂x
+g

∂h

∂x
=0, (2)

where x is distance, t – time, u – mean flow velocity in the x direction, h – flow depth,

and g – acceleration due to gravity.

Equation (1) represents the law of mass conservation, while Equation (2) is

a dynamical equation derived from the law of momentum conservation. This system

can be also expressed in the following vector form:

∂U

∂t
+A(U )

∂U

∂x
=0, (3)

where:

U =

[

h

u

]

, A=

[

u H

g u

]

. (4)

Vector equation (3) describes advective transport of vector quantity U , where

depth, h, and velocity, u, are dependent variables. Both vector equation (2) and

Equation (3) are written in the non-conservative form. As numerical solutions of

nonlinear equations of this form do not guarantee consistency with the physical

conservation laws, the appropriate conservative form of the differential equation is
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required. In accordance with the assumption of a smooth solution of function U , we

can derive various conservative forms for different dependent variables. It is possible

to obtain the following conservative form from the Equations (1)–(2):

∂U

∂t
+
∂F (U )

∂x
=0, (5)

where U is a vector of the same dependent variables as in Equations (1)–(2), while

F is a vector of flux:

F =

[

uh

0.5u2+gh

]

. (6)

An alternative conservative form can be derived by re-applying the simple transfor-

mation to Equations (1)–(2):

∂V

∂t
+
∂G(V )

∂x
=0, (7)

where V is a vector of new dependent variables and G is a corresponding vector of

flux, respectively given by:

V =

[

h

uh

]

, G =

[

uh

u2h+0.5gh2

]

. (8)

In this case, the dependent variables are depth, h, and flow rate per unit of width,

uh. There is an important difference between the presented conservative form of

Equation (5) and that of Equation (7) in terms of the dynamical equation, whereas

the equations of conservation of mass are the same in both systems.

System (7) can be also expressed in the following form:

∂V

∂t
+K (V )

∂V

∂x
=0, (9)

where matrix K is Jacobian of fluxes G:

K =
∂G

∂V
=

[

0 1
c2−u2 2u

]

, (10)

where the c=
√
gh parameter is celerity.

Equation (9) describes an advective transport of the vector quantity V in the

same way as Equation (3) with a vector U .

Equations (3) and (9) demonstrate that the vectors of dependent variables U

and V are mutually connected by a transformation matrix N as follows:

∂U

∂t
=N−1

∂V

∂t
,

∂U

∂x
=N−1

∂V

∂x
. (11)

These transformations also lead to the relations between matrixes A and K :

NA=KN , AN−1=N−1K . (12)

3. Integral form of the conservation equations

The basic physical laws of conservation of mass and momentum can be ex-

pressed in differential or integral form. The integral form guarantees the conservation

of these basic physical laws in a natural way. Therefore, when analysing the conser-

vative properties, it is convenient to write the governing equation in its integral form.
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Let us consider a one-dimensional conservation equation written in the integral form

over the solution domain 0≤x≤L and 0≤ t≤T :
T
∫

0

L
∫

0

[

∂V

∂t
+
∂G

∂x

]

dxdt=0. (13)

Integration of Equation (13) with respect to x between x=0 and x=L results in:

d

dt

L
∫

0

V (x,t)dx=G(V )|0−G(V )|L. (14)

Equation (14) states that the time rate of change of the total quantity of V within

the control length, L, of a channel is due to net fluxes,G, through the endpoints x=0

and x=L. If the total quantity is not conserved, Equation (14) contains a source term

causing generation or loss of the corresponding quantity.

Similarly, we can integrate the shallow water equations written in the differ-

ential form of (5) and (7) over a channel reach of length L. For the equation of

conservation of mass, the form of the integral relation is the same in both systems:

∂

∂t

L
∫

0

hdx=(uh)0−(uh)L, (15)

whereas integration of dynamic equations results in different relations:

∂

∂t

L
∫

0

uhdx=(u2h)0−(u2h)L+(0.5gh2)0−(0.5gh2)L, (16)

for the system in the form of (7) and

∂

∂t

L
∫

0

udx=(0.5u2)0−(0.5u2)L+(gh)0−(gh)L, (17)

for the system in the form of (5).

Both dynamic equations exhibit conservative properties. Integral Equation (16)

indicates that the time rate of change of momentum uh over a channel reach of length

L in time T is equal to the net flux of momentum u(uh) respectively introduced by

the upstream end, x= 0, and the downstream end, x=L, and the pressure force of

0.5gh2 (assuming hydrostatic distribution), whereas Equation (17) does not express

the change of momentum, uh, but the change of flow velocity, u. A comparison of

integral relations (16) and (17) indicates that the dynamic equation, depending on the

conservative form, can describe transport of various quantities. As a consequence, the

alternative forms can represent various conservation laws. In system (7) the dynamic

equations represent the conservation law of momentum, whereas in system (5) the

conservation law described by Equation (17) does not make sense from the physical

point of view [4]. The form of shallow water equations is irrelevant if their solutions

are smooth. However, in the presence of discontinuities, the conservative forms (5)

and (7) yield different solutions.
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The influence of the conservative form of shallow water equations on the

accuracy of the solution is also observable when the algorithm introduces numerical

errors in the form of artificial diffusion. A description of this effect for an implicit box

scheme is presented in detail below.

4. Accuracy analysis of a box scheme

for advection equations

One-dimensional shallow water equations written in their conservative or non-

conservative forms can be solved over a domain 0≤ x≤L and t≥ 0 by means of the
finite difference method using an implicit box scheme [8].

A linear advection equation describing transport of a scalar quantity U at the

constant speed A is considered first:

∂U

∂t
+A

∂U

∂x
=0. (18)

An approximation of time and spatial derivatives in Equation (18) by means

a box scheme produces the following algebraic equation:

ψ
Un+1j −Unj
∆t

+(1−ψ)
Un+1j+1 −Unj+1
∆t

+A

[

(1−θ)
(

Unj+1−Unj
)

∆x
+θ

(

Un+1j+1 −Un+1j

)

∆x

]

=0,

(19)

where j and n are consecutive numbers of cross-section and time level, respectively,

ψ and θ are weighing parameters, while ∆t and ∆x are the time and spatial step,

respectively.

The modified equation method can be used to demonstrate the accuracy of

numerical algorithm (19) [9]. If we take into account the terms up to the third order

in the Taylor series expansion, Equation (18) modified by a box scheme has the

following form:
∂U

∂t
+A

∂U

∂x
= νn

∂2U

∂x2
+εn

∂3U

∂x3
+ .. . , (20)

where

νn=

(

θ− 1
2

)

A2∆t+

(

1

2
−ψ
)

A∆x, (21)

εn=

(

1

3
− θ
2

)

A3∆t2+(ψ+θ−1)A
2∆x∆t

2
+

(

1

6
− ψ
2

)

A∆x2. (22)

The even-order derivative of modified Equation (20) is associated with artificial

dissipation which attenuating the wave amplitude. The odd-order term is associated

with artificial dispersion, which leads to significant oscillations if the numerical so-

lution is not dominated by artificial dissipation [9, 10]. Using the modified equation

enables determination of the numerical algorithm’s properties. It follows from Equa-

tions (21) and (22) that numerical diffusion can be avoided if the weighing parameters

are θ=0.5 and ψ=0.5. Moreover, if the Courant number,

Cr=A
∆t

∆x
, (23)

is equivalent to Cr=1, the dispersion term disappears as well. As a consequence, for

values of θ = 0.5, ψ = 0.5 and Cr = 1, the modified equation will be consistent with
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the differential equation (νn = 0 and εn = 0) and the box scheme will not introduce

numerical errors into the solution.

The above strategy is also applicable to shallow water equations written in the

conservative form (9). In this case, the equation is assumed to represent the advection

transport of the scalar quantity V at a constant speed K. In accordance with this

assumption, the following linear equation is obtained:

∂V

∂t
+K

∂V

∂x
=0, (24)

which can be solved using the box scheme. Application of accuracy analysis to

the linear equation results in values of parameters υn and εn similar to those of

the modified Equation (20). As a consequence, the modified equation derived for

Equation (24) assumes the following form:

∂V

∂t
+K

∂V

∂x
= νn

∂2V

∂x2
+εn

∂3V

∂x3
+ .. . (25)

In Equation (25), parameters υn and εn are determined by relations (21)

and (22), but speed A is replaced with speed K.

5. Balance errors generated by numerical diffusion

in shallow water equations

It is assumed that the above relations and statements applied to linear scalar

equations are also applicable to nonlinear vector equations. This assumption implies

that modified Equations (20) and (25) correspond to the nonlinear equations and that

the transported scalar quantity is replaced with vector quantity U or V . If terms

of orders higher than the second order are neglected for the sake of simplicity, the

modified equations can be written in the following forms:

∂U

∂t
+A(U )

∂U

∂x
=

∂

∂x

[

νn
∂U

∂x

]

+ .. . (26)

∂V

∂t
+K (V )

∂V

∂x
=

∂

∂x

[

νn
∂V

∂x

]

+ . . . (27)

It is apparent from the nonlinear character of modified Equations (26) and (27)

that numerical diffusivity, νn, is also dependent on vector function U or V and is

given by the following relation in the case of Equation (26):

νn=

(

θ− 1
2

)

A2(U )∆t+

(

1

2
−ψ
)

A(U )∆x. (28)

Substituting this numerical diffusivity into Equations (26) and (27) produces

the following relations:

∂U

∂t
+A(U )

∂U

∂x
=

∂

∂x

[

(

αA2(U )+βA(U )
)∂U

∂x

]

, (29)

∂V

∂t
+K (V )

∂V

∂x
=

∂

∂x

[

(

αK 2(V )+βK (V )
)∂V

∂x

]

, (30)

where

α=

(

θ− 1
2

)

∆t, β=

(

1

2
−ψ
)

∆x. (31)

The obtained equations are similar to governing Equations (3) and (9) and

describe the transport of quantitiesU andV, since it is advection-diffusion transport.
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However, it should be emphasized that the diffusion process results from numerical

errors.

It is also possible to write modified Equations (29) and (30) in their conservative

forms:
∂U

∂t
+
∂F (U )

∂x
=

∂

∂x

[

(

αA(U )+β
)∂F (U )

∂x

]

, (32)

∂V

∂t
+
∂G(V )

∂x
=

∂

∂x

[

(

αK (V )+β
)∂G(V )

∂x

]

. (33)

Modified Equations (32) and (33) are associated with governing Equations (5)

and (7), which are also written in their conservative forms:

∂U

∂t
+
∂F (U )

∂x
=0, (34)

∂V

∂t
+
∂G(V )

∂x
=0. (35)

Equation (34) can be derived from Equation (35). However, the same equiva-

lence does not exist in the case of modified Equations (32) and (33). Equation (32) can

not be directly transformed into Equation (33) due to the appearance of additional

terms with second order derivatives. Modified Equation (29) will be reconsidered in

order to demonstrate this feature. Substituting relation (11) into this equation yields:

N−1
∂V

∂t
+AN−1

∂V

∂x
=

∂

∂x

[

αA2N−1
∂V

∂x

]

+
∂

∂x

[

βAN−1
∂V

∂x

]

, (36)

and the use of relations (12) and NN−1= I leads to the following equation:

∂V

∂t
+K

∂V

∂x
=

∂

∂x

[

(αK 2+βK )
∂V

∂x

]

+N (αK +β)K
∂N

∂x

∂V

∂x
. (37)

Equation (37) is modified Equation (29) with vector function U replaced with

vector V. Notably, transformation of Equation (29) produces an equation different

than Equation (30) by an additional term of the following form:

Sn=N (αK +β)K
∂N

∂x

∂V

∂x
. (38)

The Sn source term results from artificial diffusion in the solution of Equa-

tion (34). In order to study the influence of this term on the solution’s accuracy,

modified Equation (37) will be integrated over the solution domain [0;L]× [0;T ]:
L
∫

0

(V |T −V |0)dx=
T
∫

0

([

G−(αK +β)∂G
∂x

]

0

−
[

G−(αK +β)∂G
∂x

]

L

)

dt+δM.

(39)

Using relation (31), the additional source term δM assumes the following form:

δM =

T
∫

0

L
∫

0

Sndxdt=

T
∫

0

L
∫

0

N

[(

θ− 1
2

)

∆tK +

(

1

2
−ψ
)

∆x

]

K
∂N

∂x

∂V

∂x
dxdt. (40)

It follows from Equation (39) that the change of quantityV over a channel reach

of length L in time T is due to the net advection – diffusion flux G through endpoints
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x=0 and x=L and the additional term δM determined by relation (40). This term is

responsible for the different numerical solution and leads to balance errors despite the

governing system (34) being written in the conservative form. It is expected from inte-

gral Equation (17) that the conservation discrepancy occurs only in the dynamic equa-

tion. Thus, taking into account the momentum transport, the occurrence of additional

term δM produces momentum balance error in the system (34). Therefore, the balance

equation for the dynamic equation of this system assumes the following form:

M−
(

ΦM −Φd
)

= δM, (41)

where:

M =

L
∫

0

[

(uh)T −(uh)0
]

dx, (42)

ΦM =

T
∫

0

[

(u2h)0−(u2h)L+(0.5gh2)0−(0.5gh2)L
]

dt, (43)

Φd=

T
∫

0

[

(αK +β)
∂

∂x

(

(u2h)0−(u2h)L+(0.5gh2)0−(0.5gh2)L
)

]

dt, (44)

δM =

T
∫

0

L
∫

0

f

[(

θ− 1
2

)

∆t,

(

1

2
−ψ
)

∆x,
∂uh

∂x

]

dxdt. (45)

It follows from Equation (40) or Equation (45) that the momentum balance

error in the nonlinear dynamic equation of system (34) is determined by the numerical

diffusion generated by the box scheme. Detailed analysis of Equation (40) leads to

the following main conclusions:

• for θ = 0.5 and ψ = 0.5 numerical diffusion is avoided and, consequently, the
momentum balance error disappears (δM =0),

• for ψ = 0 and θ = 1 the maximum numerical diffusion is generated and the
balance error reaches the maximum value (δM→max),
• for θ= 0.5 and ψ < 0.5 the balance error depends mainly on the spatial step,
∆x (δM = f(∆x)), whereas it has a constant value for varying time step, ∆t,

• for ψ=0.5 and θ > 0.5 the situation is opposite – the balance error is a function
of time step only δM = f(∆t) and has constant values for varying spatial

step, ∆x,

• the momentum balance error, δM , also depends on the spatial derivative of
function V, thus being greater for rapidly propagated waves than for slowly

propagated waves.

6. Numerical tests

In order to illustrate above analysis, numerical tests were carried out for

a rectangular, frictionless channel of length L′=500m. Equations (34) and (35) were

solved subject to the following initial and boundary conditions:

• at time t=0 water depth is uniform over channel hS(x)= 1m and the body of
water remains at rest, uS(x)= 0m/s,
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• a wave of the following form is introduced at the upstream end, x=0:

u0(t)=











0 t=0,
t

tmax
umax 0<t≤ tmax,

umax t> tmax,

(46)

where umax is the peak velocity of the inflow and tmax is the time corresponding

to the peak velocity,

• constant water depth is imposed at the downstream end x=L′, hL(t)= 1m.
The computations were carried out for umax=1m/s, tmax=40s, ∆x=5m and

∆t=5s and for different values of weighing parameters θ and ψ. Mass and momentum

balance were computed for the numerical solution of shallow water equations. The

conservation of momentum was investigated with relative balance error, which can be

written as follows:

∆M =
M−ΦM

M
100%, (47)

with M and ΦM determined by formulas (42) and (43), respectively. This error is

expressed in an analogical form for the conservation of mass:

∆m=
m−Φm
m
100%, (48)

where

m=

L
∫

0

[

(h)T −(h)0
]

dx, (49)

Φm=

L
∫

0

[

(uh)0−(uh)L
]

dt. (50)

All computations were carried out for time T =100s for a control cross-section

of x=L=200m. The integrals were computed by numerical integration.

Computations of the conservation of mass for corresponding systems indicated

that the balance error, ∆m, was less than 0.01% independently of the θ and ψ

parameters. Thus, the conservation law of mass was sufficiency satisfied. The results

obtained for the conservation of momentum are shown in Figure 1.

The momentum balance error is notably absent from the solution of system (35).

However, in the solution of system (34), the errors are significant and cause excessive

accumulation of momentum. For ψ = 0 and θ = 1, when the numerical solution is

influenced by the maximum artificial diffusion, the balance error, ∆M , also reaches

its maximum value about – 3%. This error is not observed (∆M =0.01%) if numerical

diffusion is minimized by selecting appropriate values of weighing parameters (ψ=0.5

and θ=0.5).

The relationship between balance error, ∆M , and grid spacing, ∆x, on the one

hand and time step, ∆t, on the other in the solution of system (34) is presented in

Figure 2.

It follows from Figure 2a that, for θ = 0.5 and ψ = 0.3, balance error, ∆M ,

increases with increasing spatial step, ∆x. For a small value of ∆x, the error is near

zero and for ∆x = 40m its value achieves a maximum. However, for ψ = 0.5 and
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Figure 1. Momentum balance error, ∆M , in the solution of system (34) and (35);

∆x=5m and ∆t=5s

Figure 2. Momentum balance error, ∆M , in the solution of shallow water Equation (34)

for various values of: (a) spatial step, ∆x (∆t=2s); (b) time step, ∆t (∆x=10m);

tmax=40s, umax=1m/s

θ=1, balance error assumes constant values throughout the range of ∆x. The error is

presented in Figure 2b as a function of time step, ∆t. Here, we encounter the opposite

situation. For θ=0.5 and ψ=0.3 balance error, ∆M , has a constant value, while for

ψ=0.5 and θ=1 the value of momentum error increases with ∆t.

A comparison of computed profiles of water depth, h, of systems (34) and (35)

is presented in Figure 3 for selected values of weighing parameters. For θ=0.65 and

ψ=0.5 (Figure 3a) artificial diffusion is minimized and so the shallow water equations

in their conservative form yield similar solutions with respect to the shape of waves.

No similar agreement can be observed for θ=1 and ψ=0 (Figure 3b). This significant

difference between outflows is due the numerical solution being influenced by large

artificial diffusion, which produces a momentum balance error of ∆M =−5%.
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Figure 3. Comparison of numerical solutions of systems (34) and (35) for selected values

of weighing parameters: (a) θ=0.65 and ψ=0.5 – minimal numerical diffusion;

(b) θ=1 and ψ=0 – maximal numerical diffusion;

tmax=40s, umax=1.5m/s, ∆x=5m and ∆t=5s

The influence of the spatial derivative on balance error, ∆M , was considered in

another test. For this purpose, equations in the form of (34) were solved with various

wave shapes described by relation (46). All waves were assumed to have the same

maximum velocity of umax=1m/s, but different values of tmax (ranging from 25s to

400s). Thus, the waves differed from each other in their rates of propagation and,

consequently, the corresponding values of the spatial derivative were obtained.

Figure 4. Momentum balance error, ∆M , in the solution of shallow water Equation (34)

for various tmax (∆x=10m, ∆t=5s, ψ=0.45, θ=0.65).

As indicated in Figure 4, momentum balance error, ∆M , becomes significant

depending on tmax. For rapidly propagated waves with a short tmax = 25s, balance

error is about −2.2%. This is due to numerical diffusion, manifested by excessive
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smoothing of the outflow wave. Slowly propagated waves with longer tmax=400s are

only slightly deformed and momentum balance error is small (∆M =−0,1%). In this
case, numerical diffusion is negligible.

7. Summary and conclusions

A study of the conservative properties of shallow water equations was con-

ducted. Theoretical and numerical analyses were carried out for systems of equations

written in two conservative forms with two different sets of dependent variables. The

conservative properties differed in the two systems. In the system written in the con-

servative form with dependent variables u and h, momentum was not conserved when

the solution was influenced by numerical errors. As a consequence, balance errors were

observed in the form of excessive accumulation of momentum.

Using the modified equation approach, it was possible to explain the mechanism

of introducing balance errors into numerical solutions. This error was demonstrated to

result from a combination of numerical errors and an inadequate form of the dynamic

equation. Balance errors are directly generated by an additional source term arising

from artificial diffusion generated by the numerical algorithm. Therefore, momentum

balance error depends on numerical parameters such as time step, ∆t, and spatial

step, ∆x, and weighing parameters θ and ψ. It also depends on the spatial derivative

of functions u and h. As a result, the errors achieve significant values when rapidly

propagated waves are modelled.

Solutions of the governing equation written in different conservative forms are

equivalent provided that the numerical algorithm does not introduce numerical errors.

However, this condition is practically difficult to satisfy for nonlinear equations. As

numerical diffusion is often introduced into the solution in order to control non-

physical oscillations associated with numerical dispersion. Therefore, the improper

conservative form of differential equations leads to balance errors in numerical

solutions.
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