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Abstract: Algorithms for independent component analysis (ICA) based on information-theoretic

criteria optimization over differential manifolds have been devised over the last few years. The

principles informing their design lead to various classes of learning rules, including the fixed-point and

the geodesic-based ones. Such learning algorithms mainly differ by the way in which single learning

steps are effected in the neural system’s parameter space, i.e. by the action that a connection

variable is moved by in the parameter space toward the optimal connection pattern. In the present

paper, we introduce a new class of learning algorithms by recalling from the literature on differential

geometry the concept of mapping onto manifolds, which provides a general way of acting upon a

neural system’s connection variable in order to optimize the learning criteria. The numerical behavior

of the introduced learning algorithms is illustrated and compared with experiments carried out on

mixtures of statistically-independent signals.

Keywords: independent component analysis, ICA, orthogonal group of matrices, mappings onto

manifolds

1. Introduction

Any instance of independent component learning by neural networks involves

the optimization of a non-linear function of the network’s connection pattern over

a suitable parameter space. In particular, pre-whitening the observations turns

the optimization problem for linear independent component analysis (ICA) into

a constrained optimization problem over a set of orthogonal matrices. In this case, the

network parameter space is thus the set of multi-dimensional rotations/reflections.

Learning rules that insist on flat spaces relies on standard numerical techniques

to be implemented, while learning algorithms that insist on curved parameter spaces

necessarily involves theoretical concepts due to the differential geometry to be

designed and effectively implemented. Several examples of geometry-based algorithm

design in neural networks and in signal and image processing literature may be found

in [1–4]. For instance, there is a macroscopic difference between the two classes of
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algorithms in that a learning step may be effected in a vector space via additive

updating, giving rise to piece-wise straight paths over the parameter space, an option

unavailable in a curved space.

Learning by optimizing a criterion function in a curved space amounts to

effecting short steps in the parameter space until a reasonably optimal connection

pattern is encountered. From a conceptual point of view, learning steps can be

performed in a curved space in different ways, including methods that involve fixed-

point and geodesic-type algorithms.

Fixed-point learning algorithms consist of double-step learning rules, which first

effect a learning step toward a looking direction (e.g., along the direction provided

by the standard gradient of the learning criterion), followed by a back-projection to

the parameter space [5–7]. Geodesic-based learning algorithms consist of single-step

learning rules, which move the network connection pattern toward a looking direction

directly in the parameter space along a suitably-defined geodesic arc on the parameter

manifold [5, 8–12]. These algorithms may take advantage of special closed forms or

numerical tricks to approximate the true geodesic paths [5, 13, 14].

Unlike other algorithms stemming from Newton-type optimization of the learn-

ing criteria [6, 15] or based on quadratic modeling of true criteria [16], which involve

computing second-order derivatives (Hessians) of the criterion function, the learning

algorithms introduced here rely on first-order derivatives only. At the same time, the

related independent component analysis learning algorithms normally appear in the

literature as single-unit learning rules [6, 7, 17], which allow extracting one compo-

nent at a time; in the present paper, we deal with fully parallel (multi-unit) learning

algorithms for independent component analysis.

The present contribution aims at discussing a new class of independent compo-

nent learning algorithms based on criterion optimization over the orthogonal group of

matrices. The learning algorithms are designed to allow the neural system to look for

a separating connection pattern by moving within the curved parameter space by in-

trinsic actions, which are formally described by mappings on the tangent bundle of the

parameter space. Three different mappings are recalled from the differential-geometry

and geometrical-integration literature. The numerical behavior of these learning al-

gorithms is illustrated and compared with numerical experiments carried out on syn-

thetic and real-world mixtures of independent signals.

The present paper is organized as follows. Section 2 presents the relevant

differential-geometrical concepts, instrumental in the development of mapping-based

learning algorithms; the complementary concept of automatic learning stepsize selec-

tion is covered as well. Section 3 briefly reviews the concept of independent component

analysis and customizes the general-purpose mapping-based learning algorithms de-

vised in Section 2 to the separation of independent sources from linear mixtures by

proper contrast-function optimization; equivariance of the considered independent-

component learning algorithms is also discussed. Section 4 illustrates and discusses

numerical results of analysis of speech/musical signals and images, aiming at eluci-

dating the numerical behavior of the mapping-based learning algorithms devised in

Section 3 in comparison to the FastICA algorithm [6]. Section 5 concludes the paper.
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2. Differential geometrical concepts and algorithm design

The derivation of ICA algorithms in the present paper is based on notions

from differential geometry and geometrical integration. The relevant notions are

briefly surveyed below, their more detailed discussion to be found in textbooks or

reports [1, 2, 9, 16].

The fundamental concept of interest here is that of a differential manifold.

The notion of a differential manifold provides a generalization of curves and surfaces

in high-dimensional spaces. A smooth curved manifold M of dimension m may be

regarded as an object that is locally isomorphic to an Euclidean space, namely, any

open neighborhood U ⊂M may be mapped ontoR
m via so-termed coordinate charts.

Computation on a manifold is essentially defined as computation on the coordinate

sets inR
m, while the calculus on manifolds is developed so that it is independent of

the choice of coordinates.

Local linearizations of a manifold M at points x∈M are provided by tangent
spaces TxM , whose union forms the tangent bundle TM . Any tangent space is

isomorphic to R
m. A Riemannian manifold is an (M,g) structure, where gx :

TxM ×TxM →R is a scalar product that allows turning a Riemannian manifold

into a metric space. The Riemannian gradient of a smooth function f :M →R at

a point x∈M is an element of TxM whose scalar product with every other element
of TxM does not depend on the particular choice of the Riemannian metric gx(·,·).

It will also be instrumental here to recall the notion of a Lie group [18]. A Lie

group is an algebraic group that possesses the notable property of being a smooth

manifold as well. The group and differential-geometrical structures of a Lie group must

be compatible. A fundamental discovery in the theory of Lie groups has been that it is

possible to describe (and perform computations on) any tangent space of a Lie group

by simply describing in full detail the group’s tangent space at the identity termed

Lie algebra associated with the Lie group. Then, the group’s left- or right-translation

allows computation on the whole tangent bundle.

If the structure of the tangent bundle of a manifold is easily handled, the

tangent spaces may be conveniently used as coordinate spaces for the manifold. It

is known in differential geometry that there exist particularly handy charts to map

neighborhoods of the manifold to the tangent bundle and vice-versa. In the context of

numerical implementation of learning algorithms, a useful instance of such charts are

the so-termed mappings. It is required by definition that a restriction, Rx, of mapping

R : TM→M to the tangent space TxM at the point x of a manifold M satisfies the
following conditions [16]:

1. the restriction, Rx, is defined in an open ball, B(0,rx), of radius rx about

0∈TxM ;
2. the Rx(v)=x equality holds if and only if v=0∈TxM ;
3. the DRx(0) = IdTxM equality holds, where operator DRx denotes the tangent

map associated with Rx and IdTxM denotes the identity map in TxM .

Given a Lie group G, an exponential map expx(v) is a standard chart from

a neighborhood of v ∈ TxG to G: Exponential maps are instances of mapping and
any other mapping may be regarded as a first-order approximation of an exponential

map [16].
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The numerical tool provided by mappings comes into effect in neural learning

whenever an adapting procedure is formulated, e.g. in terms of gradient-based

optimization of a network’s performance criterion under constraints. The manifold

structure accounts for the constraints and the gradient to be calculated is actually

a Riemannian gradient.

2.1. Learning by mappings onto an orthogonal manifold

In the present contribution, we are interested in the orthogonal group of

matrices, namely O(p)
def
= {G ∈R

p×p|GTG = Ip} (i.e. the group of p-dimensional
rotations/reflections), which is a classical Lie group. The Lie algebra associated with

the orthogonal group is denoted as so(p)
def
= {S∈R

p×p|S+ST = 0p}, i.e. the set of
p-dimensional skew-symmetric matrices. It holds that TGO(p) =G · so(p) for every
G∈O(p). The identity of the orthogonal group is the p-dimensional identity matrix
Ip. In the present contribution, it is supposed that p > 3, a hypothesis leading to

a quite general formulation of the mapping-based learning theory, as some properties

enjoyed by group O(2) (e.g. commutativity) and group O(3) (oftentimes invoked,

e.g. in robotics [14]) that would simplify treatment, have been ignored here.

The canonical scalar product in TO(p) is gG(GS1,GS2)
def
= tr[ST1 S2], where

tr[Z] denotes the trace of (square) matrix Z. When O(p) is endowed with the canonical

metric, the Riemannian gradient of function f :O(p)→R assumes the following form

(see e.g. [9]):

∇Gf =
∂

∂G
f−G

(

∂

∂G
f

)T

G, (1)

while the exponential map from a point GS∈TGO(p) to O(p) has the form of

expG(GS)=Gexp(S). (2)

In the above expressions, the ∂
∂X
f symbol denotes the Jacobian of function f with

respect to matrix G entries, arranged again in the matrix form, and exp(·) denotes
matrix exponentiation. Thus, the exponential map (2) is a valid instance of mapping

on O(p).

Another kind of mapping invoked below is provided by the Cayley trans-

form [19]:

cayG(GS)
def
= G

(

Ip+
S

2

)(

Ip−
S

2

)−1

. (3)

As yet another kind of mapping, let us denote the set of full-rank p×p matrices
as Gl(p), the set of symmetric positive-definite p×pmatrices – as S+(p), the map from
Gl(p) to O(p)×S+(p) that associates a full-rank matrix with its polar decomposition
– as ‘pol’ and the standard projection onto the first factor – as π1. Then, a mapping

for the orthogonal group is as follows [2]:

polG(GS)
def
= (π1 ◦pol)(G+GS). (4)

It is worth noting that the first factor of a polar decomposition may be given a closed-

form expression. In fact, it can be easily proven that for any matrix Z ∈Gl(p) the
following will hold:

(π1 ◦pol)(Z)=Z(ZTZ)−
1

2 . (5)
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Let us now consider an optimization problem that consists in finding the local

extremes of a function f : O(p)→R. The solution G = G(t) of the differential

equation:
d

dt
G(t)=∇G(t)f, with G(0)=G0 ∈O(p), (6)

will asymptotically tend to one of the local extremes of the f(·) function over O(p),
depending on the boundary value G0.

In practical terms, the optimization-type differential equation (6) may not be

solved in closed form and therefore needs to be turned into a discrete-time algorithm

via any suitable time-discretization scheme. Such operation may actually be effected

with the help of mappings. Let us denote a generic discrete-time (learning step)

index with n and the current step approximation of the solution to the differential

equation (6) with Gn. Now, a learning step may be effected as:

Gn+1=RGn(µn∇Gnf), n≥ 0, (7)

where R(·) denotes any suitable mapping on the orthogonal group O(p), while the
schedule µn ∈R denotes an adjustment of the learning step size. The right-hand

side of Equation (7) represents a learning step in the direction of the Riemannian

gradient of the criterion f(·) to be optimized, starting from the previously learnt
connection point.

As noted above, any tangent direction in TGnO(p) is expressible as product

GnSn, where the skew-symmetric p×p matrix Sn is required to compute explicitly,
e.g. when using the exponential map and the Cayley-type mappings. It is thus

necessary to compute the Sn =G
T
n∇Gnf quantity beforehand. It is apparent from

expression (1) that:

Sn=G
T
n

(

∂

∂Gn
f

)

−
(

∂

∂Gn
f

)T

Gn. (8)

In the section devoted to numerical experiments, the three above-mentioned

mappings will be applied to learn orthogonal neural connection patterns. Their

differences in terms of separation performance and computational complexity will

be evaluated.

2.2. Selection of a learning stepsize schedule

On the basis of the general structure of the mapping-based learning algo-

rithm (7) and the geometry of orthogonal group O(p), it is possible to find a schedule

for the learning stepsize, µn, to be employed during learning. Below, we consider

a linear artificial neural network of connection pattern G ∈ O(p) described by the
input-output relationship yn =G

T
nx, where x ∈R

p denotes the input stream and

yn ∈R
p denotes the output stream at learning iteration n. In the present paper,

a vector always denotes a column-type array. According to the notation introduced

in Section 2.1, the network learning criterion is denoted here as f :O(p)→R and is

supposed to be of the following form:

f(G)
def
=

p
∑

i=1

IE[F (gTi x)], (9)

where gi denotes the i
th column of connection matrix G, while IE[F (z)] denotes

the statistical expectation of function F :R →R over the distribution of random
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variable z ∈R . The scalar-to-scalar function F (·) is required here to be convex and
belong to the C2(R) class. In a slight notation abuse, we shall also evaluate the F (y)

quantity, where the scalar-to-scalar function F (·) is supposed to act component-wise
on the vector argument and returns a vector of the same size (viz. of size p in the

present context).

We begin our analysis by observing that, because of the Lie-group structure of

the base manifold, O(p), learning scheme (7) may be rewritten via a left-translation

of the Lie algebra so(p) as follows:

Gn+1=GnRIp(µnSn). (10)

Consequently, the neural network output stream at learning iteration n+1 may be

written as:

yn+1=R
T
Ip
(µnSn)yn. (11)

At the same time, the fn
def
= f(Gn) learning criterion at iterations n and n+1 may

be concisely rewritten from Equation (9) as:

fn=1
T IE[F (yn)], fn+1=1

T IE[F (RTIp(µnSn)yn)], (12)

with 1
def
= [1 1 1 · · · 1]∈R

p.

For the convex function, F (·), the following inequality holds [7]:

F (z2)−F (z1)≥
(

∂

∂z
F

∣

∣

∣

∣

z1

)T

(z2−z1), (13)

for all z1 and z2 inR
p.

We may also note that mappings (2), (3) and (4) are described by analytic

functions in suitable subsets of so(p), so that they may be expanded in power series

about 0p ∈ so(p) as:

RIp(S)=
∞
∑

k=0

ρkS
k, ρk

def
=
1

k!

d

dz
RIp(z)

∣

∣

∣

∣

z=0∈R

. (14)

In particular, we have:

expIp(S)=

∞
∑

k=0

1

k!
Sk, S∈ so(p), (15)

cayIp(S)=

(

Ip+
S

2

) ∞
∑

k=0

(

S

2

)k

= Ip+2
∞
∑

k=1

(

S

2

)k

, S∈ so(p)∩B(0p,2), (16)

polIp(S)= (Ip+S)[(Ip+S)
T (Ip+S)]

−
1

2

=(Ip+S)(Ip−S2)−
1

2

=(Ip+S)

(

Ip+
1

2
S2+ ·· ·

)

= Ip+S+
1

2
S2+
1

2
S3+ ·· ·, S∈ so(p)∩B(0p,1). (17)

The analytic expression of the polar-decomposition mapping apparently comes from

the closed form expression (5). Interestingly, all the considered mappings share the
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same low-order terms, as already mentioned in the introduction to the present section.

It will be particularly useful to note that identities ρ0= ρ1=1 and ρ2=
1
2 hold for the

three considered mappings. Therefore, a common representation for mappings (2), (3)

and (4) is:

RIp(S)= Ip+S+
1

2
S2Φ(S), (18)

where map Φ : so(p)→R
p×p denotes a residual factor.

The aim of the present analysis is to find a learning stepsize schedule, µn, that

ensures almost monotonic dynamics of the criterion function, fn, during learning.

To this aim, let us expand mapping RIp(µnSn) with respect to its argument. This

amounts to:

RIp(µnSn)= Ip+µnSn+A(µnSn), (19)

where the term A represents a residual, whose evaluation is instrumental in definining

the appropriate stepsize schedule. From Equation (18), residual A is to be written as

A(µnSn)
def
=
µ2
n
S
2

n

2 Φ(µnSn).

Considering expansion (19), the network output stream at learning step n+1

expressed by Equation (11) is as follows:

RTIp(µnSn)yn=yn−µnSnyn+A
T (µnSn)yn. (20)

Based on the convexity inequality (13), it thus holds that:

1T IE[F (RTIp(µnSn)yn)]=1
T IE[F (yn−µnSnyn+ATyn)]

≥1T IE[F (yn)]+IE[F ′(yTn )(−µnSnyn+ATyn)]. (21)

Consequently, the following holds as well:

fn+1−fn≥−µnIE[F ′(yTn )Snyn]+IE[F ′(yTn )ATyn]. (22)

An upper bound for learning schedule µn, that ensures fn+1−fn ≥ 0 at any
learning step, is thus as follows:

µn≤
IE[F ′(yTn )A

T (µnSn)yn]

IE[F ′(yTn )Snyn]
. (23)

It is worth noting that IE[F ′(yTn )A
Tyn] = tr

[

AT IE[ynF
′(yTn )]

]

. Therefore, the follow-

ing inequality holds: IE[F ′(yTn )A
Tyn]≤‖A(µnSn)‖F ·‖IE[ynF ′(yTn )]‖F . By definition

of the A(µnSn) term, it apparently holds that

‖A(µnSn)‖F ≈
µ2n‖S2n‖F
2

bnd‖Φ(µnSn)‖F , (24)

where the bnd‖Φ(µnSn)‖F term denotes a reasonable approximation or bound of
the ‖Φ(µnSn)‖F quantity no longer dependent on µn. In practice, we may select the
learning stepsize by meeting the equality signs in relationships (23) and (24). This

ultimately yields the expression of choice for the learning stepsize schedule:

µn=
2IE[F ′(yTn )Snyn]

‖S2n‖F‖IE[ynF ′(yTn )]‖Fbnd‖Φ(µnSn)‖F
. (25)

It is now necessary to customize formula (25) to the three mappings (expo-

nential (2), Cayley-type (3) and polar-type (4)). We reckon that, as long as the
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norm of µnS is sufficiently less than 1 during learning, the residual Φ(µnSn) may

be safely approximated as the identity matrix Ip, so that we may ultimately assume

bnd‖Φ(µnSn)‖F =
√
p.

In conclusion, we accept the following learning stepsize schedule for exponential,

Cayley-type and polar-decomposition mappings:

µn=
2IE[F ′(yTn )Snyn]√

p‖S2n‖F‖IE[ynF ′(yTn )]‖F
. (26)

We deem it appropriate to extend the use of the above learning stepsize schedule to

all the three mapping-based neural learning algorithms.

3. ICA algorithms by mapping onto

an orthogonal manifold

In the present section, we briefly recall the concept of ICA and present ICA-type

learning algorithms based on mappings on the orthogonal group of matrices.

3.1. Brief overview of ICA

The ICA technique aims at recovering statistically independent source signals

from their observable mixtures [6, 17]. In the present paper, we consider linear,

instantaneous and noiseless mixtures of the following structure:

x=Ms+q, (27)

where s∈R
p is a stream of statistically independent source signals, x∈R

p is the

observation stream, M ∈R
p×p is a full-rank constant mixing matrix, and q ∈R

p

denotes an observation disturbance supposed to be so weak to neglect it.

For the ICA neural network, we invoke the familiar input-output description,

y =GTx, where y ∈R
m denotes the network’s response vector stream and G ∈

R
p×p denotes its connection pattern formed by connection weights/strengths.

As every full-rank mixture may be reduced to an orthogonal one by whitening

the observations, we may restrict our analysis to orthogonal mixtures without loss of

generality. We shall assume M ∈O(p), in this case the separating network may be
described by an orthogonal connection pattern, G in O(p).

A class of ICA algorithms stems from the following optimization principle:

Under constraint G∈O(p), optimize criterion Ψ(G) :O(p)→R .

It will be instrumental to recall here two suitable criteria devised under the

basic hypothesis that all source streams in a mixture possess same-sign kurtosis. One

criterion is as follows:

Ψ+(G)
def
=
1

4

p
∑

i=1

IE[(gTi x)
4], (28)

which allows separating source signals of positive kurtosis and the criterion should be

maximized under the constraint G∈O(p). Another criterion is:

Ψ−(G)
def
=
1

λ

p
∑

i=1

IE[logcosh(λgTi x)], (29)

which allows separating source signals of negative kurtosis and the criterion should

be minimized under constraint G ∈O(p). In expression (29), the λ constant should
be selected in the 1≤λ≤ 2 range.
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In the following section, we introduce neural learning algorithms enabling

a linear neural network to analyze simultaneously the independent components

forming a mixture. The derivation of such algorithms is based on the geometric

properties of the orthogonal group of matrices and the concept of mapping as

introduced in Section 2.

It should be noted that criteria (28) and (29) are of the (9) type, which was

taken as a basic assumption in Section 2 in order to develop the mapping-based

learning theory.

3.2. Algorithm description

Much of the theory instrumental in developing mapping-based ICA-type learn-

ing algorithms has been presented in Section 2 above. Let us summarize here the

fundamental ideas introduced so far:

• As seen in Section 3.1, an instance of ICA may be formulated as an optimization
problem based on the criterion function Ψ(G), to be optimized under the

orthogonality constraint of the connection pattern G.

• The orthogonality constraint may be conveniently handled by recognizing
that the optimization process should be effected over the group/manifold of

orthogonal matrices O(p), whose geometry has been discussed in Section 2.

• Optimization may be effected via a Riemannian-gradient-type ascent rule over
the group/manifold of orthogonal matrices (6). Thus, we have recalled the

structure of a Riemannian gradient on manifold O(p).

• The Riemannian-gradient-type ascent rule, which appears as a differential
equation over the O(p) base-manifold, may be turned into a learning algorithm

via the mapping-based numerical approximation scheme (7).

• The three available mappings (exponential (2), Cayley-type (3) and polar-
type (4)) may be effectively used to perform learning.

• The learning stepsize schedule expressed by Equation (26) may be used to let
the learning algorithm self-control the learning speed according to the progress

of learning.

In the following, we give explicit expressions for the quantities needed to

implement a generic learning step n of the learning algorithms. All the variables

of interest that change during learning will be n-footed for the sake of clarity.

The Jacobian of the criterion function Ψ(Gn) is as follows:

∂

∂Gn
Ψ=IE[xF (yTn )]. (30)

where yn
def
= GTnx and the scalar function F (·) is allowed to operate component-wise.

According to Equations (1) and (8), the further two quantities of interest are:

∇GnΨ=IE[xF (yTn )]−GnIE[F (yn)yTn ], (31)

Sn=IE[ynF (y
T
n )−F (yn)yTn ]. (32)

According to the three mappings described in Section 2, we obtain the following

learning algorithms:

EXPRET Gn+1=Gnexp(µnSn), (33)
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CAYRET Gn+1=Gn

(

Ip+
µnSn

2

)(

Ip−
µnSn

2

)−1

, (34)

POLRET Gn+1=(π1 ◦pol)(Gn+µn∇GnΨ). (35)

The simplest choice for the initial state isG0= Ip, while the learning stepsize schedule,

µn, may be selected as in expression (26). In order to develop a computer-based

implementation of the above learning equations, all the ensemble averages denoted

by the statistical expectation operator should be replaced with sample means.

3.3. Algorithms’ equivariance

The concept of equivariance of an estimation algorithm in ICA was introduced

in [20]. In short, an equivariant ICA algorithm and, hence, its separation performance

are not explicitly dependent either on the mixing matrixM or the separation pattern

Gn; they rather depend on the separation product Pn
def
= GTnM as a whole. The

equivariance of an algorithm is warranted if it is possible to write the Pn+1 matrix

in terms of Pn only using the equation(s) that define the learning algorithm’s steps.

The three learning algorithms presented in Section 3.2 are equivariant. In order

to prove this for the EXPRET (33) and CAYRET (34) algorithms, it is sufficient to

note that:

• the network output signal at any iteration step may be written as yn=GTnx=
GTnMs=Pns;

• the matrix Sn, computed from Equation (32), depends on the vector stream
yn only; thus, by virtue of the above observation, it depends on the product

matrix Pn only;

• having transposed and post-multiplied both sides of the EXPRET (33) and
CAYRET (34) learning equations by matrix M, it is apparent that Pn+1 may

be written in terms ofPn only. This proves the equivariance of the EXPRET (33)

and CAYRET (34) algorithms.

In order to prove that equivariance holds for the POLRET algorithm (35), it is

instrumental to additionally note that:

• the Riemannian gradient (31) may be written as ∇GnΨ=GnSn;
• the polar pol(·) decomposition in Equation (35) is unaffected by a pre-
multiplication of the argument by an O(p)-matrix. In particular, the first pro-

jection is unaffected;

• the terms on the right-hand side of the POLRET learning equations (35) may
thus be written as Gn(π1 ◦pol)(Ip+µnSn);
• having transposed and post-multiplied both sides of the POLRET learning
equation (35) by matrix M, it is apparent that Pn+1 may be written in terms

of Pn only. This proves the equivariance of the POLRET algorithm (35).

Equivariance is an important property in blind signal processing: it implies that

the component extraction ability of an equivariant algorithm is independent of the

conditioning of the mixing matrix.

4. Numerical results

Results of numerical experiments are discussed below in order to evaluate and

compare the numerical behavior of the algorithms described in Section 3.2. The
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presented experiments were carried out over synthetic mixtures of speech/sounds

and gray-scale images. In these experiments, the mixing matrix M is randomly

generated in the signal model (27), each entry distribution being uniform. Inter-

channel interference (ICI) was selected as the component extraction performance index

to measure the separation ability of the considered algorithms, defined as:

ICI
def
=
1

p

∑

ijP
2
ij−

∑

imaxk{P 2ik}
∑

imaxk{P 2ik}
, (36)

where the separation product P is again defined by y=Ps.

Pre-whitening of the observed signals was effected through standard eigenvalue

decomposition of the covariance matrix by computing the covariance matrix Σx
def
=

IE[xxT ], its eigen-pair (E,Λ) such thatΣx=EΛE
T and then the projection

√
ΛETx.

As general-purpose index we used to evaluate the numerical behavior of the

independent component analysis algorithms, an orthonormality measure was defined

in order to check the adherence of the network connection matrix to the orthogonal

group:

δ(G)
def
= ‖GTG−Ip‖F , (37)

where ‖·‖F again denotes the Frobenius norm of the matrix argument. We measured
the total flops per learning iteration and the total time required by the algorithms to

run on a 1.86GHz – 512MB platform as indices of computational complexity.

For further comparison, the numerical behavior of the EXPRET (33), CAYRET

(34) and POLRET (35) algorithms was compared with the numerical behavior of the

FastICA algorithm [6].

4.1. Experiment with sampled speech/musical signals

In our first experiment, we separated five speech/musical signals. A criterion

function (29) was selected to analyze the components forming the five synthetic

mixtures, with constant λ set at 1.

The values of the ICI residual and the criterion function (29) during learning

is shown in Figure 1 for the EXPRET (33), CAYRET (34), POLRET (35) and

FastICA algorithms (with a ‘tanh’ non-linearity). The proposed algorithms behaved

satisfactorily in this experiment: in particular, they nearly behaved almost identically,

with only slight differences noticeable in the curves. The numerical features of the

EXPRET (33), CAYRET (34) and POLRET (35) algorithms are also comparable to

the performance of the FastICA algorithm [6], both in terms of separation ability and

convergence speed.

All the considered algorithms exhibit excellent numerical precision, −310 ≤
log10 δ≤−280. The three mapping-based algorithms exhibit very good numerical pre-
cision performance in this analysis, the best of them being the POLRET algorithm (35).

The reason of this behavior is directly recognizable in the structure of Equations (33),

(34) and (35): in the EXPRET and CAYRET equations, the connection/weight matrix

Gn is subjected to serial updating, which inevitably causes accumulation of numerical

errors; in contrast, the structure of the POLRET equation suggests that the connec-

tion/weight matrix is renewed at each iteration and it adheres to the orthogonal group

of matrices up to machine precision at each iteration, hence avoiding the accumulation

of numerical errors.
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Figure 1. Values of ICI indices (36) and the criterion function (29) during learning for EXPRET

(solid line), CAYRET (dotted line), POLRET (dot-dashed line) and FastICA (diamond-dashed line);

results of the experiment with sampled speech/musical signals

The computational burden of the four considered algorithms, in terms of flops

per iteration and run-time count, is illustrated in Figure 2, which also includes

a comparison of the four algorithms’ ultimate performance. A conclusion to be drawn

from the obtained results is that the differences among the considered algorithms are

far from apparent. However, the CAYRET algorithm offers a slightly better trade-off

of separation performance, numerical precision and computational burden than the

other considered algorithms.

4.2. Experiment with digital images

As our second numerical experiment, we separated the eight 256-gray-level,

128×128, real-world images shown in Figure 5. The source images were selected so
that all of them exhibit negative kurtosis. In order to analyze the components forming

the eight synthetic mixtures, the criterion function (29) and the learning stepsize

schedule (26) were put into effect, as we have confirmed in the previous experiments

that the same learning stepsize schedule may be adopted for the EXPRET (33),

CAYRET (34) and POLRET (35) algorithms.

The values of the ICI index and the criterion function (29) during learning for

the EXPRET (33), CAYRET (34), POLRET (35) and FastICA algorithms (with a ‘cube’

non-linearity) are shown in Figure 3. In this experiment all the algorithms behaved

similarly. The behavior of the considered mapping-based algorithms was compared

with that of the FastICA algorithm: in this case, convergence was achieved much

faster by the FastICA algorithm, while the three mapping-based algorithms achieved

comparable separation results after learning completion. This observation suggests

that while the selected learning stepsize schedule may be too low and its structure

could be improved with further investigation, it does ensure monotonic convergence

and is therefore useful.

The values of the stepsize schedule (26) and the ‖µS‖F quantity during learning
for the EXPRET (33), CAYRET (34) and POLRET (35) algorithms is shown in Figure 4.

We recall that the FastICA algorithm has no tunable parameters to be adjusted. As

tq112r-g/116 30IX2008 BOP s.c., http://www.bop.com.pl



Estimating Independent Components by Mapping onto an Orthogonal Manifold 117

Figure 2. Flops per iteration and time-count and the ICI (36) and δ (37) indices values after

learning (algorithms: 1 – EXPRET, 2 – CAYRET, 3 – POLRET and 4 – FastICA);

results of the experiment with sampled speech/musical signals

Figure 3. Values of the ICI index (36) and the criterion function (28) during learning

for EXPRET (solid line), CAYRET (dotted line), POLRET (dot-dashed)

and FastICA (diamond-dashed); results of the experiment with digital images

mentioned in Section 2.2, the ‖µnSn‖F norm is small enough for the approximation
of the bound selected for the scalar quantity ‖Φ(µnSn)‖F be be acceptable. This
quantity tends to zero when learning is about to be accomplished.
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Figure 4. Values of the learning stepsize schedule (26) and the ‖µS‖F product during learning
for EXPRET (solid line), CAYRET (dotted line) and POLRET (dot-dashed);

results of the experiment with digital images

Figure 5. Source images, mixtures and estimated components;

results of the experiment with digital images

The source signals, mixtures and estimated components as obtained by running

the POLRET algorithm are shown in Figure 5. The extracted images are well

discernible.

5. Conclusion

The aim of the present research has been to illustrate the unifying concept of

learning by mappings in the special case of function optimization on a manifold of

orthogonal matrices for ICA applications. In summary, the theoretical work underlying

the present paper consisted in:

• Formulating a principle for learning criteria optimization over Riemannian
manifolds based on mappings that would generalize the notion of geodesic-

based learning. Such general framework is interesting from a theoretical point

of view, as it helps dealing with the fundamental question whether a coordinate
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chart leading to good learning ability corresponds to any geodesic curve under

some metric to be determined.

• Finding an appropriate learning stepsize schedule for the algorithms in question
that would guarantee almost monotonic convergence.

• Obtaining equivariance of the ICA-type learning algorithms in question.
The developed algorithms were tested on signals mixtures; the obtained numer-

ical results can be summarized as follows:

• The learning stepsize schedule devised in Section 2.2 is appropriate for the three
mapping-based learning algorithms and guarantees monotonic convergence.

• The behavior of the considered mapping-based learning algorithms in terms of
separation ability and convergence speed is very similar.

• The behavior of the considered mapping-based learning algorithms in terms
of computational complexity is also very similar, though this issue depends

on how the mappings are effectively computed in practice. For example, the

Matlab developing environment offers several possible algorithms to compute

the matrix exponential. The orthogonal factor of the polar decomposition was

computed by invoking the singular-value decomposition of the argument.

While computationally more expensive than first-order methods, second-order

methods of computing flows generated by differential equations on manifolds (e.g. the

Newton method) exhibit better optimization performance. Second-order methods rely

on maps from tangent spaces to the base manifold as well as first-order methods.

Therefore, application of general mapping-based tools to second-order methods for

learning on curved manifolds is an avenue worth investigating.
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