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Abstract: A new iterative non-overlapping domain decomposition method is proposed for solving

the one- and two-dimensional Helmholtz equation on parallel computers. The spectral collocation

method is applied to solve the Helmholtz equation in each subdomain based on the Chebyshev

approximation, while the patching conditions are imposed at the interfaces between subdomains

through a correction, being a linear function of the space coordinates. Convergence analysis is

performed for two applications of the proposed method (DDLC and DDNNLC algorithms – the

meaning of these abbreviations is explained below) based on the works of Zanolli and Funaro et al.

Numerical tests have been performed and results obtained using the proposed method and

other iterative algorithms have been compared. Parallel performance of the multi-domain algorithms

has been analyzed by decomposing the two-dimensional domain into a number of subdomains in one

spatial direction.

For the one–dimensional problem, convergence of the iteration process was quickly obtained

using the proposed method, setting a small value of the σ constant in the Helmholtz equation.

Another application of the proposed method may be an alternative to other iterative schemes when

solving the two-dimensional Helmholtz equation.

Keywords: non-overlapping domain decomposition method, parallel computing, spectral methods,

Helmholtz equation

1. Introduction

The concept of domain decomposition constitutes the basis of implementation

of numerical methods on parallel computers. The computational geometry can be

subdivided into a given number of subdomains, Ωm, m= 1, . .. ,Nel. The differential
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equation is solved independently in each subdomain, Ωm, while suitable transmission

conditions are specified at the subdomains’ interfaces.

Multi-domain algorithms allows us to extend the applicability of spectral meth-

ods to problems of more complex geometry, where the original computational domain

can be decomposed into smaller subdomains, easily transformable into rectangular

geometries in computational space. The solution’s accuracy can be also improved in

the case of stiff or singular problems [1]. In the former, the local size of subdomains

and the degree of the polynomial is adjustable to the local level of stiffness, while the

latter are easily handled by shifting the singularity points to the subdomains’ corners.

Multi-domain methods can be generally classified as overlapping or non-

overlapping. The alternating Schwarz method is an example of an overlapping

domain decomposition iterative scheme. It was applied in computations with parallel

computers by Rodrigue and Simon [2], Rodrigue and Saylor [3], Ortega and Voigt [4],

et al. The alternating Schwarz method was first applied with the spectral method

by Morchoisne [5]. However, the overlapping approach has not been widely used in

spectral approximations.

In 1980, Orszag [6] proposed the patching-collocation method of solving the

second-order differential equation where the patching conditions (i.e. continuity of

the solution and of the first-order derivative) were imposed at the interfaces between

subdomains. The domain decomposition methods of this type can generally be

classified as direct [7–9], iterative [6, 10–12] and spectral-element methods [13]. The

present work is focused on analysis of non-overlapping iterative methods.

Early applications of the direct multi–domain method in spectral solutions of

one–dimensional Helmholtz and Stokes problems included Pulicani [8] and Lacroix

et al. [9], where the influence matrix method was used to impose boundary conditions

and continuity of the solution and its first-order derivative at the interfaces. The

application of the multi–domain technique was demonstrated to enable accurate

resolution of the inner layers appearing in the analyzed problem. Another example of

the direct method application can be found in Macaraeg and Streett [7], where the

global flux condition was specified instead of continuity of the first-order derivative

at the interface. Exponential convergence of the spectral multi–domain method was

obtained for solutions of the Burgers equation and the two–dimensional Laplace

equation with discontinuity at the physical boundaries of the computational domain.

The iterative domain decomposition algorithm for spectral approximations was

proposed by Zanolli [10] and Funaro et al. [11]. This method is based on solving two

problems in two stages of an iterative step. In stage one the first problem is solved

in one subdomain, specifying the Dirichlet condition at the interface, while the other

problem is solved in stage two on the other subdomain, with the Neumann condition

applied at the interface. As shown analytically by Funaro et al. [11], the method

converges in two iterations splitting the computational domain into two subdomains.

Modifications of the Zanolli algorithm were proposed in the nineties. The algorithm of

Louchart et al. [12] may be applied where the patching conditions are satisfied through

sequential solution of the two problems. In the first step, the Dirichlet boundary

condition is specified at the interface between the two subdomains where the Neumann

condition is imposed in the second. An application of this method to the solution of
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the tall differentially heated cavity problem and the flow in the inverted Bridgman

configuration was studied in [12].

The spectral-element method, proposed by Patera [13], is based on variational

formulation of the problem with the trial functions continuous across the elements

where the continuity of flux is obtained during the convergence process. In [13],

the spectral-element method was applied to the solution of the Helmholtz equation

where the unknown variables were represented as Lagrangian interpolants using the

Chebyshev collocation points and applied to solve the advection-diffusion problem

and the expansion of flow in a channel. Later modifications can be found in Maday

and Patera [14] and Karniadakis and Henderson [15], including an extension to the

Legendre polynomials and application to the Navier-Stokes equations.

In the current paper, a new iterative domain decomposition method is proposed,

wherein the patching conditions at the interfaces are imposed through a correction, be-

ing a linear function of the space coordinates. A convergence analysis of the proposed

method is shown by splitting the computational domain into two subdomains [16].

2. One-dimensional Helmholtz equation

The solution of the one-dimensional Helmholtz equation:

−uxx+σu= f in Ω= (−a,b),
u(−a)= g− u(b)= g+,

(1)

can be shown in a split form by dividing the computational domain, Ω, into two

non-overlapping subdomains, Ω1= (−a,Γ) and Ω2= (Γ,b); σ is considered a positive
constant.

Lunm= fm in Ωm,

unm= g−/+ on −a,b.
In the above, L is the second-order differential operator,1 while the following patching

conditions are specified at the interface, Γ the continuity of the function and continuity

of its first-order derivative [6, 18]:

u1(Γ)=u2(Γ),
du1
dx
(Γ)=

du2
dx
(Γ). (2)

The proposed iterative procedure consists in solving the Helmholtz equation in

each subdomain Ωm,m=1,2 for n≥ 1 by imposing the Dirichlet boundary conditions
at the Γ interface:

Lunm= fm in Ωm,

unm= g−/+ on −a,b,
unm= ξ

n
m on Γ,

(3)

where

ξn+1m =unm(Γ)+θλ
n
m(Γ) for m=1,2, (4)

1. It should be stressed that the L operator is not written here in its discrete form. As mentioned

in [17], its discrete form can be formulated – at each iterative step n and for each subdomain m

– as matrix Am consisting of three elements: matrix AΩm , representing the interior collocation

points, element A−a,b, representing the true boundary conditions, and element AΓ, representing the

conditions at the interface between subdomains.

tq112j-e/87 30IX2008 BOP s.c., http://www.bop.com.pl



88 S. Kubacki and A. Bogusławski

ξ11 and ξ
1
2 can be set to arbitrary values at the beginning of the iterative process, θ is

the relaxation factor and λn is the correction function.

In order to satisfy the patching conditions (2), the solutions (3) are corrected at

the Γ interface using the λn function, which is a linear function of the space coordinate

x : λnm(x) = a
n
mx+ b

n
m, m = 1,2. Denoting by (·)c the solution after correction and

considering that ucm(Γ) = u
n
m(Γ)+a

n
mΓ+ b

n
m and du

c
m/dx(Γ) = du

n
m/dx(Γ)+a

n
m for

m=1,2, the patching requirements (2) can be expressed as follows:

un1 (Γ)+a
n
1Γ+b

n
1 =u

n
2 (Γ)+a

n
2Γ+b

n
2 ,

dun1
dx
(Γ)+an1 =

dun2
dx
(Γ)+an2 ,

(5)

where at the −a and b boundaries of the Ω1 and Ω2 subdomains the correction is
equal to zero and the following equations can be specified:

−an1a+bn1 =0, an2 b+b
n
2 =0. (6)

Using Equations (5) and (6), correction coefficients an1 , b
n
1 , a

n
2 and bn2 can be

obtained and ξn+11 and ξn+12 are computed using Equation (4). The iterative scheme

(Equations (3)–(4)) is repeated until convergence is obtained. The algorithm shown

above will be hereinafter referred to as the Dirichlet/Dirichlet Linear Correction

method (DDLC for short).

Our next example concerns application of the proposed method in solving

the one-dimensional Helmholtz equation imposing the Dirichlet boundary conditions

at the Γ interface in the first step and the Neumann boundary conditions in

the second step. Therefore, this algorithm will be hereinafter referred to as the

Dirichlet/Dirichlet-Neumann/Neumann Linear Correction method, or DDNNLC.

The iterative procedure of solving the problem (1) is shown below. In the first

step, the problem’s solution (3) is obtained independently by assuming the initial

values of ξ11 and ξ
1
2 at the Γ interface. Next, the correction coefficients are computed

using Equations (5) and (6), enabling evaluation of the new function derivatives, ζn+11
and ζn+12 , at the Γ interface:

ζn+1m =
dunm
dx
(Γ)+anm for m=1,2. (7)

In the next iterative step (n+1), the solution of the following problem is

considered in each subdomain, Ω1 and Ω2,

Lun+1m = fm in Ωm,

un+1m = g−/+ on −a,b,
dun+1m
dx
= ζn+1m on Γ,

allowing us to evaluate the new functions’ values at the Γ interface,

ξn+2m =un+1m (Γ)+θλ
n+1
m (Γ),

where λn+1m (Γ) = a
n+1
m Γ+b

n+1
m for m= 1,2 and the unknown correction coefficients,

an+1m and bn+1m , are evaluated using relations (5) and (6). The Helmholtz equations are
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then solved in subdomains Ω1 and Ω2 assuming ξ
n+2
1 and ξn+22 . The iterative process

is repeated until convergence is obtained.

2.1. Convergence analysis – solution of the one-dimensional

Helmholtz equation

Defining the error function for n≥ 1:

enm=u
n
m−um for m=1,2, (8)

where um denotes the exact solution, and applying the scheme (3) to Equation (8),

we obtain the following for m=1,2:

Lenm=0 in Ωm,

enm=0 on −a,b,
enm= δ

n
m on Γ,

(9)

where δnm= ξ
n
m−um(Γ), m=1,2 can be expressed using (4) and (8) as follows:

δn+1m = enm(Γ)+θλ
n
m(Γ) for m=1,2. (10)

Assuming enm(Γ)= δ
n
m= δ

n, m=1,2 and Γ= 0, the corresponding solutions to

(9) are as follows:

en1 (x)= δ
n sinh

(√
σ(x+a)

)

sinh(
√
σa)

, (11)

en2 (x)= δ
n sinh

(√
σ(b−x)

)

sinh(
√
σb)

. (12)

The correction coefficients can be computed by applying Equation (5) to (8)

and using Equation (6). Then, using Equation (10), the following is obtained:

δn+1= δn
[

1−θ ab

a+b

√
σ
(

coth(
√
σb)+coth(

√
σa)
)

]

for n≥ 1, (13)

which can be written as follows:

δn+1= δncθ for n≥ 1.

For n→∞, convergence of the iterative process can be obtained if |cθ| < 1 [11].
Having set a= b= 1 in Equation (13), limσ→0

(√
σcoth(

√
σ)
)

= 1, showing that for

small values of σ in the Helmholtz equation, very quick convergence of the iterative

procedure can be obtained if θ ∼= 1. If σ > 0, quick convergence can be obtained by
choosing θ∼=1/

(√
σcoth(

√
σ)
)

.

Convergence analysis will now be given for the other analyzed iterative scheme,

where, in the first step of the iterative process, the Helmholtz equations are solved

in each subdomain, Ω1 and Ω2, by imposing the Dirichlet boundary conditions at

the Γ interface, while the Neumann boundary conditions are applied in the second

step. The corresponding solutions obtained in the first iterative step are given by

Equations (11) and (12). In order to satisfy the (2) patching conditions and set λn

at the −a and b boundaries at zero, the correction coefficients are computed using
Equations (5) and (6).
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In the subsequent step, the ϕn+1 error can be computed by using Equation (7)

and applying (8):

ϕn+1m =
denm
dx
(Γ)+anm for m=1,2.

Assuming enm(Γ)= δ
n
m= δ

n, m=1,2 and Γ=0, ϕn+11 can be obtained as follows:

ϕn+11 = δn
√
σ

a+b

(

bcoth(
√
σa)−acoth(

√
σb)
)

. (14)

Notably, ϕn+11 =0 for a= b in Equation (14), a proof that convergence has been

obtained after the second step of the iterative process.

3. Two-dimensional Helmholtz equation

The solution of the two-dimensional Helmholtz equation:

−∆u+σu= f in Ω,

u= g on ∂Ω,
(15)

where σ ≥ 0 can be written in the split form dividing the Ω = (−a,b)× (−c,d)
computational domain into two non–overlapping subdomains in the x direction,

Ω1=(−a,Γ)×(−c,d) and Ω2=(Γ,b)×(−c,d),
−∆um+σum= fm in Ωm,

um= g on ∂Ωm\Γ,
while the following patching conditions are specified at the Γ interface:

u1(Γ,y)=u2(Γ,y),
∂u1
∂x
(Γ,y)=

∂u2
∂x
(Γ,y). (16)

For n≥ 1, the DDLC method consists in solving the Helmholtz equation in each
subdomain Ωm for m=1,2:

−∆unm+σunm= fm in Ωm,

unm= g on ∂Ωm\Γ,
unm= ξ

n
m on Γ,

(17)

where

ξn+1m =unm(Γ,y)+θλ
n
m(Γ,y) for m=1,2, (18)

while ξ11 and ξ
1
2 can be set to arbitrary values at the initial stage of the iterative

process and λnm(x,y)= a
n
m(y)x+b

n
m(y) for m=1,2.

By denoting by (·)c the solution after correction ucm(Γ,y)=unm(Γ,y)+anm(y)Γ+
bnm(y) and ∂u

c
m/∂x(Γ,y) = ∂u

n
m/∂x(Γ,y)+ a

n
m(y) for m = 1,2 and including these

relations into patching conditions (16), the following relations can be formulated:

un1 (Γ,y)+a
n
1 (y)Γ+b

n
1 (y)=u

n
2 (Γ,y)+a

n
2 (y)Γ+b

n
2 (y),

∂un1
∂x
(Γ,y)+an1 (y)=

∂un2
∂x
(Γ,y)+an2 (y),

(19)

while at the −a and b boundaries of the computational domain the λn1 (−a,y) and
λn2 (b,y) correction it is required to be set to zero:

−an1 (y)a+bn1 (y)= 0, an2 (y)b+b
n
2 (y)= 0. (20)

Solving problems (19) and (20) enables evaluation of anm(y) and b
n
m(y) for

m = 1,2 and new values of ξn+1m , m = 1,2 can be computed from Equation (18).

The iterative procedure (17)–(18) is repeated until convergence is obtained.
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Remark: By splitting computational domain Ω in the x direction into the Nel
subdomains and applying the spectral collocation method to solve problem (17)–(18),

the M+1 Gauss-Lobatto nodes will be defined in the y direction: yj =cos(πj)/M for

j=0,. .. ,M . Conditions (19) and (20) will then be defined for each yj , j=1, . .. ,M−1,
yielding the total number of correction coefficients an, bn equal to 2×(M−1) in each
subdomain Ωm, m=1,Nel.

When using the DDNNLC method, the solution of problem (17) is followed by

determination of new values of function derivatives ζn+1m , m=1,2, at the Γ interface:

ζn+1m =
∂unm
∂x
(Γ,y)+anm(y) for m=1,2, (21)

where functions anm(y), m= 1,2 can be obtained from the solution of problems (19)

and (20).

In the next step (n+1), the following problems are solved in subdomains Ωm,

m=1,2:
−∆un+1m +σun+1m = fm in Ωm,

un+1m = g on ∂Ωm\Γ,
∂un+1m
∂x
= ζn+1m on Γ,

(22)

evaluating the new values of the functions at the Γ interface,

ξn+2m =un+1m (Γ,y)+θλ
n+1
m (Γ,y) for m=1,2. (23)

The iterative procedure consists in solving problems (17), evaluating Equa-

tion (21) and then solving problems (22)–(23). The procedure is repeated until con-

vergence is obtained.

3.1. Convergence analysis: solution of the two-dimensional

Helmholtz equation

The following error equations are obtained for n≥ 1 and m= 1,2 by putting
error function (8) into (17):

−∆enm+σenm=0 in Ωm,
enm=0 on ∂Ωm\Γ,

enm= δ
n
m on Γ,

where

δn+1m = enm(Γ,y)+θλ
n
m(Γ,y) for m=1,2. (24)

For n ≥ 1, functions en1 and en2 can be expressed as e
n
1 = φ(x)ψ(y) and

en2 = χ(x)ψ(y). Taking c= d= 1 in each subdomain Ω1 and Ω2, the solution of the

following problem:

ψ′′(y)+τψ(y)= 0, −1<y< 1,
ψ(−1)= 0, ψ(1)= 0,

is expressed as a series of eigenfunctions ψk,

ψk(y)= sin

(

kπ

2

)

(y+1) for k≥ 1, (25)

where τ = τk =
(

(kπ)/2
)2
are eigenvalues of the considered problem.
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For Γ=0, the solution of problems {φk(x),k≥ 1} in subdomain Ω1,

φ′′k(x)−σkφk(x)= 0, −a<y< 0,
φk(−a)= 0, φk(0)= 1,

is given as follows:

φk(x)=
sinh
(√
σk(x+a)

)

sinh
(√
σka
) for k≥ 1, (26)

where σk =σ+τk.

The solution of problems {χk(x),k≥ 1} in subdomain Ω2,

χ′′k(x)−σkχk(x)= 0, 0<y<b,
χk(0)= 1, χk(b)= 0,

is given by:

χk(x)=
sinh
(√
σk(b−x)

)

sinh(
√
σkb)

, for k≥ 1. (27)

Evaluation of functions anm(y),b
n
m(y), m = 1,2 from Equations (19) and (20)

and putting them into Equation (24) yields:

δn+11 = en1 (0,y)+θ
ab

a+b

[

∂en2
∂x
(0,y)− ∂e

n
1

∂x
(0,y)

]

,

for subdomain Ω1.

Using the method of variable separation allows us to write solutions en1 and e
n
2

in the following form [11]:

en1 (x,y)=
∞
∑

k=1

βnkφk(x)ψk(y), (28)

en2 (x,y)=
∞
∑

k=1

γnkχk(x)ψk(y), (29)

where βnk and γ
n
k are respectively the expansion coefficients of δ

n
1 and δ

n
2 on Γ.

It should be noted that:
∫ 1

−1

enΓψk(y)dy=β
n
k = γ

n
k , (30)

which is due to the orthonormality of ψk(y) and ψk(0) = χk(0) as well as the

assumption of en1 (0,y)= e
n
2 (0,y)= e

n
Γ.

The following expression is obtained by applying relations (28)–(29) and (30)

and the orthonormality condition:

βn+1k =βnk

[

1−θ ab

a+b

√
σk
(

coth(
√
σkb)+coth(

√
σka)
)

]

=βnk ck(θ) for k≥ 1. (31)

As can be seen from Equation (31), the absolute value of the reduction factor,

ck(θ), of the kth frequency error at the Γ interface can increase substantially as k→∞.
The proposed method will perform poorly when imposing the Dirichlet boundary

conditions at the Γ interface during the iterative process and divergence of the iterative

procedure will be observed, specifying higher values of relaxation factor θ.
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The convergence analysis performed for the proposed method of imposing

the Dirichlet boundary conditions at the interface (DDLC method) has shown that

the algorithm is unstable for solutions of the two-dimensional Helmholtz equation.

Therefore, similar analysis will be performed of imposing the Dirichlet boundary

conditions at the Γ interface at the first iterative step and the Neumann conditions at

the second (DDNNLC method). As the first iterative step in the DDNNLC method is

similar to the iterative step of the DDLC algorithm, solutions en1 and e
n
2 are expressed

by Equations (28) and (29), where ψ(y),φ(x) and χ(x) are respectively given by

Equations (25)–(26) and (27).

Considering ϕnm= ζ
n
m−∂um/∂x(Γ,y) and applying Equations (8) and (21), the

following error function can be defined at the Γ interface for n≥ 1:

ϕn+1m =
∂enm
∂x
(Γ,y)+anm(y) for m=1,2.

It should be noted that, when using Equation (30), the following relation is valid for

a= b at the Γ=0 interface:

∂en1
∂x
(0,y)=−∂e

n
2

∂x
(0,y). (32)

The following relation can be obtained for subdomain Ω1 by putting Equations (19)

and (20) into Equation (8) and applying (32):

ϕn+11 =
∂en1
∂x
(0,y)− 2b

a+b

∂en1
∂x
(0,y). (33)

Expressing the ∂en1/∂x(0,y) term in Equation (33) as the following series:

∂en1
∂x
(0,y)=

∞
∑

k=1

βnkφ
′

k(0)ψk(y),

and by orthonormality of ψnk , Equation (33) becomes:

βn+1k =βnk
(a−b)
ab

√
σk coth

(√
σk
)

=βnk ck(θ). (34)

As can be seen from Equation (34) for a= b, the method converges in two iterations

as the βn+1k , k→∞ error functions of the kth frequency error at the Γ interface are
equal to zero.

4. Numerical results

The application of the methods introduced above will be shown for a solution

of the Helmholtz equation using the spectral collocation method based on the

Chebyshev approximation [18]. The results will be compared to those of Zanolli [10],

Louchart et al. (LR) [12] and the Neumann-Neumann (NN) algorithms [19].

4.1. One-dimensional problems

Numerical results will first be presented for a solution of the one-dimensional

problem (1) assuming a= b= 1. The exact solution was given by u(x) = cos(πx/2).

In each subdomain Ωm,m=1,Nel, the solution of the local system of equations was

obtained using the diagonalization method [20, 21] setting the number of Chebyshev

collocation points at N = 20. The initial values of ξ at the interfaces between
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subdomains were set to zero and the solution was assumed to converge when the

maximum error measured at the interfaces between subdomains was less than 1 ·10−8
in two subsequent iterations.

As has been mentioned above, correction λnm(x) = a
n
mx+ b

n
m (i.e. correction

coefficients anm, b
n
m, m = 1,. .. ,Nel) is computed after solution of the Helmholtz

equation in order to satisfy patching requirements (Equation (2)) using the proposed

method by allowing to set new Dirichlet or Neumann conditions for the next iteration

step. In order to reduce the computational time required, we recommend application

of the recurrence relation shown in Appendix. (The correction coefficients can be

obtained on the master processor). Notably, this relation is directly applicable in the

analysis of two-dimensional problems by decomposing the computational domain into

Nel subdomains following a single spatial direction.

The number of iterations required to obtain a converged solution of the Helm-

holtz equation using the Zanolli [10], Louchart et al. [12], Neumann-Neumann [19]

algorithms and the proposed methods (DDLC or DDNNLC) is shown in Table 1. The

numbers in brackets denote the specified optimum values of the relaxation factor, θ.

Table 1. The number of iterations required to obtain a converged solution

of the one-dimensional Helmholtz equation by applying various iterative algorithms

decomposing the computational domain into two subdomains. The numbers in brackets

denote optimum values of relaxation factor θ

σ=0.1 σ=1 σ=10 σ=100

Zanolli/LR 2 (0.500) 2 (0.500) 2 (0.500) 2 (0.500)

NN 2 (0.250) 2 (0.250) 2 (0.250) 2 (0.250)

DDLC 4 (0.970) 4 (0.760) 3 (0.315) 2 (0.100)

DDNNLC 2 2 2 2

As has been demonstrated in [11], for two domain decomposition the Zanolli

algorithm converges in two iterations, setting θ = 0.5. Similar convergence of the

iterative process can also be observed using the Louchart et al. [12] and Neumann-

Neumann [19] methods, specifying θ=0.5 for the former and θ=0.25 for the latter.

The smallest number of iterations was required to obtain a converged solution of the

considered problem using the proposed DDLC method when θ ∼= 1/
√
σ was set for

σ > 0. For σ=0, the algorithm converged in two iterations when setting θ=1. Using

DDNNLC, convergence of the iterative process was obtained in the second iterative

step. The results of numerical tests performed for the proposed methods (DDLC and

DDNNLC) confirm those of the convergence analysis.

The number of iterations required to obtain a converged solution of the

Helmholtz equation by splitting the computational domain into four subdomains is

shown in Table 2. The number of iterations (and optimum values of the relaxation

factor) required to obtain a converged solution of the one-dimensional problem using

the Zanolli algorithm [10] and its modification proposed by Louchart et al. [12] are

exactly the same. Notably, when parallelization of the numerical algorithm is taken

into account, using the Louchart et al. algorithm enables avoidance of some of the

synchronization problems with the Zanolli method, but the number of iterations
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required to obtain a converged solution remains the same for both methods. It is

observed that for small values of the σ constant, numerous iterations were necessary

to obtain a converged solution of the considered problem using the Zanolli [10],

Louchart et al. [12] and Neumann-Neumann [19] algorithms, while using the DDLC

and DDNNLC algorithms produced convergence of the iterative procedure in Niter=4

and Niter=10, respectively. Setting higher values of the σ constant in the Helmholtz

equation results in a substantial reduction in the number of iterations required

to obtain a converged solution of the one-dimensional problem using the Zanolli,

Louchart et al. and Neumann-Neumann methods; a similar number of iterations is

required while applying the DDLC algorithm.

Table 2. The number of iterations required to obtain a converged solution of the one-dimensional

Helmholtz equation by applying various iterative algorithms decomposing the

computational domain into four subdomains. The numbers in brackets denote optimum

values of relaxation factor θ

σ=0.1 σ=1 σ=10 σ=100

Zanolli/LR 594 (0.023) 78 (0.170) 16 (0.450) 5 (0.500)

NN 158 (0.022) 27 (0.120) 9 (0.250) 3 (0.250)

DDLC 4 (0.965) 4 (0.725) 5 (0.235) 6 (0.058)

DDNNLC 10 (0.960) 10 (0.780) 10 (0.370) 10 (0.250)

For smaller values of the σ constant in the Helmholtz equation, convergence of

the iterative process was obtained in much less iteration steps when the proposed

methods are used instead of the Zanolli, Louchart et al. or Neumann-Neumann

methods. For higher values of the constant, convergence was obtained in almost the

same number of iteration steps using the DDLCmethod and the Zanolli, Louchart et al.

and Neumann-Neumann algorithms.

4.2. Two-dimensional problems

We will now consider the solution of the two-dimensional Helmholtz Equa-

tion (15) by splitting the Ω= (−1,1)× (−1,1) computational domain in the x direc-
tion into a number of subdomains. The exact solution of the problem (15) was given

by u(x,y) = cos(πx/2)sin(πy). The complete diagonalization technique [20, 21] was

used to solve the local problems, setting the number of Chebyshev collocation points

at N =M = 20 in the x and y directions. The initial values of ξ were set to zero

and the iterative procedure was assumed to converge when the maximum value of

error measured at the interfaces between subdomains was less than 1 ·10−8 in two
subsequent steps.

Table 3 shows the number of iterations required to obtain a converged solution

of the two-dimensional Helmholtz equation by splitting the computational domain

into two subdomains.

As has been demonstrated in [11], convergence of the iterative procedure for

two-domain decomposition using the Zanolli method can be obtained in two iteration

steps. The same result is obtained using the Louchart et al. [12] and Neumann-

Neumann [19] algorithms. Notably, numerous iteration steps are necessary to obtain

a converged solution of the two-dimensional Helmholtz equation using the DDLC
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Table 3. The number of iterations required to obtain a converged solution of the two-dimensional

Helmholtz equation by applying various iterative schemes decomposing the

computational domain into two subdomains. The numbers in brackets denote optimum

values of relaxation factor θ

σ=0.1 σ=1 σ=10 σ=100

Zanolli/LR 2 (0.500) 2 (0.500) 2 (0.500) 2 (0.500)

NN 2 (0.250) 2 (0.250) 2 (0.250) 2 (0.250)

DDLC 339 (0.014) 325 (0.014) 244 (0.014) 98 (0.015)

DDNNLC 2 2 2 2

proposed method. This confirms the results of convergence analysis performed for the

proposed iterative scheme and is due to the fact that the reduction factor of the kth

frequency error at the Γ interface can be amplified as much as k→∞ and divergence
of the iterative procedure may occur. The enm(Γ,y), m=1,2 error converges slowly to

zero when the relaxation factor, θ, is set to very small values. For the other proposed

iterative algorithm (DDNNLC method) convergence of the iterative process is obtained

in two iteration steps.

The number of iterations required to obtain a converged solution of the two-

dimensional Helmholtz equation using the analyzed iterative algorithms for splitting

the computational domain into four subdomains in the x direction is shown in Table 4.

As demonstrated in [11], setting higher values of the σ constant in the Helmholtz

equation (σ=100) allows to obtain a converged solution with the Zanolli method in

less iteration steps than for σ = 0.1. The same applies for the Louchart et al. [12]

and Neumann-Neumann [19] algorithms; only three iterations are necessary to get

convergent solution with the latter and σ = 100. The number of iterations obtained

using the DDLC method is again very large, which is a consequence of setting the

relaxation factor to very small values (θ = 0.0075). Applying the DDNNLC method

enables obtaining a converged solution in Niter = 10 for σ≤ 10 and in Niter = 12 for
σ=100.

Table 4. The number of iterations required to obtain a converged solution of the two-dimensional

Helmholtz equation by applying various iterative schemes decomposing the

computational domain into four subdomains. The numbers in brackets denote optimum

values of relaxation factor θ

σ=0.1 σ=1 σ=10 σ=100

Zanolli/LR 16 (0.45) 11 (0.48) 10 (0.49) 5 (0.50)

NN 8 (0.23) 7 (0.24) 6 (0.25) 3 (0.25)

DDLC 466 (0.0075) 442 (0.0075) 304 0.0075) 109 (0.0075)

DDNNLC 10 (0.38) 10 (0.37) 10 (0.32) 12 (0.25)

The Zanolli and Louchart et al. algorithms and the proposed methods were

subsequently applied to solve the Helmholtz equation for the L-shaped configuration

(see Figure 1). The exact solution was given by u(x,y) = sin(πx)sin(πy). The initial

values of ξ at the interfaces between subdomains were set to unity and convergence

of the iterative process persisted as long as the maximum difference in the function’s

values at the interfaces between subdomains was less than 1 ·10−4 in two subsequent
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steps. In the first stage of the iteration step using the Zanolli method, the Helmholtz

equation was solved in the Ω2 subdomain, while the problems in subdomains Ω1 and

Ω3 were solved in the second stage. Using the proposed methods at each iteration

step, the Helmholtz equations were solved independently in each subdomain and the

correction was evaluated in order to satisfy the patching conditions at the interfaces.

The number of iterations obtained has been collected in Table 5, showing the Zanolli

method to be superior to the other algorithms as far as the L-shaped configuration is

considered.

Figure 1. An L-shaped domain subdivided into three subdomains

Table 5. The number of iterations required to obtain a converged solution of the two-dimensional

Helmholtz equation for an L-shaped domain. The numbers in brackets denote optimum

values of relaxation factor θ

σ=0.1 σ=1 σ=10 σ=100

Zanolli 9 (0.65) 9 (0.65) 9 (0.65) 8 (0.64)

LR 85 (0.10) 76 (0.11) 58 (0.14) 38 (0.20)

DDLC 446 (0.009) 422 (0.009) 295 (0.009) 109 (0.01)

DDNNLC 56 (0.39) 52 (0.40) 36 (0.45) 22 (0.55)

The results of numerical tests obtained using the proposed DDLC and DDNNLC

algorithms confirm the results of convergence analysis. Attribution of the Dirich-

let conditions at the interfaces between subdomains during the iteration process

(DDLC algorithm) results in instability of the proposed iterative algorithm. Using

the DDNNLC method enables obtaining convergence of the iteration process in two

steps when splitting the computational domain into two subdomains. The number

of iterations obtained using the DDNNLC method for decomposition into four subdo-

mains following a single spatial direction is similar to those obtained using the other

algorithms. When the L-shaped configuration is applied, the Zanolli method converges

in less iteration steps than the Louchart et al. and the proposed algorithms.
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4.3. Results of parallelization

Results of the multi-domain algorithms’ parallelization will be analyzed by

measuring the computational time of solving the two-dimensional Helmholtz equation

and analyzing the speed-up obtained by running the iterative algorithms on parallel

computers. The tests were performed on a PC cluster with a Linux system and a Fast

Ethernet network. Communication between processors was established using MPI

libraries.

A comparison of the computational time required to obtain a converged solution

of the two-dimensional Helmholtz equation using the proposed DDNNLC algorithm

and the other iterative schemes when splitting the computational domain into two

subdomains is shown in Figure 2. The number of processors equaled the number

of subdomains. Only two iterations were required to obtain a converged solution of

the problem for all the considered methods (the number of iterations is shown in

brackets).

Figure 2. The execution time for solving the two-dimensional Helmholtz equation on parallel

computers by splitting the computational domain into two subdomains. The values in brackets

denote the number of iterations required to obtain a converged solution of the problem

The speed-up obtained by running the multi-domain algorithms on parallel

computers is shown in Figure 4. It is defined as a ratio between computational times

of running the parallel algorithm on a single and Np processors (S= ts/tp). In order to

measure the computational time on a single processor, the multi-domain algorithms

were written in their sequential form, with no communication between processors.

The number of subdomains was equal to the number of processors.

As the Zanolli [10] method consists of solving the Helmholtz equation alter-

natively with Dirichlet and Neumann conditions at the interfaces between subdo-

mains, the computational time required for one iteration step is similar to the time

required using the Louchart et al. [12] and Neumann-Neumann [19] algorithms. How-

ever, the Louchart et al. [12] and Neumann-Neumann [19] methods require solving

two Helmholtz equations in each subdomain at each iteration step. As has been shown

above, the iteration step of the proposed method consists of solving one Helmholtz
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Figure 3. The execution time for solving the two-dimensional Helmholtz equation

on parallel computers by splitting the computational domain into four subdomains:

σ=0.1 (top) and σ=100 (bottom); the values in brackets denote the number of iterations

required to obtain a converged solution of the problem

equation in each subdomain and the subsequent computation of correction in or-

der to satisfy the patching conditions at the interfaces. For the sake of simplicity of

implementation, the correction coefficients are computed on one processor and subse-

quently distributed to the other in order to modify the Dirichlet or Neumann data at

the subdomain interfaces for the next iteration step. Thus, global (or collective) com-

munication is applied in order to exchange data between processors using the proposed

method while with the other algorithms data are transmitted from one processor to

another.

As shown in Figure 2, the computational time required to obtain a converged

solution of the Helmholtz equation using the Zanolli [10], Louchart et al. [12] or

Neumann-Neumann [19] methods is about twice as the time required when using the

proposed method. As the number of Helmholtz equations to be solved is smaller with
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Figure 4. The computational speed-up obtained by running the multi-domain algorithms

on parallel computers: N =M =40 (top) and N =M =80 (bottom)

the proposed method, advantages of using this method are expected for decomposition

into more subdomains.

As a next stage, computational time was measured for solving the two-

dimensional Helmholtz equation using various iterative algorithms and splitting the
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computational domain into four subdomains following a single spatial direction and

specifying various values of the σ constant in the Helmholtz equation. The results are

shown in Figure 3, with σ=0.1 (top) and σ=100 (bottom). For σ=0.1, the smallest

computational time was obtained using the proposed method: only ten iteration

steps were necessary to obtain convergence of the iterative process. The fastest

convergence of the iterative process for σ = 100 was obtained with the Neumann-

Neumann algorithm.

The speed-up obtained by running the Zanolli [10] algorithm on two processors

was less than unity, which is a consequence of its sequential nature, while running the

parallel algorithm on 12 processors produced S ∼= 3.5 for N =M = 40 and S ∼= 5 for
N =M =80. The speed-up obtained by running the Louchart et al. [12] and Neumann-

Neumann [19] algorithms on 12 processors equaled S =7.5–8 for N =M =40, while

it was close to S = 10 for N =M = 80. For N =M = 40, the performance of the

proposed algorithm was poorer than that of the Louchart et al. and Neumann-

Neumann methods. It can be explained by the advantage of using the interprocessor

type of communication in the Louchart et al. and Neumann-Neumann methods over

global communication applied in the proposed method (exchanging data between

master and other processors). However, setting a higher number of modes in each

subdomain, N =M = 80, enables obtaining almost the same performance of these

algorithms.

5. Concluding remarks

A new iterative non-overlapping domain decomposition algorithm has been

proposed in this paper for solving the one- and two-dimensional Helmholtz equation

using the spectral method. The patching requirements of the proposed method were

imposed through a correction, being a linear function of the space coordinates. The

correction, λn, was evaluated at the interfaces between subdomains, allowing us to

define new values of functions or their first order derivatives for the next iteration

step after the solution of local problems in each subdomain.

In the Zanolli algorithm, the patching conditions were enforced by successive

solution of the differential problems, imposing the Dirichlet and Neumann conditions

at the subdomain interfaces in two stages of the iteration step. This resulted in some

problems with the processes’ synchronization when parallelization of the algorithm

was considered. When using the other analyzed algorithms, the converged solution

was obtained in two iteration steps for two-domain decomposition. However, each

iteration of the Louchart et al. [12] and Neumann-Neumann [19] algorithms consisted

of subsequent solution of the Helmholtz equation in each subdomain, imposing the

Dirichlet conditions at their interface in the first stage of the iteration step and the

Neumann conditions in the second.

Two applications of the proposed method were analyzed: one (DDLC) involved

imposing the Dirichlet conditions at the interfaces during the iteration process, while

the other (DDNNLC) – imposing the Dirichlet conditions in the first step and the

Neumann conditions in the second.
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The results of numerical tests performed for solving one- and two-dimensional

problems by splitting the computational domain into two subdomains confirmed the

results of the convergence analysis.

When solution of a one-dimensional problem involved splitting the computa-

tional domain into four subdomains, quick convergence of the iteration process was

obtained with the proposed methods for a small value of σ in the Helmholtz equation.

For higher values of σ, the number of iterations obtained using the DDLC method was

similar to those of the Zanolli [10], Louchart et al. [12] and Neumann-Neumann [19]

methods. The proposed algorithms are thus well-suited for solving one-dimensional

problems.

As predicted theoretically, application of the DDLC method to solve the

two-dimensional Helmholtz equation results in instability of the iterative scheme.

Numerous iterations steps were necessary to obtain a converged solution using the

DDLC method even when decomposition into two subdomains was considered.

The results of the numerical tests performed for solving the two-dimensional

problems by subdividing domain Ω into four subdomains following the x direction

have shown the computational time obtained using the DDNNLC to be less than

those of the other iterative schemes with a small value of constant σ in the Helmholtz

equation. For higher values of σ, more iteration steps are required in order to obtain a

converged solution with the proposed method than when applying the other iterative

algorithms.

If the L-shaped configuration is applied, the number of iterations obtained

for the Zanolli method is substantially smaller than when using the Louchart et al.

algorithm or the proposed methods.

The results obtained when using the proposed method for solving one-

dimensional problems are encouraging. DDNNLC may also be regarded as a viable

alternative to other iterative schemes for solving the two-dimensional Helmholtz equa-

tion as the computational time required to run the algorithm on parallel computers

is in some cases less than than required by other methods.
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Appendix: The recurrence relation

for evaluation of the correction coefficients

The recurrence relation allowing to evaluate correction coefficients am and

bm, m=1, .. .,Nel will be shown here, splitting the one-dimensional domain into Nel
subdomains (Figure A1).

Figure A1. Decomposition of the domain Ω into Nel subdomains
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By decomposing domain Ω intoNel subdomains, correction λ
n
m can be expressed

for each subdomain Ωm=(hm−1,hm) in the local coordinate system x̂m= x̂∈ (−1,1):

λnm= amx̂m+bm, (A1)

where x̂m is related to the global coordinate system by the following relation:

x̂m=
2

lm
(x−hm−1)−1, (A2)

lm being the length of the m-th subdomain lm = hm−hm−1. It is further assumed
later lm= l.

The following expressions are defined for m=1, .. .,Nel−1:

Cnm=u
n
m+1(Γm,m+1)−unm(Γm,m+1),

Dnm=
dunm+1
dx
(Γm,m+1)−

dunm
dx
(Γm,m+1),

(A3)

where n is the consecutive number of an iteration step. Then, the following relations

can be calculated using Equation (A3):

rhs1=

Nel−1
∑

m=1

Cnm

rhs2=
1

cT

Nel−1
∑

m=1

Dnm

for Nel≥ 2, (A4)

rhs3=
1

cT

Nel−2
∑

m=1

[(Nel−m−1)Dnm] for Nel≥ 3, (A5)

where rhs3 =0 for Nel =2 and cT is the constant of transformation from the global

to the local coordinate system, equal to cT =2/l.

Using Equations (A4) and (A5), coefficients an1 , b
n
1 , a

n
Nel
and bnNel can be

obtained as follows:
an1 =(0.5rhs1+rhs2+rhs3)/Nel,

bn1 = a
n
1 ,

anNel = a
n
1 −rhs2,

bnNel =−a
n
Nel
.

(A6)

Then, coefficients anm and b
n
m are computed for m=Nel−1, .. . ,2:

anm=D
n
m/cT +a

n
m+1,

bnm=C
n
m−anm−anm+1+bnm+1.

(A7)

Evaluation of correction coefficients anm,b
n
m,m=1, .. .,Nel and their distribution

to the respective subdomains allows us to compute form=2, .. .,Nel the new function’s

values or its derivatives at the left boundaries of subdomains Ωm:

un+1(Γm−1,m)=u
n(Γm−1,m)+θ(−am+bm),

du

dx

n+1

(Γm−1,m)=
du

dx

n

(Γm−1,m)+cTam.
(A8)
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At the right boundaries of subdomains Ωm, the new function’s values or its

derivatives can be computed for m=1, .. . ,Nel−1 using the following relations:
un+1(Γm,m+1)=u

n(Γm,m+1)+θ(am+bm),

du

dx

n+1

(Γm,m+1)=
du

dx

n

(Γm,m+1)+cT am,
(A9)

where θ is the relaxation factor.
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