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Abstract: The paper introduces a parametric integral equation system (PIES) for solving 2D
boundary problems defined on connected polygonal domains described by the Navier-Lame equation.
Parametric linear functions were applied in the PIES to define analytically the polygonal subregions’
interfaces. Only corner points and additional extreme points on the interface between the connected
subregions are posed to practically define a polygonal domain. An important advantage of this
approach is that the number of such points is independent of the area of identically shaped domains
due to the elimination of traditional elements from modeling, the number of those elements being
dependent on the domain’s surface area. In order to test the reliability and effectiveness of the
proposed method, test examples are included in which areas of displacements and stresses are
analyzed in each subregion.
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1. Introduction

The main problem in solving multi-dimensional boundary problems is account-
ing for domains of varying shapes. The most popular methods for solving boundary
problems described by the Navier-Lamé equation are FEM and BEM [1, 2]. The de-
velopment of these methods, particularly of the BEM method, is described in detail
in [3–6]. The discretization used in FEM enables including different domains and
applying various material constants to each element. Lastly, this approach involves
preparation of large amounts of input data necessary for modeling boundary problems.
In order to avoid the problems connected with traditional elements, it is necessary to
elaborate a method that would not require traditional finite or boundary elements.
This is possible by means of curves, used in computer graphics [7] and applied to
describe the boundary geometry of boundary integral equations (BIE).
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As a results of analytically combining curves with BIEs, an original parametric
integral equation system (PIES) [8–10] has been obtained. Bézier [9] and Hermite [10]
curves are used to describe smoothly the boundary geometry. They are very effective,
as they enable continuous creation of any domains by means of a small number of
Bézier or de-Boor control points. The definition of a polygonal domain requires only
corner points to be set [8].

The PIES’s numerical solution is reduced to approximating the boundary
functions using known numerical methods. As a result of approximating the PIES
by means of the pseudospectral method [11], an approximate system of algebraic
equations is obtained. The number of equations in such systems is much less than in
the FEM or even the BEM methods. The results obtained for examples solved earlier
are more accurate than those obtained from other, traditional-element methods.
Considering the method’s advantages, it will be interesting to perform further research
on problems with wider applications.

In this paper, a non-element method is proposed for solving boundary prob-
lems described on connected polygonal subregions with differing material constants.
For a practical definition of two-dimensional polygonal domains only their corner
points have been set; in order to band subregions, some compatibility conditions
have been imposed at common boundary. Solutions obtained from a large number
of test examples have confirmed high effectiveness and accuracy of the proposed
method.

2. Traditional and proposed definitions

of subregions

Two methods are applied to solve boundary problems defined by the Navier-
Lamé equation: the finite element method (FEM) and the boundary element method
(BEM) [1, 2]. Traditional FEM (see Figure 1a) is characterized by discretization of the
whole domain into finite elements and is thus technically the most readily applicable
to problems with subregions Ωt of different material constants Et, νt (t=1,2, .. . ,m),
where m is the number of subregions. As shown in Figure 1a, setting different
material constants below and above the common interface I, automatically enables
consideration of subregions Ωt (t=1, 2). The method’s disadvantage is the necessity
to use large numbers of nodes and thus solving of complex systems of algebraic
equations.

From the point of view of the amount of required input data, the BEM method
is more effective, because only boundary discretization is required (see Figure 1b)
and thus less input data (nodes) are required than in the FEM method. Compatibility
conditions on common interfaces I between the connected subregions [2] must be
fulfilled when applying the method to problems defined on domains Ω built of
subregions Ωt (t=1, 2).

The domain shown in Figures 1a and 1b could be defined more effectively than
in BEM by setting a less input data. Actually, it could be defined merely with corner
points Pi (i=0, 1, 2, 3, 4, 5) of the polygonal domain (cf. Figure 1c). An important
advantage of such modeling is that the number of corner points used is independent
of the area of domains Ω of the same shapes. In other words, it is not necessary
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(a) (b) (c)

Figure 1. Traditional and proposed definitions of connected regions Ω=Ω1+Ω2: (a) traditional
finite elements, (b) traditional boundary elements, (c) proposed corner points

(unlike FEM and BEM) to introduce more input data when increasing the domain
area. A modification of the traditional boundary integral equation (BIE) was required
in order to apply this approach to boundary problems, as follows [2]:

1
2
u(x )=

∫

Γ

U ∗(x ,y)p(y)dΓ (y)−
∫

Γ

P∗(x ,y)u(y)dΓ (y)+
∫

Ω

U ∗(x ,y)b(y)dΩ(y), (1)

where p(y)≡ ∂u(y)∂n(y) and P
∗(x ,y)≡ ∂U

∗(x ,y)
∂n(y) , x ,y ∈Γ .

In Equation (1), boundary geometry is defined generally by means of a bound-
ary integral; therefore, physical consideration of the boundary is possible only after
its division into boundary elements. Application of the proposed modeling approach
requires a modification of the traditional BIE such that boundary geometry could
be defined by means of corner points. The modification was performed for homoge-
nous domains and Laplace’s equation in paper [8], where the modified BIE was called
a parametric integral equation system (PIES) [9, 10].

2.1. Parametric integral equation system (PIES) for Navier-Lamé

equations

Parametric integral equation systems (PIES) can be used to solve Navier-Lamé
equations with any boundary conditions and polygonal domains Ωt. Obtaining a PIES
for a homogenous polygonal region and Laplace’s equation was presented in paper [12],
in [9] for domains modeled by Bézier curves. A PIES for the Navier-Lamé equation was
obtained in a way similar to the Laplace equation case, as presented in papers [9, 12].
The PIES for a Navier-Lamé equation with polygonal domains has the following
form [13]:

1
2
up(s1)=

n
∑

r=1

Jr

∫ sr

sr−1

{

Ū ∗pr(s1,s)pr(s)−P̄
∗

pr(s1,s)ur(s)
}

ds,

sp−1≤ s1≤ sp, sr−1≤ s≤ sr.
(2)
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Integrand functions Ū ∗pr(s1,s) and P̄
∗

pr(s1,s) of Equation (2) are the PIES’s kernels
and have the following form:

Ū ∗pr(s1,s)=−
1

8π(1−ν)µ

[

(3−4ν)ln(η)− η
2
1

η2 −η1η2η2

−η1η2η2 (3−4ν)ln(η)− η
2
2

η2

]

, (3)

where η = [η21 + η
2
2 ]
1/2, η1 = Γ

(1)
r (s)−Γ

(1)
p (s1), η2 = Γ

(2)
r (s)−Γ

(2)
p (s1) and Γ

(i)
k (s),

i = 1, 2, k = r, p are linear parametric functions. Only the polygon’s cornerpoints
are posed for its definition.

The second integrand function of Equation (2) is given in the form of the
following matrix:

P̄∗pr(s1,s)=−
1

4π(1−ν)η

[

P11 P12
P21 P22

]

, p, r=1,2, .. . ,n, (4)

where

P11=
{

(1−2ν)+2
η21
η2

}

∂η

∂n
, P12=

{

2
η1η2

η2
∂η

∂n
−(1−2ν)

[

η1

η
n2+
η2

η
n1

]}

,

P21=
{

2
η2η1

η2
∂η

∂n
−(1−2ν)

[

η2

η
n1+
η1

η
n2

]}

, P22=
{

(1−2ν)+2
η22
η2

}

∂η

∂n
,

∂η

∂n
=
∂η1

∂η
n1+
∂η2

∂η
n2.

whilst ν, µ are material constants in the Ωt domain, and n
(j)
1 and n

(j)
2 are the

components of a unit vector normal to the r segments.
Unlike the traditional BIE, the PIES is not defined on the boundary but on

the straight line in the parametric reference system, for any boundary geometry.
The boundary geometry is analytically defined in kernels (3) and (4) by means of
parametric linear functions. In practice, only corner points of the polygon are set
to define it, following which the PIES boundary geometry is created automatically.
Modification of the corner points’ coordinates brings about automatic modification
of the whole considered geometry.

3. Solution in the domain for displacements

Having a solution for the boundary, we can obtain one for the Ωt domain for
displacements by means of the following integral identity [13]:

u(x )=
n
∑

r=1

Jr

∫ sr

sr−1

{

ˆ̄U ∗r(x ,s)pr(s)−
ˆ̄P∗r(x ,s)ur(s)

}

ds, sr−1≤ s≤ sr. (5)

The first integrand function of Equation (5) is presented as the following matrix:

ˆ̄U ∗r(x ,s)=−
1

8π(1−ν)µ





(3−4ν)ln(~

~

r )− ~

~

r 21
~

~

r 2
−~

~

r 1~

~

r 2
~

~

r 2

−~

~

r 1~

~

r 2
~

~

r 2
(3−4ν)ln(η)− ~

~

r 22
~

~

r 2



, (6)

where ~

~

r = [~

~

r21+~

~

r22]
1/2, ~

~

r1=Γ
(1)
r (s)−x1 and ~

~

r2=Γ
(2)
r (s)−x2. The second integrand

function, ˆ̄P∗r , is presented in the following explicit form:

ˆ̄P∗r(x ,s)=−
1

4π(1−ν)~

~

r

[

P11 P12
P21 P22

]

, r=1,2,3, . .. ,n, (7)
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where

P11=
{

(1−2ν)+2
~

~

r21
~

~

r 2

}

∂~

~

r

∂n
, P12=

{

2
~

~

r1~

~

r2

~

~

r 2
∂~

~

r

∂n
−(1−2ν)

[

~

~

r1

η
n2+
~

~

r2

η
n1

]}

,

P21=
{

2
~

~

r2~

~

r1

~

~

r 2
∂~

~

r

∂n
−(1−2ν)

[

~

~

r2

η
n1+
~

~

r1

η
n2

]}

, P22=
{

(1−2ν)+2
~

~

r22
~

~

r 2

}

∂~

~

r

∂n
,

∂ ˙̇ṙ
∂n
=
∂~

~

r1

∂~

~

r
n1+
∂~

~

r2

∂~

~

r
n2.

Having obtained a solution for the boundary with PIES (2), we can easily obtain
a displacement value for any domain point by means of integral identity (5).

4. Stress in the domain

Knowing the distribution of displacements in the Ωt domain, we can obtain the
vector of strains as a result of proper differentiation of displacements. Then, using
Hook’s law, we can easily obtain stress distribution in the domain [14].

In our case, we can directly use integral identity (5) obtained for computing
displacements in the domain. As a results of its proper differentiation and direct
substitution into Hook’s law, we have obtained the following integral expression for
computing stress components in a polygonal domain:

σ(x )=
n
∑

r=1

∫ sr

sr−1

{

ˆ̄D∗r(x ,s)pr(s)−
ˆ̄S∗r(x ,s)ur(s)

}

Jrds, σ(x )= {σx,σy,τxy}
T
. (8)

In this expression, integrands ˆ̄D∗r and
ˆ̄S∗r are given in the following matrix form:

ˆ̄D∗r(x ,s)=
1

4π(1−ν)~

~

r















(1−2ν)~

~

r 1
~

~

r
+2~

~

r 31
~

~

r 3
−(1−2ν)~

~

r 2
~

~

r
+2~

~

r 21~

~

r 2
~

~

r 3

(1−2ν)~

~

r 2
~

~

r
+2~

~

r 21~

~

r 2
~

~

r 3
(1−2ν)~

~

r 1
~

~

r
+2~

~

r 1~

~

r 22
~

~

r 3

−(1−2ν)~

~

r 1
~

~

r
+2~

~

r 1~

~

r 22
~

~

r 3
(1−2ν)~

~

r 2
~

~

r
+2~

~

r 32
~

~

r 3















, (9)

ˆ̄S∗r(x ,s)=
µ

2π(1−ν)~

~

r2







S11 S12

S21 S22

S31 S32






, (10)

where

S11=2
∂ ˙̇ṙ
∂n

[

(1−2ν)
~

~

r1

~

~

r
+2ν
~

~

r1

~

~

r
−4
~

~

r31
~

~

r 3

]

+4νn1
~

~

r21
~

~

r 2
+(1−2ν)

[

2n1
~

~

r21
~

~

r 2
+2n1

]

−(1−4ν)n1,

S12=2
∂ ˙̇ṙ
∂n

[

(1−2ν)
~

~

r2

~

~

r
−4
~

~

r21~

~

r2

~

~

r 3

]

+4νn1
~

~

r1~

~

r2

~

~

r 2
+(1−2ν)

[

2n2
~

~

r21
~

~

r 2

]

−(1−4ν)n2,

S21=2
∂ ˙̇ṙ
∂n

[

ν
~

~

r2

~

~

r
−4
~

~

r21~

~

r2

~

~

r 3

]

+2ν
[

n1
~

~

r1~

~

r2

~

~

r 2
+n2
~

~

r21
~

~

r 2

]

+(1−2ν)
[

2n1
~

~

r1~

~

r2

~

~

r 2
+n2

]

,

S22=2
∂ ˙̇ṙ
∂n

[

ν
~

~

r1

~

~

r
−4
~

~

r1~

~

r22
~

~

r 3

]

+2ν
[

n1
~

~

r22
~

~

r 2
+n2
~

~

r1~

~

r2

~

~

r 2

]

+(1−2ν)
[

2n2
~

~

r1~

~

r2

~

~

r 2
+n1

]

,

S31=2
∂ ˙̇ṙ
∂n

[

(1−2ν)
~

~

r1

~

~

r
−4
~

~

r1~

~

r22
~

~

r 3

]

+4νn2
~

~

r1~

~

r2

~

~

r 2
+(1−2ν)

[

2n1
~

~

r22
~

~

r 2

]

−(1−4ν)n1,
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S32=2
∂ ˙̇ṙ
∂n

[

(1−2ν)
~

~

r2

~

~

r
+2ν
~

~

r2

~

~

r
−4
~

~

r32
~

~

r 3

]

+4νn2
~

~

r22
~

~

r 2
+(1−2ν)

[

2n2
~

~

r22
~

~

r 2
+2n2

]

−(1−4ν)n2,

~

~

r = [~

~

r21+~

~

r22]
1/2, ~

~

r1=Γ(1)r (s)−x1 and~

~

r2=Γ(2)r (s)−x2.

5. Numerical solution of PIES

The PIES presented in Subsection 2.1 is characterized by containing an analyt-
ically defined boundary geometry. A practical definition of the polygonal boundary
geometry is reduced to posing coordinates for the corner points. We can thus as-
sume that the boundary geometry has been simply included in the PIES. The next
step is an approximation of the boundary functions, which, in this case, means solv-
ing the obtained PIES. Therefore, the PIES’s solution is no longer directly related to
the boundary geometry, as the PIES is defined on a straight line in the parametrical
system of reference.

The separation of the approximation of boundary geometry from that of
boundary functions facilitates the latter and renders it more effective. Generally,
the separation enables applying the numerical methods traditionally used to solve
differential and integral equations and searching for even more effective methods suited
to different types of boundary problems to be solved.

In earlier papers [9, 12, 15], a collocation method was used to solve the PIES
obtained for Laplace and Helmholtz equations. As the method turned out to be
simple and quite effective in a number of tested cases, it was selected for solving the
PIES obtained for the Navier-Lamé equation. The method consists in approximating
boundary functions ur(s), pr(s) on each segment r as follows:

pr(s)=
N
∑

k=0

p(k)r T
(k)
r (s), ur(s)=

N
∑

k=0

u (k)r T
(k)
r (s), (11)

where u (k)r , p
(k)
r are unknown coefficients, N is the number of coefficients on segment

r, and T kr (s) are the global base functions on individual segments (Chebyshev
polynomials).

The unknown coefficients for one of approximation series (11) on each segment
are obtained as a result of interpolation of the posed boundary conditions. Coefficients
of the other series are obtained after solving the PIES. Having substituted (11) into
Equation (2), we obtain an expression for any given boundary conditions in the
following general form:

1
2
up(s1)=

n
∑

r=1

N
∑

k=0

{

p(k)r

∫ sr

sr−1

Ū ∗pr(s1,s)−u
(k)
r

∫ sr

sr−1

P̄∗pr(s1,s)

}

T (k)r (s)Jrds. (12)

Having fulfilled the equation at collocation points s1 = s1(r) (r = 1,2,3,. . .,M),
M = n×N (total number of collocation points M being a product of the number
of segments, n, and the number of unknown coefficients, N , on individual segments),
we obtain an algebraic equation system with respect to unknown coefficients p(k)j
or u (k)j . On solving this equation, we obtain the unknown coefficients from one
of approximation series (11). When these are substituted into Equation (11), an
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analytical expression for an unknown boundary function is obtained, from which we
can obtain a solution at any given point for any boundary segment.

The accuracy of the results obtained by this method is largely dependent on N
and, to a lesser degree, on the arrangement of collocation points and the complexity
of the posed boundary conditions. In accordance with earlier research for the Laplace
equation, the most accurate results were obtained when extreme collocation points
were placed close to the segments’ ends. Highly accurate solutions were obtained even
for an algebraic equation system much smaller than in the traditional BEM [12].

The proposed technique is quite simple from the programmatic point of view
and highly effective in practical applications. It enables optimal arrangement of
collocation points and choosing an exact number of expressions, N , in approximation
series (11), depending on the length of segments r. This is a very significant advantage,
as segments r may have diverse lengths when corner points are used in modeling the
boundary geometry with a PIES. In order to obtain accurate results on each segment,
it is necessary merely to choose an N dependent on the length of segment r and the
complexity of the posed boundary conditions.

The proposed method of approximating boundary functions is especially ef-
fective from the point of view of analysis of the solutions’ convergence. In order to
perform it, We only need to change number N from series (11), which stands for the
number of accepted expressions. The process is technically much easier than another
discretization of the domain or the boundary into smaller elements.

Having found the functions on the boundary, we can obtain the solution in
domain Ω on the basis of integral identity (5).

Finally, Equation (12) written for all the collocation points [9, 12] assumes the
form of an algebraic equation system approximating the PIES:

Hu =Gp. (13)

In the above system, u or p are unknown coefficients. Which of the functions in
Equation (11) is known and which is to be found will depend on the type of the
boundary problem to be solved. Having solved Equation (13), we obtain unknown
coefficients u or p, which – after substitution to Equation (11) – yield a solution on
the boundary Γt for a homogeneous domain Ωt.

One of the PIES’s advantages is that solutions obtained on the boundary with
expressions (11) are continuous (in contrast to BEM). It enables obtaining a solution
for any boundary point by substitution of parameter s (which corresponds to the
point’s coordinates in the Cartesian reference system) into Equation (11).

5.1. Numerical solution in the domain

Boundary functions pr(s), ur(s) from Equation (5) are necessary to obtain
solutions in the domain. One of them is given in the form of boundary conditions,
whilst the other is obtained after solving the PIES. Assuming that both functions are
approximated by approximation series (11) and substituting them into Equation (5),
we obtain:

u(x )=
n
∑

r=1

N
∑

k=0

{

p(k)r

∫ sr

sr−1

Ū ∗pr(s1,s)−u
(k)
r

∫ sr

sr−1

P̄∗pr(s1,s)

}

T (k)r (s)Jrds. (14)
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It follows from Equation (14) that only coefficients p(k)r , u
(k)
r from approximation

series (11) are required for practical solution of domain Ωt at any point. The
first vector of coefficients is obtained after solving the PIES, the second – after
approximation of the given boundary condition.

6. A PIES for a domain built with subregions of different

material constants

It is also possible to obtain a PIES for domain Ω composed of subregions Ωt
of different material constants. The problem is to obtain a fundamental and singular
boundary solution in an explicit form. The solution should take into account linear
segments limiting subregions and the material constants of each subregion Ωt.

The considered problem could be easier to solve if we treated the polygonal
domain Ω as a sum of subregions Ωt, t= 1,2, . .. ,m. A geometrical interpretation of
a boundary with three polygonal subregions is shown in Figure 2. Only 4 corner points
and 4 external points on the common interfaces are required to define such boundary
geometry (regardless of the domain’s area).

Figure 2. Domain Ω with three subregions Ωt (t=1, 2, 3)

As each subregion Ωt (t = 1,2,3, see Figure 2), is characterized by different
material constants Et, νt, it is necessary to apply the PIES to each subregion
individually. Thereafter, we can connect the subregions on common interfaces I and II
by means of compatibility conditions. Finally, the following integral equation system
is obtained:

1
2
up(s1)=

n
∑

r=1

Jr

∫ sr

sr−1

{

Ū ∗pr(s1,s)pr(s)−P̄
∗

pr(s1,s)ur(s)
}

ds for Ω1, (15)

uI1 (s)=u
I
2 (s)=u

I(s), pI1 (s)=−p
I
2 (s)=p

I(s) for Γ1, (16)

1
2
up(s1)=

n
∑

r=1

Jr

∫ sr

sr−1

{

Ū ∗pr(s1,s)pr(s)−P̄
∗

pr(s1,s)ur(s)
}

ds for Ω2, (17)

uII2 (s)=u
II
3 (s)=u

II(s), pII2 (s)=−p
II
3 (s)=p

II(s) for Γ2, (18)

1
2
up(s1)=

n
∑

r=1

Jr

∫ sr

sr−1

{

Ū ∗pr(s1,s)pr(s)−P̄
∗

pr(s1,s)ur(s)
}

ds for Ω3. (19)
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Having applied algebraic approximation individually to Equations (15), (17) and (19),
we obtain:

[H1 H I1 ]
[

u1
uI1

]

= [G1 GI1 ]
[

p1
pI1

]

for subregion Ω1, (20)

[H2 H I2 ]
[

u2
uI2

]

= [G2 GI2 ]
[

p2
pI2

]

for subregion Ω2, and (21)

[H3 H II3 ]
[

u3
uII3

]

= [G3 GII3 ]
[

p3
pII3

]

for subregion Ω3. (22)

As a result of connecting Equations (20), (21) and (22) with compatibility condi-
tion (16), (18), the following approximate system of algebraic equations is obtained
for the three subregions:





H1 H
I
1 −GI1 0 0

0 H I2 −GI2 H2 0
0 0 H II3 −GII3 H3



















u1
uI

pI

uII

pII

u3















=





G1 0 0
0 G2 0
0 0 G3









p1
p2
p3



. (23)

Considering the boundary condition, Equation (23) assumes the following form:

AX =B , (24)

where X is a vector of the unknown coefficients of approximation series (11).
VectorX is dependent on unknown coefficients u or p approximating boundary

functions (11). If we have displacements as given, p is the unknown function to be
found; when surface forces are given – the unknown function is u . In a mixed problem,
vector X contains coefficients p and u alternate with given coefficients u and p on
each of the segments. In all boundary problems, both coefficients are searched on
interfaces between subregions.

A is a blocked and banded matrix, of sample graphical presentation shown in
Figure 3.

Figure 3. Matrix A for two subregions

The Gauss elimination method [16] is applied to solve algebraic equation
system (24).
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7. Testing the proposed algorithm

As there are no analytical solutions for such problems, the proposed algorithm
has been tested on reliable numerical solutions.

First, we solved a problem defined in a region Ω by means of a pre-tested
program based on the PIES. Its had been tested on numerous examples with analytical
solutions [13].

Thereafter, the proposed algorithm was tested on the same examples assuming
that domain Ω was composed of two subregions, Ω1 and Ω2, of the same material
constants. While the condition did not change the problem from the point of view
of material constants in the whole domain, it enabled testing the proposed algorithm
on connected subregions as for the Laplace equation [17]. The main purpose of the
following examples is to compare solutions obtained from two different programs. We
will first solve the problem with a program for a single region and then with the
proposed program for subregions.

7.1. Example 1

In our first example we consider a square domain with boundary conditions as
per Figure 4.

(a) (b) (c)

Figure 4. Boundary conditions, boundary geometry and domain division for Example 1

We assume the domain to consist of two polygonal subregions with the same
material constants E1=E2=1, ν1= ν2=0.25. The algorithm presented in the paper
(for two subregions) is applied to solve problem, but we also use the previously
obtained program for a single region.

When applying the PIES to two subregions (see Figure 4b), it is necessary to
set six corner points Pi (i=0,1,. . .,5), whilst four corner points, P0, P1, P2, P3, need
to be posed when using the PIES for a single region (see Figure 4a). Solutions at
selected points of the subregions are compared with those obtained for a single region
in Table 1. The numerical results obtained for a single region (columns 2 and 3) are
close to the results for two subregions presented in columns 4 and 5. Minor differences
are due to the fact that in the case of connected subregions the number of expressions
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Table 1. Solutions obtained for cross-section x=2.5 and 0<y< 5 (see Figure 4b)

Two subregionsSingle region
E=1, ν=0.25 E1=E2=1 E1=2, E2=1Coordinates

of points ν1= ν2=0.25 ν1=0.25, ν2=0.3

u1 u2 u1 u2 u1 u2

1 2 3 4 5 6 7

(2.5,0.5) −7.0157 ·10−7 0.46629 1.8692 ·10−13 0.46933 3.0547 ·10−13 0.46481

(2.5,1) −3.6669 ·10−6 0.93338 4.1362 ·10−13 0.94604 6.8144 ·10−13 0.94427

(2.5,1.5) −6.4391 ·10−6 1.41933 6.7425 ·10−13 1.44074 1.1182 ·10−12 1.44310

(2.5,2) −8.8518 ·10−6 1.91744 9.5927 ·10−13 1.94582 1.6013 ·10−12 1.95011

(2.5,2.5) −1.0895 ·10−5 2.42167 0.00630962 2.43049 0.00197652 2.44962

(2.5,3) −1.2664 ·10−5 2.92777 1.5106 ·10−12 2.95736 2.4525 ·10−12 2.70850

(2.5,3.5) −1.4303 ·10−5 3.43326 1.7434 ·10−12 3.46888 2.7675 ·10−12 2.96758

(2.5,4) −1.5916 ·10−5 3.93721 1.9757 ·10−12 3.97545 3.0796 ·10−12 3.22237

(2.5,4.5) −1.7479 ·10−5 4.43985 2.2147 ·10−12 4.47832 3.3942 ·10−12 3.47515

Table 2. Solutions obtained for cross-section y=2.5 and 0<x< 5 (see Figure 4c)

Two subregionsSingle region
E=1, ν=0.25 E1=E2=1 E1=2, E2=1Coordinates

of points ν1= ν2=0.25 ν1=0.25, ν2=0.3

u1 u2 u1 u2 u1 u2

1 2 3 4 5 6 7

(0.5,2.5) 0.49233 2.48751 0.49648 2.49081 0.61345 2.50320

(1,2.5) 0.36655 2.46003 0.36745 2.45844 0.57208 2.31712

(1.5,2.5) 0.24215 2.43876 0.24230 2.43419 0.53035 2.12944

(2,2.5) 0.12021 2.42591 0.12036 2.41937 0.49152 1.94260

(2.5,2.5) −1.089 ·10−5 2.42167 −2.374 ·10−5 2.41561 0.41474 1.77206

(3,2.5) −0.12023 2.42591 −0.12041 2.41938 0.38185 1.59651

(3.5,2.5) −0.24217 2.43876 −0.24235 2.43420 0.31580 1.44074

(4,2.5) −0.36657 2.46004 −0.36750 2.45846 0.24921 1.29454

(4.5,2.5) −0.49235 2.48752 −0.49654 2.49083 0.18014 1.15415

in approximation series (11) should be increased in order to obtain more accurate
results.

Considering care taken in testing the program for a single region, we can
assume the algorithm for two subregions to be equally reliable and suitable for solving
problems with different material constants. Solutions for different material constants
are presented in columns 6 and 7 of Table 1.

Table 2 contains solutions obtained in the domain divided as per Figure 4c.
Comparing the values presented in columns 2 and 4 with those of 3 and 5, the solutions
are noticeable more accurate those shown in Table 1.
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Table 3. Solutions obtained for cross-section y=1 and 0<x< 4 (see Figure 5)

Two subregionsSingle region
E=26, ν=0.3 E1=E2=26 E1=26, E2=30Coordinates

of points ν1= ν2=0.3 ν1=0.2, ν2=0.3

u1 u2 u1 u2 u1 u2

(0.4,1.0) −0.18767 −0.34675 −0.18112 −0.34547 −0.11402 −0.37778

(0.8,1.0) −0.13173 −0.32103 −0.12450 −0.31736 −0.08034 −0.35232

(1.2,1.0) −0.08293 −0.30519 −0.07493 −0.29838 −0.05082 −0.33173

(1.6,1.0) −0.03960 −0.29527 −0.03131 −0.28470 −0.02519 −0.31205

(2.0,1.0) 0.00094 −0.29105 0.00817 −0.27722 −0.00421 −0.29212

(2.4,1.0) 0.04116 −0.29359 0.04774 −0.28282 0.03480 −0.27277

(2.8,1.0) 0.08366 −0.30298 0.08812 −0.29587 0.07237 −0.26855

(3.2,1.0) 0.13147 −0.31992 0.13508 −0.31583 0.11269 −0.27615

(3.6,1.0) 0.18658 −0.34771 0.19002 −0.34634 0.15920 −0.29553

(a) (b)

Figure 5. Boundary conditions and defining boundary geometry with corner points in Example 2

7.2. Example 2

In order to test the proposed method even more accurately on a more compli-
cated boundary geometry, we shall now consider the problem presented in Figure 5.

Only seven corner points Pi (i=0,1, .. .,6) are required to define the problem’s
boundary geometry. We can also solve the problem with the PIES for a single
region [13], for which only six corner points, P0, P1, P2, P3, P4, P5, are required.
Solutions for the selected points of subregions, as shown in Figure 5, are presented
in Table 3 for both solution methods. The obtained results confirm reliability of the
proposed method for different boundary conditions and greater numbers of subregions.

7.3. Example 3

In our last example, a rectangular domain is considered with two sides much
longer than the others. An example of such domain is a beam. Dimensions of the
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Table 4. Solutions obtained on the upper horizontal boundary (see Figure 6)

Two subregionsSingle region
E=1, ν=0.1 E1=E2=1 E1=1, E2=2Coordinates

of points ν1= ν2=0.1 ν1= ν2=0.1

u1

(0,1) −2.63 ·10−6 −2.51 ·10−6 0.0008

(1,1) 1.1842 1.1842 1.0163

(2,1) 2.3684 2.3684 2.0266

(3,1) 3.5526 3.5526 3.0132

(4,1) 4.7368 4.7368 3.9663

(5,1) 5.9210 5.9210 4.5075

(6,1) 7.1052 7.1052 5.0585

(7,1) 8.2894 8.2894 5.6262

(8,1) 9.4736 9.4737 6.2055

Figure 6. Boundary conditions, boundary geometry and domain division in Example 3

considered beam and the given boundary conditions are presented in Figure 6. The
beam has been divided into two subregions of zonal material heterogeneity.

In order to test the proposed algorithm, solutions on boundary P2 P3 obtained
for the whole domain and for the two subdomains with the same material constants
were compared. The results are presented in Table 4.

Displacements u1 obtained for the whole domain and its division into two
subregions with the same material constants are almost equal. We can thus assume
that the algorithm yields regular results with subregions and is capable of solving
problems of subregions with different material constants. Exemplary solutions for
such subregions are presented in the last column of Table 4.

8. Conclusions

We have presented a new non-element method for modeling boundary geometry
in boundary problems described by the Navier-Lamé equation in which only corner
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points of a polygonal domain are set. The number of such points is much less than
the number of nodes used in FEM or BEM. An important advantage of the proposed
approach is that the number of points is independent of the domain’s area. Therefore,
the effectiveness of such definition increases with increasing domain area.

Application of the proposed boundary geometry definition is only possible in
a previously obtained PIES, an analytical modification of the traditional BIE. The
achieved effectiveness in solving of unconnected domains encourages the method’s
generalization onto connected regions with different material constants.

Our test examples have confirmed the proposed algorithm’s effectiveness in the
case of connected regions.
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