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Abstract: An artificial compressibility method is designed to simulate stationary two-and three-

dimensional motions of a viscous incompressible fluid. A standard method of lines approach is

applied in this contribution. A partial differential equation system is discretized in space by second-

order finite-difference schemes on uniform computational grids, and the time-variable is preserved

as continuous. Initial value problems for systems of ordinary differential equations for pressure and

velocity components are computed using the Galerkin-Runge-Kutta method of third order. Some test

calculations for laminar flows in square, cubic, triangular and semicircular cavities with one uniform

moving wall and double bent channels are reported.
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1. Introduction

One of the early techniques proposed for solving the incompressible Navier-

Stokes equations in a primitive variable form is the artificial compressibility method

of Chorin [1]. In this method, the continuity equation is modified to include an

artificial compressibility term which vanishes when a steady state solution is obtained.

The introduced pseudo-time derivative of pressure directly couples pressure and

velocity and changes the mathematical nature of the continuity equation from elliptic

to hyperbolic. The system of hyperbolic-parabolic equations is well posed and the

efficient numerical methods developed for compressible flows can be used to advance

the system in artificial time.

Many realistic problems in low-speed aerodynamics and hydrodynamics can be

addressed by the incompressible NS equations. In the last two decades, a considerable

progress has been made in developing computational techniques for predicting flow

fields in geometrically complex domains which are of practical interest in engineering

and bioengineering applications. The accuracy and efficiency of the existing codes are

now such that Computational Fluid Dynamics (CFD) is routinely used in the analysis
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and improvement process of the existing designs and is a valuable tool in experimental

programs and in the construction of new configurations. However, even with the use

of the most powerful super-computers the CPU requirements for steady and unsteady

computations are still very high.

Up to now many efforts have been made in the simulation of viscous flows

by resolving the NS equations with the pseudocompressibility techniques [2–21].

It is usually various highly complicated finite difference schemes that are used for

solving the obtained system of equations, the temporal derivative is approximated via

generalized time differencing. In order to derive a linear algebraic system of equations,

a linearization of viscous and inviscid fluxes has to be performed using Taylor series

expansions.

To overcome the difficulties associated with the nonlinearity of NS equations

a standard method of lines [22–25] approach is applied in this contribution. This

technique offers an advantage over discretized methods in that the NS equations are

linearized. A practical methodology for solving the steady NS equations in arbitrarily

complex geometries is also proposed. Some complex geometrical configurations can

be decomposed into a set of simpler subdomains. Each of them is designed to be

easily discretized with a simple rectangular grid. The simplest approach for specifying

boundary conditions near a curved or irregular boundary is to transfer all primitive

variables from the boundary to the nearest grid knots. In this way the system of

partial differential equation is discretized in space by second-order finite-difference

schemes on uniform grids in physical domains with the same mesh sizes in each

direction, to be then integrated in time. The initial-boundary value problem for the

system of partial differential equations is then reduced to an initial value problem

for the system of ordinary differential equations (mathematically parabolic) which

can be solved numerically by any powerful ordinary differential equations solver.

To simplify our analysis, this study focuses only on the frequently studied standard

benchmark problems to validate the accuracy of the NS solvers because many approved

experimental and numerical results have been reported in the literature.

2. Governing equations

With the pseudo-compressibility technique the non-dimensionalized governing

equations in the Cartesian co-ordinate system become:
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where V1, V2, V3 are the velocity components, p is the pressure, Re is the Reynolds

number, and β > 0 is the artificial compressibility parameter.

In the first component of the above equations, a time derivative of pressure is

artificially added to the equation of continuity. However, since mass conservation is

enforced only at the steady state, it is impossible to follow a physical time transient.

The artificial compressibility factor β represents an artificial sound speed and

affects the overall convergence rate. It is possible to increase the rate of convergence

by selecting an optimum value of β, but this has to be done on a trial and error basis
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for each problem. Through several computational experiments, the most convenient

value of the pseudo-compressibility parameter β has been found to be unity and this

value will be kept constant in the entire domains of solution.

The physical boundary conditions for the equations of viscous flows (1) in

primitive variables are specified as consisting of impermeability as well as of non-

slip conditions at solid walls and of the requirement of assumed velocity profiles at

channel inlets and outlets. The pressure is usually not given on the boundaries, but

it can be determined from the momentum equations, and can be fixed in one point

of the domain.

The original form of the artificial compressibility method has been developed

for the steady-state problems [3, 5]. The first of equations (1) can be used to compute

pressure fields. The method can also be extended to a time accurate formulation and

there are numerous works in the literature describing various strategies for solving

the unsteady flow problems, see e.g. [10, 13–16]. The time accurate solutions can be

obtained by using a three-level formula to evaluate the time derivatives and adding

a pseudo time-derivative in the momentum equations. The discretized momentum

equations are solved for a divergence free velocity field at each successive time level.

3. Numerical approach

The proposed numerical technique, the method of lines, consists of converting

the partial differential equations system (1) into an ordinary differential equation ini-

tial value problem by discretizing the spatial derivatives together with the boundary

conditions for the first derivative of pressure via the classical finite difference approxi-

mations of second order [26]. This produces a system of ordinary differential equations

of the general form:
dU

dt
=F (U ), (2)

where U = [p,Vi]
T is the vector of dependent variables, and F is a spatial differential

operator.

The unknown values of pressure and velocity components in each inner knot of

computational meshes are computed using the explicit Galerkin-Runge-Kutta method

of third order [27]:
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Time advancement to a steady-state of viscous flows obtained with the third-

order explicit Runge-Kutta-Galerkin method proved to be much more efficient than

the backward-differentiation predictor-corrector method [28, 29].

4. Numerical simulation of various fluid flows

Numerical methods for incompressible Navier-Stokes equations are often verified

for codes validation, on widely used benchmark problems; the driven square [30–55]

and cubic cavity flows [38, 56–67]. The streamlines and comparisons between the

results of the method of lines and those found in the literature are shown. Some other

tq312o-e/275 30IX2008 BOP s.c., http://www.bop.com.pl



276 Z. Kosma

numerical experiments with incompressible fluid flows are also considered: double bent

channel flows as well as triangular and semi-circular driven cavity flows.

4.1. Square and cubic cavity problems

Let us consider two-and three-dimensional driven cavity flows as drawn in

Figure 1 as examples of the developed method which belong to the most popular

test problems in the CFD community in spite of a velocity discontinuity at the

cavities corners adjacent to the moving walls. A numerical simulation of the viscous

incompressible fluid motion in cavities is not only technologically important but it is

also of great scientific interest because it displays most fluid mechanical phenomena

in simple geometrical settings.

Figure 1. Geometry and boundary conditions of driven cavity problems:

(a) square cavity flow, (b) cubic cavity flow

Computations in the square cavity on the uniform grid 200×200 have been

performed for successive Reynolds numbers: Re = 10, 100, 400, 1000, 3200, 5000

and 7500. The proposed algorithms seem to be quite promising as an incompressible

Navier-Stokes solver for laminar flows, taking into account the fact that the transition

from laminar to turbulent flows occurs about Re≈ 8000.

First converged solutions for Re=10 with the assumption of u,v=0 have been

obtained to be then used as the initial conditions for the case of Re = 100, and so

forth. The time steps have been taken from the interval 5 ·10−5 ≤∆t≤ 1 ·10−3. The

integration of the system of equations (2) has been terminated after arriving at the

steady state, defined as:

‖U̇ n+1−U̇ n‖≤ ε=1 ·10−12. (4)

The obtained stream functions contours are shown in Figures 2 and 3. The

numbers of iterations ranging from 30000 to 100000 were necessary to achieve the

steady state solutions. Figures 4 and 5 present the computed profiles, and concern

the u-velocity component on the cavity’s vertical centreline, the v-velocity component

along the cavity’s horizontal centreline and their comparison with the corresponding

data from [30].

By using the presented algorithm, the computations in the cubic cavity have

been undertaken on a uniform 100×100×100 grid. The numerical simulations have

tq312o-e/276 30IX2008 BOP s.c., http://www.bop.com.pl



Fast Algorithms for Calculations of Viscous Incompressible Flows. . . 277

Figure 2. Square cavity: stream-function contours for

Re=1000 (left) and 3200 (right), 200×200 grid

Figure 3. Square cavity: stream-function contours for

Re=5000 (left) and 7500 (right), 200×200 grid

Figure 4. Distributions of x- and y-components of velocity on 2D-cavity centrelines

at Re=5000, 200×200 grid; solid line – the presented method, triangles – Ghia et al.,

x=0.5 (left), y=0.5 (right)

been conducted with ∆t=1 ·10−3 for the Reynolds numbers: Re= 10, 100, 400 and

1000. The solutions have been qualified as steady for the relative error (4) between

two time steps. It takes approximately 50000–80000 time steps to converge. The
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Figure 5. Distributions of x- and y-components of velocity on 2D-cavity centrelines

at Re=7500, 200×200 grid; solid line – the presented method, triangles – Ghia et al.,

x=0.5 (left), y=0.5 (right)

Figure 6. Cubic cavity: velocity vectors for Re=400 (left) and 1000 (right)

on the z= 0.5 plane, 100×100×100 grid

velocity vectors of the steady state solutions on the symmetry plane (z=0.5) for the

Reynolds numbers Re= 400 and 1000 are presented in Figure 6. For the purpose of

validation, Figures 7 and 8 show the plots of velocity profiles u and v along central

axes on the z=0.5 plane and their comparison to the results of Shu et al. [63].

Figure 7. Velocity profiles for u and v on the centrelines of the 3D-cavity on z=0.5 plane,

Re=400, 100×100×100 grid; solid line – the presented method, triangles – Shu et al.,

x=0.5 (left), y=0.5 (right)
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Figure 8. Velocity profiles for u and v on 3D-cavity centrelines on z=0.5 plane,

Re=1000, 100×100× 100 grid; solid line – the presented method, triangles – Shu et al.,

x=0.5 (left), y=0.5 (right)

4.2. Flow in double bent channels

The aim of this test case [47, 68–70] is to demonstrate the effectiveness of

the presented numerical algorithms and artificial compressibility formulation of the

Navier-Stokes equations in geometrical domains bounded by contours consisting of

finite numbers of rectilinear segments, parallel to the axes of the co-ordinate system.

An example of the flow in double bent channels with two concave corners is considered.

Figure 9 shows the geometry in which all the channels have the height of H =1, the

upper and lower channels lengths have been maintained in all configurations by setting

L1=2 and L3=9 with the channel step ratio of H ≤L2≤ 5H.

A parabolic velocity profile is imposed as the boundary conditions at the upper

channel inlet and a zero pressure gradient is assumed. The non-slip condition on the

solid walls is prescribed for the velocity components and the pressure is computed with

the known normal pressure gradients from the Navier-Stokes equations. The outlet

velocity field in the lower channel is also specified as a parallel flow with a parabolic

velocity profile and the pressure is set as equal to a constant value.

Figure 9. Geometry for double bent channels
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The applied methodology consists in decomposition of the computational

domain into a set of rectangles. After the domain decomposition has been completed,

the relative location of the various rectangles and the manner in which they are

connected with each other need to be determined, the sets of rectangular co-

ordinates determine every rectangle separately. The solution to this problem, which

is collectively referred to as grid connectivity, is trivial even when a large number of

adjacent rectangles is employed.

Figure 10. Schematic of a double bent channel domain with three adjacent rectangles

Using the developed algorithm, calculations for double bent channels flows

have been performed for Re ≤ 200 on two (L2 = 1): 100× 50, 50L× 50 or three

(L2 > 1): 100× 50, 50× 50L and 50L× 50 uniform grids (Figure 10) for channels

lengths 1 ≤ L ≤ 9. The original problem is solved on each successive rectangle for

the known tentative values of velocity components and pressure separately, and the

values on the adjacent boundaries are exchanged. The calculations have been made

with ∆t=1 ·10−3 and 10000–90000 time steps on each grid have been necessary to

get convergent solutions. Figures 11–13 show the computed stream-function contours

for three channel step ratios L2=1,3,5, respectively.

Figure 11. Double bent channel: stream-function contours, Re=200, L2=1

Figure 12. Double bent channel: stream-function contours, Re=200, L2=3
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Figure 13. Double bent channel: stream-function contours, Re=200, L2=5

4.3. Triangular and semicircular cavity problems

In this section the artificial compressibility method in conjunction with the

method of lines is applied to calculate laminar flows in complex geometrical configura-

tions. The driven flows in triangular and semicircular cavities are considered [71–75].

The number of publications dedicated to these wall-driven incompressible viscous

flow problems is not as large as in the case of wall-driven square and cubic cavities

problems, for which various solution methods have been compared. The geometry of

triangular and semicircular cavities with a co-ordinate system is shown in Figures 14a

and 14b. As in the case of square and cubic cavity problems, a unit velocity is pre-

scribed on the top boundary, while the no-slip boundary conditions are imposed on

the remaining boundaries.

Figure 14. Geometry and boundary conditions of driven cavity problems:

(a) triangular cavity flow, (b) semicircular cavity flow

Uniform grids are used to discretize the domains of solutions. The left and right

boundaries of the triangle and the curvilinear edge of the semicircle are approximated

by rectilinear edges or diagonals joining consecutive vertices of meshes, nearest to the

sidelines boundaries of the cavities (Figure 15). The following two matrices can be

useful to construct the resulting computer codes:
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– a two-dimensional matrix with logical elements to the identification mesh knots

which determine step-shaped lines approximating the unmoving boundaries of

the cavities,

– a one-dimensional matrix with integer elements containing numbers of the first

inner knots on vertical grid lines.

The systems of semi-discrete (discrete in space, continuous in time) ordinary

differential equations (2) can be thus obtained in all the nodes of the assumed uniform

computational grids situated inside the boundaries of cavities.

Figure 15. Some curved boundary line approximations

The flow in the triangular cavity has been simulated for Reynolds numbers

of Re≤ 5000 with the mesh size h= 1/300, the flow in the semicircular cavity – for

Reynolds numbers of Re≤ 6600 with the mesh size h=1/250. The computations have

been done with the time step ∆t=1 ·10−4 until the criterion (4) for convergence has

been satisfied. The obtained velocity vectors and stream function contours for some

Reynolds numbers are presented in Figures 16–22.

5. Remarks and conclusions

A very efficient and accurate numerical approach based on the artificial com-

pressibility and lines methods is developed in this work for predicting steady laminar

flows at high Reynolds numbers. The time integration has been obtained by the

third-stage Galerkin-Runge-Kutta scheme. The details of the numerical procedure

employed to solve the governing equations are presented, and a brief description of

the applied strategy is provided. The proposed algorithms have proved to be very ef-

fective for the demanded time of calculations required for steady-state computations,

they offer a significant acceleration of computations in comparison with the previous

algorithms [28, 29], and the calculation time of the same problem solutions obtained

by using the Fluent solver.

Simulations of 2D and 3D lid-driven cavity flows as well as flows in double bent

channels and triangular and semicircular cavities have been performed for various

Reynolds numbers. The steady-state numerical results for these flows are compared

to the results reported in the literature. It has been found that the proposed approach

yields the same velocity profiles along the vertical and horizontal lines on the mid-

plane of square and cubic cavities and the same velocity and stream-function fields in

the other regarded domains.

In the past decades, much progress has been made in developing computational

techniques for predicting flow fields in complex geometries. The widely used methods

have included finite element and finite volume methods due to their ability to analyze

the domains of an arbitrary shape. Although automatic grid generation is usually

a very effective solution, the mesh is difficult to be fully generated in many engineering
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Figure 16. Triangular cavity: velocity vectors and stream-function contours for

Re=1000, mesh size h=1/300

Figure 17. Triangular cavity: velocity vectors and stream-function contours for

Re=3000, mesh size h=1/300

Figure 18. Triangular cavity: velocity vectors and stream-function contours for

Re=5000, mesh size h=1/300
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Figure 19. Semicircular cavity: velocity vectors and stream-function contours for

Re=1000, mesh size h=1/250

Figure 20. Semicircular cavity: velocity vectors and stream-function contours for

Re=2000, mesh size h=1/250

Figure 21. Semicircular cavity: velocity vectors and stream-function contours for

Re=4000, mesh size h=1/250

Figure 22. Semicircular cavity: velocity vectors and stream-function contours for

Re=6600, mesh size h=1/250

problems, and pre-specified connectivity between the computational nodes or grid

points is required. In order to avoid the troublesome processing of mesh generation,

a number of meshless methods have been proposed in which the analysis domain

is discretized without employing any mesh or elements. Mesh-free methods usually

require node generation instead of mesh generation. Functions and their derivatives at

one central node are approximated entirely from the information of a set of scattered
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nodes within its local support. From the point of view of computational efforts, node

generation is considered to be an easier and faster job, compared to the former one.

Rather than calling these methods an alternative for meshbased methods, they may

be labeled as specific tools because the price to pay is a relatively high computational

burden associated with the use of these methods.

An alternative and practical methodology for solving the Navier-Stokes equa-

tions in arbitrarily complex geometries using Cartesian meshes which have numerous

inherent advantages is proposed in the paper. These include simple and efficient field

mesh generation, superior implementation of discretization schemes, minimal asso-

ciated phase errors, and absence of any issues associated with mesh skewness and

distortion. However, an obvious difficulty with the Cartesian approach is the imple-

mentation of solid wall boundary conditions, and their approximation error strongly

depends on the mesh size value. The scheme presented in this paper is spatially

isotropic (which is important for general applications) and shows good stability and

accuracy in the test problems solved. The schemes have been presented and tested for

two-dimensional solutions, but in principle the given procedure can also be developed

directly for three-dimensional analyses. Of course, further studies of the scheme, for

two-dimensional solutions are needed to include the numerical effectiveness. The po-

tential of the domain decomposition method onto a set of rectangles with rectilinear

or curved sides is demonstrated as a technique for simulating complex engineering

flows. Besides, near curved or irregular boundaries unequal mesh spacings and spe-

cial rules may be considered. The research in this direction is in progress. Because

the tentative velocity and pressure fields are given, the numerical calculations in each

subdomain can be done separately. The extension of the algorithms provides a tool for

studying problems in many engineering applications that involve complex geometries

and flows.
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