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Abstract: In the this paper our results on the natural convection in an enclosed rotating cavity are

presented. We have focused our attention on the influence of the Rayleigh and Taylor numbers on

the flow structure. DNS computations have been performed for the geometry of aspect ratio L=9

and curvature parameter Rm=1.5.
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1. Introduction

Rayleigh-Benard convection is a classical heat transport problem. An enclosed

fluid layer is heated from below and cooled from above. Depending on the tempera-

ture difference ∆T ∗=T ∗
2
−T ∗
1
, different fluid behavior is observed. If the producing

temperature difference exceeds the critical value of ∆T ∗
c
, this layer becomes unstable

to buoyancy and a regular convection pattern appears. At even higher temperature

differences, this regular pattern breaks down leading to plume dominated convective

turbulence. The properties of this process have been studied by many authors: e.g.

Rossby [1], Siggia [2]. Turbulent thermal convection appears in many technical appli-

cations, such as metal solidification processes or heat exchanger systems. When an

additional factor such as rotation is included, the convection process complexity in-

creases. The influence of rotation on the Rayleigh-Benard convection has been studied

by many authors: e.g. Chandrasekhar [3, 4], Nagakawa and Frenzen [5], Rossby [1],

Boubnov and Golistyn [6], Zhong et al. [7]. Processes of this kind are common in the

world around us, we can observe it in fluid flow machineries, the Earth’s atmosphere,

the solid core of the Earth or in the Sun.

In order to investigate the properties of such configuration, and the transition to

turbulence in particular, in this paper we investigate a uniformly rotating Boussinesq

fluid bounded from above and below by horizontal rotating disks held at fixed

temperatures. The geometrical model is described in Section 2. Sections 3 an 4 are

devoted to the mathematical model and numerical approach, respectively.
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2. Geometrical model

The geometrical domain is presented in Figure 1. The rotating (upper) disk

rotates at uniform angular velocity Ω∗. The outer cylinder of radius R∗
1
is attached to

the stator and the inner cylinder of radius R∗
0
is attached to the rotor. The geometrical

shape is defined by dimensionless parameters: the curvature parameter Rm and the

aspect ratio parameter L:

Rm=(R∗
1
+R∗

0
)/(R∗

1
−R∗

0
),

L=(R∗
1
−R∗

0
)/2h∗.

(1)

Figure 1. Geometrical model

The flow is controlled by the following physical parameters: the Rayleigh

number, Ra = g∗β(T ∗
2
−T ∗
1
)(2h∗)3/ν∗a∗, which denotes the respective relevance of

buoyancy and dissipation, the Taylor number, Ta = (2Ω∗(2h∗)2/ν∗)2, which defines

rotation, the convective Rossby number, Ro=
√

Ra/(Ta ·Pr), which characterizes the

respective importance of buoyancy and rotation, the Prandtl number, Pr = ν∗/a∗,

which characterizes the dissipative properties of the fluid. In the above relations, β is

the thermal expansion coefficient, T ∗
1
is the temperature of the upper rotating disk

and inner cylinder and T ∗
2
indicates the temperature of the stator and outer cylinder,

ν∗ is the kinematics viscosity, g∗ is the gravitational acceleration, a∗=λ∗/ρ∗c∗p is the

thermal diffusivity (asterisk denotes dimensional value).

3. Mathematical model

The flow is described by continuity, Navier-Stokes and energy equations. The

equations are written in a cylindrical coordinate system (r∗, ϕ, z∗), with respect to

a rotating frame of reference. Time, length and velocity are normalized as follows:

(Ω∗)−1, h∗ and Ω∗R∗
1
. Radial and axial coordinates are normalized to interval 〈−1;1〉

by transformation:

r=
2r∗

R∗
1
−R∗

0

−Rm=
r∗

Lh∗
−Rm, z=

z∗

h∗
. (2)

Normalization of variables is based on the free fall velocity U∗ =
√

g∗β∆T ∗2h∗, as

was proposed in [8]. We have introduced the dimensionless temperature defined as
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follows: Θ = (T ∗−T ∗
1
)/(T ∗

2
−T ∗
1
). After normalization, the governing equations can

be written in the following form:

• Continuity equation:

1

L

∂u

∂r
+

u

(Rm+r)L
+

1

(Rm+r)L

∂v

∂ϕ
+
∂w

∂z
=0; (3)

• Radial NS equation:

∂u

∂t
+
u

L

∂u

∂r
+

v

L(Rm+r)

∂u

∂ϕ
+w
∂u

∂z
−

v2

L(Rm+r)
−

√

PrTa

4Ra
v−(r+Rm)L

TaPr

16Ra
=

−
1

L

∂p

∂r
+2

√

Pr

Ra

[

1

L2
∂2u

∂r2
+

1

(r+Rm)L2
∂u

∂r
+

1

(r+Rm)2L2
∂2u

∂ϕ2
+

∂2u

∂z2
−

u

L2(Rm+r)2
−

2

L2(Rm+r)2
∂v

∂ϕ

]

; (4)

• Azimuthal NS equation:

∂v

∂t
+
u

L

∂v

∂r
+

v

(r+Rm)L

∂v

∂ϕ
+w
∂v

∂z
+

uv

L(Rm+r)
+

√

TaPr

4Ra
u=

−
1

(r+Rm
)L
∂P

∂ϕ
+2

√

Pr

Ra

[

1

L2
∂2v

∂r2
+

1

(r+Rm)L2
∂v

∂r
+

1

(r+Rm)2L2
∂2v

∂ϕ2
+

∂2v

∂z2
−

v

(r+Rm)2L2
+

2

(r+Rm)2L2
∂u

∂ϕ

]

; (5)

• Axial NS equation:

∂w

∂t
+
u

L

∂w

∂r
+

v

(r+Rm)L

∂w

∂ϕ
+w
∂w

∂z
=−
∂P

∂z
+
1

2
Θ+

2

√

Pr

Ra

[

1

L2
∂2w

∂r2
+

1

(r+Rm)L2
∂w

∂r
+

1

(r+Rm)2L2
∂2w

∂ϕ2
+
∂2w

∂z2

]

; (6)

• Energy equation:

∂Θ

∂t
+
u

L

∂Θ

∂r
+

v

(r+Rm)L

∂Θ

∂ϕ
+w
∂Θ

∂z
=

√

4

PrRa

[

1

L2
∂2Θ

∂r2
+

1

(r+Rm)L2
∂Θ

∂r
+

1

(r+Rm)2L2
∂2Θ

∂ϕ2
+
∂2Θ

∂z2

]

. (7)

The no-slip boundary condition is applied to all rigid walls, hence u=w=0. The

boundary conditions for the azimuthal velocity component are: v=0 on the rotating

disk, and v=−(Rm+r)/(Rm+1) on the stator. The dimensionless temperature equals

Θ=0 on the rotor and Θ=1 on the stator. Two different sets of temperature boundary

conditions have been used on the cylinders – isothermal boundary conditions Θ=0 on

the inner cylinder and Θ=1 on the outer cylinder or adiabatic boundary conditions

∂Θ/∂n=0 on the cylinders.
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4. Numerical approach

All the results are obtained by the Direct Numerical Simulation method (DNS)

based on the pseudospectral collocation Chebyshev-Fourier method [9, 10]. The spatial

approximation of the arbitrary dependent variable is as follows:

ΨNMK(r,z,ϕ,t)=

K/2−1
∑

p=−K/2

N
∑

n=0

M
∑

m=0

Ψnmp(t) Tn(r) Tm(z) e
ipϕ, (8)

where t is dimensionless time, Tn(r) and Tm(z) are Chebyshev polynomials, N +1,

K+1, M+1 are the numbers of grid points in radial, azimuthal and axial directions,

respectively. The use of the Gauss-Lobatto collocation points in radial and axial

directions ensures high accuracy of the solution inside the very narrow wall layers.

The uniform mesh has been used in the azimuthal direction. The time derivative

is approximated by a second order Euler backward scheme, the linear terms are

implicitly evaluated at time (n+1)t, the non-linear part is explicitly evaluated at

time (n+1)t by means of Adams-Bashforth extrapolation. The solution is based on

the predictor – corrector method and the matrix influence technique [9, 10].

5. Results

In the paper we present very preliminary results obtained by us for the rotating

cavity of aspect ratio L = 9, curvature parameters Rm = 1.5 and for the Rossby

number Ro = 1, 2 and 4. The main motivation of our work has been to compare

different flow patterns affected by rotation and to verify our results by a qualitative

comparison with similar results published in the literature [11–14]. A simulation was

initialized with a zero meridian flow, a linear distribution of the azimuthal velocity

component and a linear vertical temperature profile. Computations were performed

at a constant Rosby number; with constant Ro we gradually increased the Rayleigh

number Ra. The number of collocation points used in the radial, azimuthal and axial

directions was 90×90×45, respectively.

First, let us consider the isothermal condition on the end walls: Θ = 1 at the

outer cylinder and Θ = 0 at the inner one. The meridian sections of the flow fields

obtained for Ra= 10000 are presented in Figures 2a, 2b and 2c for Ro= 1, 2 and 4,

respectively. For Ro=1 we observe a characteristic laminar flow structure, disturbed

only near the end-wall cylinders. In Figure 2a we can see that fluid is pumped radially

outward along the upper rotaing disk and recirculates along the bottom disc. With

increasing Ro, the Rayleigh-Benard convection fluid flow patterns become stronger;

for Ro=4 we have observed fully developed convection (Figure 2c). We have obtained

a fully developed pattern of the flow for Ro=1 between 13000 and 16000, for Ro=2

between 10000 and 13000 and for Ro=4 between 7000 and 10000.

The time evolution of the azimuthal velocity component obtained for Ro = 1

and Ra=32000, 44000, 56000 and 80000 is presented in Figure 3. It can be seen in

Figure 3 that the amplitudes of oscillations increase with increasing Ra.

We have obtained similar flow patterns to these presented in Figure 2 for the

adiabatic boundary condition at the end-walls, however, this configuration has turned

out to be more stable. The temperature field in the meridian sections obtained for
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(a)

(b)

(c)

Figure 2. Velocity field meridial sections for Ra=10000: (a) Ro=1, (b) Ro=2, (c) Ro=4

(a) (b)

(c) (d)

Figure 3. Azimuthal velocity dependence on time for Ro=1 and (a) Ra=32000, (b) Ra=44000,

(c) Ra=56000 and (d) Ra=80000 obtained in the stator’s middle section

(a)

(b)

Figure 4. Temperature structure for Ro=4 and Ra=44000: (a) isothermal boundary conditions,

(b) adiabatic boundary conditions
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Ro=4, Ra=44000 and for the isothermal and adiabatic boundary conditions at the

end-walls is presented in Figures 4a and 4b, respectively. We have clearly observed

some kind of a shift in the pattern (Figures 4a and 4b).

6. Conclusions

In this paper, we performed computations using Direct Numerical Simulation

method (DNS) based on the pseudospectral collocation Chebyshev-Fourier method.

For rotating cavity of L=9 and Rm=1.5, we investigated the influence of rotation on

Rayleigh-Bénard convection. For Ro= 1, 2 and 4, we performed calculations for Ra

number from the range 1000<Ra< 100000. The results remain in a good qualitative

agreement with the results published in the literature. We observed characteristic

flow structures reported by many authors – laminar circulation in cells and rolls. We

are planning to continue computations for higher Ra values in order to reach chaotic

and turbulent state and a study its properties. LES method will be used in future

computations.
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