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Abstract: The PLIC approach has been usually used in recent implementations of the VOF method

i.e. the interphasal surface is approximated by a plane with an arbitrary orientation with respect

to the computational cell. Although this method is accurate, it is rather difficult to implement, as

a large number of orientations need to be taken into account and the calculation of volume fraction

fluxes is not straightforward. A simpler approach to VOF – SLIC – requires much less effort from

the programmer but the interface approximation by a plane parallel to the cell surfaces is too crude

and the results are not satisfactory. The method presented in the article may be considered as an

intermediate approach between PLIC and SLIC – fluxes are computed directly only for the interface’s

special orientations and linear interpolation is used for calculation of the fluxes for the remaining

cases. Some classical tests of the proposed method are performed and an example of a broken dam

problem simulation is presented.
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1. Introduction

The modeling of two-phase flows is not an easy task, both from a physical

and numerical point of view. The complexity of the phenomenon arises from the

presence of an interphase surface (front, interface) on which physical properties change

discontinuously (e.g. density, viscosity, pressure). This surface may be considered as

a moving boundary, where appropriate boundary conditions must be imposed and an

evolution of which needs to be found as a part of the solution. In the case of immiscible

non-reacting fluids, the interface is simply advected with the velocity of the flow.

Many methods for tracking the interphase surface can be found in the literature.

The most popular of those are: the front tracking method [1] (interface modeled as

a set of connected markers), the Level Set method [2] (interface captured implicitly

as the zero level set of a signed distance function) and the Volume of Fluid method

(VOF). We will deal with the latter in more detail in this paper.
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The Volume of Fluid (VOF) method is one of the best established interface

tracking methods currently in use [3]. A large number of applications have been

reported for incompressible (see for example [4]), as well as for compressible flows [5].

Originating in the works of Hirth and Nichols [6], it is based on the idea of a volume

fraction function C, which is an integral of a characteristic function χ(x,y) of the

tracked phase over a computational cell. On a regular mesh with rectangular cells ∆x

and ∆y, in size, this becomes (a two-dimensional case is assumed for the convenience

of presentation):

Cij =
1

∆x∆y

∆x
∫

0

∆y
∫

0

χ(x,y)dxdy. (1)

This function, as described in [6, 7] gives the volume fraction of the tracked phase in

the computational cell, i.e. it is equal to 1 when the cell is full, vanishes if the cell is

empty and has an intermediate value when the cell contains the interface. Since χ is

passively advected with the flow, we can expect its material derivative to vanish:

∂χ

∂t
+V ·∇χ=0, (2)

where V is a velocity vector with components V = [u,v] in R
2 and [u,v,w] in R

3.

This, along with the assumption of a zero divergence for the velocity field (in an

incompressible flow):

∇·V=
∂u

∂x
+
∂v

∂y
=0, (3)

enables us to write
∂χ

∂t
+
∂(χu)

∂x
+
∂(χv)

∂y
=0. (4)

Equation (2) is the same for all other passively advected scalars – φ(x) can

serve as an example, a distance function used in Level-Set methods [2]. However, the

conservative form (4) is characteristic for the VOF method, and so are the means

of dealing with this equation, taking also into account a discontinuous nature of

function χ.

Let us denote the value of C in n−th timestep for the (i,j)-th cell by Cni,j .

Equation (4) may be discretised in the following way. Let the Fni,j , G
n
i,j denote the

flux of volume fraction C leaving the cell (i,j) in direction x and y, respectively. We

thus have:
Cn+1i,j −C

n
i,j

∆t
=
Fni−1/2,j−F

n
i+1/2,j

∆x
+
Gni,j−1/2−G

n
i,j+1/2

∆y
(5)

which can be solved for Cn+1i,j , if we know the way to calculate the F and G fluxes.

An accurate calculation of fluxes is crucial for the quality of advection. Advection can

be split into two substeps [8], so that we find all the fluxes in the x direction in one

substep. Then, advection in the y direction is performed in the second substep.

The way of calculating the fluxes depends on the chosen fluid interface rep-

resentation. One approach, now of historical significance only, is SLIC (Simple Line

Interface Calculation) [6], in which the fluid interface is represented as a line parallel

to the cell faces.

In Figure 1, an interface is shown with its normal vector m inside a cell

∆x=∆y= h in size. Let ui+1/2,j be the value of velocity component u on the right
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Figure 1. SLIC representation of the interface. An example of flux calculation for two orientations

of the interface (2D) – the shaded area corresponds to the flux value

edge of cell (i,j). The vertical dotted line cuts off a part of the cell (advection control

volume) – a rectangle ui+1/2,j∆t in width (assuming that ui+1/2,j is positive.) All the

fluid on the right side of this line will be transferred to cell (i+1,j).

In more recent VOF applications, the interface is represented as a line that,

unlike in SLIC, can have an arbitrary position with respect to the cell faces. This

method is termed PLIC (Piecewise Linear Interface Calculation). If the vector normal

to the interface m = [mx,my] is known, we can write its equation in local (cell)

coordinates:

mxx+myy=α. (6)

An individual cell with an interface is shown in Figure 2. The CB line is the interface.

Like in the SLIC example, when considering advection in the horizontal direction with

a positive velocity ui+1/2,j all fluid positioned right to the dotted line EF will be

transferred to the neighboring cell. To calculate the flux Fi+1/2,j on the cell face, the

area FGBCE has to be found which can be a rectangle, trapezium or triangle. In R
3,

these areas become intersections of tetrahedra and cuboids.

The interface reconstruction itself is a nontrivial task, especially in R
3. In

the interface Equation (6), normal components have to be found, using for example

Youngs’s scheme [8], along with the α term of (6). Finding α is far more difficult and

can be done analytically or by a fitting procedure. A brief description can be found

in [7].

As the PLIC method is capable of dealing with interfaces of any orientation with

respect to the computational cell (control volume), it is much more accurate than the

SLIC method and many of the shortcomings of SLIC may be avoided (like “flotsam

and jetsam” [8]). The main disadvantage of the PLIC approach is that the method

implementation is rather difficult, especially in 3D. To calculate volume fraction fluxes

a large number of orientations of the interface in the control volume along with

various positions of the advection control volume has to be considered. Supposing

the flux on the control volume’s right face is needed and the velocity u is directed as

shown in Figure 3, the advection control volume in this case is a rectangular prism

ABCDEFGH (the AB length is equal to u∆t) and the volume fraction amount

that should be transferred to the adjacent control volume is the solid ABCDIJKL
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Figure 2. PLIC representation of interface (2D)

volume, bounded by the advection control volume faces and the interface. An analysis

of the remaining orientations is similar and it is quite simple for a specific case, but

Figure 3 gives an idea of how many cases should be considered in 3D.

Figure 3. A few different orientations of the interface and example case for the calculation

of volume fraction flux. The tracked phase is assumed to be below the interface

The fact that PLIC treats various orientations of the interface exactly and SLIC

oversimplifies the problem taking only trivial orientations into account, suggests the

possibility of a compromise between these two approaches. The main concept is as

follows: calculate exact fluxes for trivial orientations just like in the SLIC method,

then use the vector normal to the interface to estimate the actual orientation and

interpolate smoothly between exact values. This method turns out to be much

more accurate than SLIC and comparable with PLIC in standard tests performed in

Section 4. In the next section details of the 2D and 3D algorithms will be discussed. To

make the presentation easier, the proposed method will be called SVOF (Simplified

Volume of Fluid method), as it seems to be a simpler, more attractive alternative

compared to PLIC VOF.

SVOF has been recently developed by the authors and used with success also

for modeling of solidification (unpublished results). However, the authors are bound
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to admit that when preparing this article they came across a publication [9] released

a few months ago in which a very similar method was described, although derived in

a somewhat different context. Bearing that in mind, the authors cannot claim that

the method presented in this paper is original.

2. SVOF – 2D algorithm

First, the 2D version of the method will be described for the advection of volume

fraction function C in a given velocity field ~V = [u(x,y),v(x,y)]. The computational

grid is assumed to be a staggered, regular array of square cells h in size. The volume

fraction is assigned to the center of a given cell and the velocity components – to

its faces. The component u is stored on the vertical faces, the component v – on the

horizontal ones. In the case of collocated grids, the velocity on a specific cell face may

be found by interpolation.

The advection is performed using directional splitting, i.e. each time step is

divided into two stages: it is only the u component of the velocity field that is

considered (advection along x direction) in the first stage, and it is the – v component

that is chosen (advection along y direction) in the second stage. The first stage will

be discussed in detail below. The second stage will be dealt with in a similar way.

1. For each vertical cell face the donor cell must be identified. A donor cell is

defined as a cell from which the flux will flow to the adjacent cell (acceptor)

(see [6]). Donor cells may be assigned solely by checking the velocity sign

ui+1/2,j on the given cell face (Figure 4):

(i(d),j(d))=

{

(i,j) for ui+1/2,j > 0,
(i+1,j) for ui+1/2,j < 0,

(7)

where (i(d),j(d)) denotes the donor cell indices.

Figure 4. Donor cells identification. For the given directions of velocities,

donor cells are depicted as gray boxes

2. Calculation of vector m= [mx,my] normal to the interface for each donor cell.

Youngs method is employed (see [8]), that is:

mi,jx =− [Ci+1,j+1+Ci+1,j−1−Ci−1,j+1−Ci−1,j−1+2(Ci+1,j−Ci−1,j)],

mi,jy =− [Ci−1,j+1+Ci+1,j+1−Ci−1,j−1−Ci+1,j−1+2(Ci,j+1−Ci,j−1)].
(8)

3. Transformation of a donor cell into a standard form. Calculation of the fluxes

is more convenient when only one cell and outgoing flux configuration is to be

considered. The standard form of a donor cell is shown in Figure 5 (on the

right) and the flux is, by definition, directed outwards the bottom face in this
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form. This configuration may be obtained by right angle rotations of the donor

cell and the normal vector assigned to the cell. The components mLx , m
L
y of the

normal vector in the local coordinate system are:

[mLx ,m
L
y ] =

{

[my,−mx] for ui+1/2,j > 0,
[−my,mx] for ui+1/2,j < 0.

(9)

Figure 5. Donor cell transformation (left picture) into the standard form (right picture)

4. Interpolated fluxes calculation. This is an essential part of the SVOF algorithm.

It is only fluxes for simple SLIC-type orientations that are calculated exactly.

In Figure 6 these orientations are shown on the left (trivial cases) – (u), (m),

(b). There is another orientation which is a mirror reflection of case (m),

but it is not necessary to consider it as a separate case. The f flux may be

expressed as:

f =







max{0,u∆t/h−(1−C)} for case (u),
C ·u∆t/h for case (m),
min{C,u∆t/h} for case (b),

(10)

where C is the volume fraction in a given cell and the ∆t time step is

chosen to satisfy the u∆t/h < 1 Courant-Friedrichs-Lévy (CFL) condition.

The graph of the f(u∆t/h) function is shown on the right in Figure 6 (solid

lines).

The f flux for the remaining orientations is calculated by means of an

interpolation between exact values. Examples of such intermediate cases are

denoted as (i). The trivial cases can be selected only on the basis of the mLy
normal vector component sign. Using a simple, linear interpolation, we can

define the f (i) flux as:

f (i)=

{

wif
(m)+(1−wi)f

(u) for mLy < 0,

wif
(m)+(1−wi)f

(b) for mLy > 0,
(11)

where the upper indices denote fluxes corresponding to the trivial cases and wi
is the interpolation weight. There are many possible choices for wi. The authors

have found that a value based on the angle between a normal vector and a local

x-axis give satisfactory results:

wi=
2

π
arccos

(

|mLx |

|m|

)

. (12)

tq312m-e/260 30IX2008 BOP s.c., http://www.bop.com.pl



Simplified Volume of Fluid Method (SVOF) for Two-Phase Flows 261

Figure 6. Calculation of interpolated fluxes

5. Volume fraction update. For every donor cell and the acceptor cell assigned to

it, the volume fractions must be changed depending on the f (i) interpolated

flux value:

Cd→Cd−f
(i), Ca→Ca+f

(i). (13)

This scheme ensures volume fraction conservation in the domain.

The second stage, advection in the y-direction, is performed in exactly the same

way. The only difference is that the v-component is taken instead of u, donor-acceptor

pairs are oriented in the y-direction (Figure 4 should be rotated by 90◦) and the donor

cell transformation into the standard form is:

[mLx ,m
L
y ] =

{

[−mx,−my] for vi,j+1/2> 0,
[mx,my] for vi,j+1/2< 0.

(14)

The method order in time may be increased by exchanging the directions of advection

in every time step (Strang splitting, see [8]).

3. SVOF – 3D algorithm

The algorithm presented in the previous section may be surprisingly easily

generalized to three-dimensional domains (this is not the case for PLIC). The V =

[u,v,w] velocity field has three components now, hence, three advection steps must

be performed every time step, along the splitting scheme lines. The algorithm details

will not be described here but the main ideas are as follows.

The donor cells are identified in an analogous way to the 2D case based on

thevelocity sign on a given cell face. Donor cell transformation into the standard form

is slightly more complicated, as there are three components to transform and there

are six faces of a control volume (i.e. six cases instead of four in 2D). The standard

form is shown in Figure 7) – the outgoing flux is located at the bottom face and it is

directed outwards the cell.
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Figure 7. Donor cell standard form in 3D

Another difference is the normal vector estimation which may also be found

using Youngs’ method. The formulas for 3D are more complex but they can be

derived in a similar way. A great advantage of the SVOF approach is that interpolated

fluxes are calculated in the same manner as in the 2D scheme. The trivial cases for

interpolation are chosen on the basis of the mLz sign and the wi weight is:

wi=1−
2

π
arccos

(

|mLxy|

|m|

)

, (15)

where mLxy – normal vector projection on the xy plane of the local coordinate system.

4. Sample test results

A typical test of any interface tracking method is to assess its performance in

a passive velocity field. In order to compare the three methods – PLIC, SVOF and

SLIC – a circle in a square domain of a unit size has been subjected to the velocity

field:

V= [sin(πx) ·cos(πy),−cos(πx) ·sin(πy)]. (16)

The results are shown in Figure 8. It can be noticed that the interface shape obtained

with the use of SVOF (the middle column) is nearly the same as that calculated with

PLIC. However, a small deformation has appeared in the thick part of the tracked

phase and the filament is slightly shorter (PLIC results are taken as a reference).

Nevertheless, it seems that some considerable improvement of the SLIC method has

been achieved – SLIC calculations (the right column) reveal a deficiency of the method,

the interface is highly distorted and the filament is much shorter.

In Figure 9 it is possible to compare the initial shape of the interface and

the final shape obtained by reversing the velocity field at the end of the previous

simulation and performing the same number of additional time steps. For a perfect

advection scheme, the initial and final shapes should be identical. In this test, the
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Figure 8. Test of passive advection in shear flow. The three columns correspond to: PLIC (left),

SVOF (middle) and SLIC (right). Grid 100×100, ∆t=10−3, 104 time steps

(a) (b) (c)

Figure 9. Test of passive advection in shear flow. Initial position of the interface (dashed line)

and final state (solid line) for: (a) PLIC, (b) SVOF, (c) SLIC.

Grid 100×100, ∆t=10−3, 2 ·104 time steps

superiority of PLIC is most visible. Both SVOF and SLIC calculations lead to irregular

shapes (SVOF results seem to be significantly better, though).
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Another test has been performed for the 3D version of the algorithm. A sphere

has been placed in a cube of a unit size and subjected to the velocity field:

u=2sin2(πx)sin(2πy)sin(2πz)cos(πt/3),

v=−sin(πx)sin2(2πy)sin(2πz)cos(πt/3),

w=−sin(πx)sin(2πy)sin2(2πz)cos(πt/3).

(17)

In Figure 10 the tracked phase evolution is presented. The stages from (a) to (d)

correspond to an evolution from the initial state to the middle of the simulation,

then the flow direction is reversed and stage (e) should be identical to stage (c).

Stage (f) is the final state. The initial shape of the interface (wireframe) has been

superimposed on the final shape (smooth surface). Just like in the 2D algorithm’s

case, small distortions of the interfaces can be noticed. Although, bearing in mind

the simplicity of the method and the fact that this test is considered as hard for an

advection scheme, the results are quite satisfactory.

(a) (b) (c)

(d) (e) (f)

Figure 10. Test of passive advection in 3D shear flow.

Grid 150×150×150, ∆t=10−3, 103 time steps

In the end, a hypothetical application of the SVOF method to a simulation

of a two-phase flow will be presented. Calculations of the well-known “broken dam”

problem have been performed using an in-house 2nd order flow solver and SVOF for

tracking the interface. Sample results are shown in Figure 11. In the beginning, the

tracked phase (dark area) is placed at one side of the domain, as if bounded by a wall

and a thin dam. The simulation starts when the dam breaks and the tracked phase

collapses due to gravity, then it hits the opposite wall. The density ratio has been

equal to 20:1 and the viscosity has been relatively large.

5. Conclusions

The method proposed in this paper – SVOF – may be considered as an improved

SLIC algorithm version which is significantly more accurate but nearly as easy to
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(a) (b) (c)

(d) (e) (f)

Figure 11. Broken dam problem (SVOF). Grid 80×80, full-slip boundary conditions,

density ratio 20:1

implement. SVOF avoids an intricate geometrical analysis of different orientations of

the interface in a control volume which is characteristic of the PLIC method. However,

in many classical passive advection tests, SVOF provides results comparable to that

obtained with the use of an exact PLIC approach.
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