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Abstract: The paper presents four key mathematical models of a transient cavitating pipe flow,

i.e. the column separation model (CSM), the gas cavitation model (CSMG), Adamkowski’s model

(CSMA) and the bubbly cavitation model (BCM). All models investigated in the paper take into

account unsteady frictional loss models. The equations describing all models have been solved using

the method of characteristics at first and the finite differences method then. The results of numerical

simulations have been compared with the results obtained in the experiments. Transients which

have taken into account the unsteady wall shear stress fit well with the results of experiments in

comparison with the quasi-steady wall shear stress model.

Keywords: cavitation, transient turbulent pipe flow, unsteady friction, column separation, bubbly
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1. Introduction

A cavitation flow often occurs in an unsteady liquid flow in the pressure conduits

of hydraulic and power machines and devices. Cavitation areas are observed in places

where the pressure falls down to a value close to that of the liquid evaporation pressure

at a given temperature. Their decay is accompanied by sudden pressure changes

(which often occur cyclically). Under such conditions the flow is of a diphase and

quickly changing nature. In the literature on the subject there is no confirmed data

on the character of cavitation areas, i.e. there is no information whether these areas

are local or if they take place along the axis of a conduit.

Consequently, various models of transient cavitation calculation and simulation

methods of an unsteady liquid flow in closed conduits with cavitation are used. The

simplest calculation algorithm developed by Streeter [1] in 1969 which is based on the

so-called column separation model (CSM) is applied in most of the computer software

used for simulating an unsteady flow with cavitation.

The CSM model has had, in time, many modified versions, two of which should

be mentioned: the vapor-gas cavitation model [2, 3] (CSMG) and Adamkowski’s

model [4] (CSMA). The former additionally takes into consideration the influence of
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gas-cavitation on the waterhammer effect course whereas the latter makes it possible

to carry discontinuities calculated in many cross-sections over to just one cross-section,

while satisfying the mass and velocity conservation law at the same time.

A bubbly cavitation model (BCM) should be particularly noted [5, 6] among

continuous cavitation models. It should be stressed that the above mentioned models

take into consideration quasi-steady hydraulic resistance. By contrast, the present

study takes into account friction losses which result from an unsteady flow. This

approach makes it possible to take into account the unsteady wall sheer stress at

wall in the equation of motion expressed by a convolution of liquid acceleration and

a weighting function dependent on the flow’s character (laminar or turbulent flow).

The viscosity in this dependence (for the BCM model) is a function of liquid phase

concentration of liquid and vapor viscosity.

Computer simulations of the waterhammer effect with cavitation for the four

above mentioned models (CSM, CSMG, CSMA and BCM) were conducted taking into

consideration both quasi-steady and unsteady friction losses. The simulation results

were compared with the results of experiments. It was found that the results obtained

through using models which took into consideration unsteady friction had a very good

consistency with the experimental results.

2. Column separation models (CSM) – discreet models

Column separation models (CSM) are described by two equations [1, 2, 6]

(which compose a closed system of quasi-linear differential equations and hyperbolic

molecular equations with variable functions v(x,t), p(x,t)) characterized by a one-

dimensional unsteady liquid flow in pressure conduits and by boundary and initial

conditions:

• continuity equation:
∂p

∂t
+v

∂p

∂x
+c2ρ

∂v

∂x
=0, (1)

• momentum equation:
∂v

∂t
+v

∂v

∂x
+
1

ρ

∂p

∂x
+g sinγ+

2

ρR
τ =0, (2)

where p – pressure, t – time, v – instantaneous mean flow velocity, x – distance along

pipe axis, c – acoustic wave speed, ρ – liquid density (constant), g – acceleration due

to gravity, γ – pipe slope angle, R – radius of pipe, τ – wall shear stress.

This kind of a system of equations is usually solved using the method of

characteristics MOC [1, 2, 6]. Final equations make it possible to determine the flow

parameters at internal nodes of the grid of characteristics (Figure 1).

The values of functions v(x,t) and p(x,t) depend on the specific devices installed

at the inlet and outlet of a hydraulic, water supply or heating systems.

2.1. Vapor cavitation model

A traditional one-dimensional model of column separation (CSM) is the simplest

discrete model which can be found in many papers on the subject [1, 2, 5–7].

When the pressure at an investigated node falls below the saturated vapor

pressure, it is assumed that a cavitation area has appeared (Figure 2). It is also
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Figure 1. A grid of characteristics used for numerical calculations

Figure 2. Flow with cavitational column separation

assumed that the pressure both inside and at the boundaries of the area is constant

and that it is equal to the saturated vapor pressure pD = pv.

At the next step the velocity at both sides of a cavitation area (v−D – on the left

side of separation and v+D – on the right side of separation) is determined (Figure 3):

v−D = vA+
1

cρ
[pA−pv]−

2∆t

Rρ
τA−g sinγ∆t, (3)

v+D = vB+
1

cρ
[pv−pB ]−

2∆t

Rρ
τB−g sinγ∆t, (4)

where v−D is the liquid velocity from the inflow side (at the grid mesh), v
+
D is the liquid

velocity from the outflow side (at the grid mesh).

Figure 3. Velocity at the inlet and outlet of a discrete vapor area
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An average flow value is determined in the intermediate cross-sections of

the investigated pressure conduit. This approach is consistent with that of Safwat

and Polder [8] who have assumed that the discontinuity area is formed in only

one computational cross-section (which is the cross-section at the shut-off valve in

this paper):

vD =
(v+D+v

−

D)

2
. (5)

The cavitation area volume VC in successive computational cross-sections is

calculated from the following formula:

VC(k+1)=VC(k)+
(

ψ(v+k+1−v−k+1)+(1−ψ)(v+k −v−k )
)

A ·∆t, (6)

where ψ is the weight coefficient which in most studies [1, 2, 5–7] is assumed to be

equal to 0.5, A – pipe cross-section area.

An assumption is made in this model that cavitation does not take place when

pD >pv and when VC ≤ 0.
When no cavitation occurs, the following equation is assumed: v−D = v

+
D = vD.

2.2. Adamkowski’s model

In his in-depth analysis of a vapor cavitation model Adamkowski [4] has noticed

artificial damping of pressure pulsation connected with column separation, despite the

assumption that there are no hydraulic losses. In his opinion the damping is due to

the fact that the model does not satisfy the conditions resulting from the principle

of mass conservation and the momentum law. In his analysis, Adamkowski has also

proved that the average flow velocity in sections where column separation has taken

place should be determined from the following formula:

v=sign

[

(v+|v+|+v−|v−|)+g
VC
A
sinγ

]

√

∣

∣

∣

∣

0.5(v+|v+|+v−|v−|)−0.5g
VC
A
sinγ

∣

∣

∣

∣

, (7)

where γ – pipe slope angle, Vc – cavitation zone volume (6).

2.3. Gas-vapor cavitation model

In [2, 3] Streeter and Wylie have presented the so-called separated air and vapor

cavitation model which is a special case of a discrete model. The model proposed by

Streeter and Wylie is based on the main equations which describe the waterhammer

effect (1) and (2). In the continuity Equation (1) the pressure wave velocity in

a diphase mixture has been introduced in place of the pressure wave propagation

velocity in water c:

cm= cl ·





√

1+
Rg ·T ·Kl
1+ Kl·DE·e

· m
p2





−1

, (8)

where Rg is the universal gas constant, T is the absolute temperature [K], Kl is the

liquid compressibility module, e – the conduit wall thickness, m – mass of free gas

per unit volume of mix, E – Young’s modulus, D – internal pipe diameter.

Next the system of Equations (1) and (2) has been solved using the method of

characteristics which makes it possible to calculate both the desired functions v(x,t)

and p(x,t) on the plane (x,t) and the cavitation area volume of column separation Vc
with Equation (6).
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Because the final equations take into account the changeable propagation ve-

locity of a pressure wave (which depends on pressure), the numerical computational

procedure which functions on a rectangular grid of characteristics must be based on

interpolation and auxiliary iterative procedures. The authors of the model (of hy-

draulic transient) have noticed it themselves that the whole procedure is significantly

complicated by interpolation and that it often leads to a false simulation [2]. There-

fore, a few years after presenting a basic version of the model, its author, Wylie [3]

has proposed to concentrate the precipitated gas in discrete areas of discontinuity and

that the propagation velocity of a pressure wave between them should be treated as

a constant equal to the velocity in liquid. A detailed description of how this particular

model can be used can be found in a paper by Liou [9]. The paper suggests that in

all the analysed cross-sections, when the pressure falls below the value of saturating

liquid with a dissolved gas (usually with air), there appear some areas of discontinuity

which are filled with gas. Additionally, when the pressure falls below the saturated

vapor pressure, these areas expand to incorporate the areas which appear as a result

of liquid evaporation.

According to a procedure which makes it possible to determine the current

pressure and the average flow velocity it is required that the following system of

non-linear equations should be solved [9]:

v+D = vB+
1

cρ
[pD−pB ]−

2∆t

Rρ
τB−g sinγ∆t, (9)

v−D = vA+
1

cρ
[pA−pD]−

2∆t

Rρ
τA−g sinγ∆t, (10)

− p0α0∆x

(pD−pv)2
· pD−pE
∆t

=ψ(v+D−v−D)+(1−ψ) ·(v+E−v−E ), (11)

where p0 is the reference pressure, α0 is the share of the gaseous area at pressure p0, ψ

is the weight coefficient (for ψ< 0.5 the solution is not stable, for ψ=0.5 the solution

is stable, but it contains oscillations, and when ψ> 0.5 the solution is dumped [3]).

In this paper, it has been assumed that the weight coefficient ψ=0.6 for this

model during numerical simulations.

3. Bubbly cavitation model (BCM) – a continuous model

Despite the fact that the column separation model (CSM) can be easily used and

that it truly reflects the nature of the problems and that it shows a high consistency

with the presented physical phenomenon, it still has some serious disadvantages which

have made Shu [5] develop an alternative model.

A diphase homogeneous equilibrium model of vapor cavitation is an alternative

mathematical expression.

Differences between the velocity of liquid and gaseous (vapor) phases lead to

a mutual exchange of momentum. However, these processes often take place very fast

and it can be assumed that an equilibrium state dominates, i.e. vapor bubbles have

the same velocity and pressure as the liquid. A bubbly cavitation model (BCM) has

been developed on the basis of the last assumption.
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The basic system of equations of an unsteady liquid flow with cavitation

(continuity and momentum equations) for this model has the following form [5]:










1

c2
· ∂p
∂t
+(ρl−ρv) ·

∂α

∂t
+ρm ·

∂

∂x
·
( v

α

)

=0,

ρm ·
∂

∂t
·
( v

α

)

+
∂p

∂x
+
2

R
τ
( v

α
,α
)

+ρm ·g ·sinγ=0,
(12)

where α – volumetric fraction of liquid, ρl – liquid density (constant), ρv – vapor

density (constant), ρm – mixture density:

ρm=α ·ρl+(1−α) ·ρv. (13)

The second term in the continuity equation describes the value of interfacial

mass penetration, whereas the component v/α reveals differences between the liquid

phase flow velocity and the vapor phase flow velocity both in the continuity equation

and in the amount of movement equation.

The above system of equations has been solved using the method of character-

istics MOC [1, 2, 5, 6] (Figure 1).

4. The shear stress at a pipe wall

Any modeling of frictional resistance in transient flows should take into consid-

eration unsteady flows. In the literature on the subject there are many quasi-steady

hydraulic resistances [2, 3, 9]. It means that the sheer stress at the wall of a pipe is de-

termined according to Darcy-Weisbach’s formula for the instantaneous average flow

velocity. Currently, many recently published studies suggest that an instantaneous

sheer stress at the wall of a pipe τ can be given as a sum of a quasi-steady value τq
and a variable which is changeable in time τn [5–7, 10, 11]:

τ = τq+τn. (14)

The value of τq is determined using a modified Darcy-Weisbach’s formula [2]:

τq =
1

8
λρv|v|, (15)

where λ – Darcy-Weisbach friction factor.

In a diphase homogeneous non-slide flow, the above formula can be presented

in the following form [5]:

τq =
λρmv|v|
8α2

. (16)

The variable which is changeable in time τn can be determined from the

following relationship [10–12]:

τn=
2 ·µ
R
·
t
∫

0

w(t−u) · ∂v
∂t
(u) ·du (17)

where µ – dynamic viscosity coefficient, u – time at the convolution, w(t) – weighting

function.

The above relation describes the influence of an unsteady flow on the shear

stress. This is the so-called convolution of an instantaneous liquid acceleration and

a certain weight function. As can also be seen, the shear stress at the wall of a conduit
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is a function of both velocity and time. The most precise form of the traditional weight

function for a laminar flow has been presented by Zielke [12]:

w(t̂)=

6
∑

i=1

mit̂
(i−2)/2, for t̂≤ 0.02, (18)

w(t̂)=
5
∑

i=1

e−ni ·̂t, for t̂ > 0.02, (19)

where t̂ = ν · t/R2 is a dimensionless time and where coefficients mi and ni have
the following values: mi = 0.28209, −1.25, 1.05778, 0.93750, 0.396696, −0.351563;
ni=−26.3744, −70.8493, −135.0198, −218.9216, −322.5544.

There are two known traditional weight functions for a turbulent flow:

• that of Vardy-Brown [13]:

w(t̂,Re)=
A∗e−B

∗ t̂

√
t̂

, (20)

where A∗=
√

1/4π and B∗=Reκ/12.86; κ= log10(15.29/Re
0.0567);

• and that of Zarzycki [10]:

w(t̂,Re)=C · 1√
t̂
·Ren, (21)

where C =0.299635; n=−0.005535.
Unfortunately, the functions presented in these forms cannot be used in effective

numerical methods whose aim is to seek a solution of the convolution (17).

The analyses conducted by many authors [11, 14–19] assume that only a weight

function given as a finite sum of exponential expressions can be used in effective

calculations.

A new, effective weight function is going to be used in this paper whose

functionality has been significantly extended in comparison with the weight functions

best known in the world. Additionally, the new weight function can be used both for

unsteady laminar and turbulent flows.

The details about the origin of this function will be described in another paper.

A combination of laminar and turbulent functions has been possible owing to

a scaling method presented by Vitkovsky et al. [17]. The function takes the form of

Zielke’s function for a laminar flow (when Re≤ 2320), and its shape is modified using
the scaling method for a turbulent flow (when Re> 2320). The coefficients used for

scaling are identical to those used in traditional Vardy-Brown scales [13]. Owing to

that the new scale adjusts its shape, given changes in the current Reynolds number

(which characterizes unsteady flow), to the shape of Vardy-Brown scales.

The new effective laminar-turbulent scales used in this paper can be ex-

pressed as:

wapr(t̂)=
26
∑

i=1

mie
−ni t̂, (22)

where m1 =1; m2 =1; m3 = 1; m4 = 1; m5 = 1; m6 =2.141; m7 = 4.544; m8 = 7.566;

m9 =11.299; m10 =16.531; m11 =24.794; m12 =36.229; m13 =52.576; m14 =78.150;
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m15 = 113.873; m16 = 165.353; m17 = 247.915; m18 = 369.561; m19 = 546.456; m20 =

818.871; m21 = 1209.771; m22 = 1770.756; m23 = 2651.257; m24 = 3968.686; m25 =

5789.566; m26 = 8949.468; n1 = 26.3744; n2 = 70.8493; n3 = 135.0198; n4 = 218.9216;

n5 = 322.5544; n6 = 499.148; n7 = 1072.543; n8 = 2663.013; n9 = 6566.001; n10 =

15410.459; n11 = 35414.779; n12 = 80188.189; n13 = 177078.960; n14 = 388697.936;

n15 = 850530.325; n16 = 1835847.582; n17 = 3977177.832; n18 = 8721494.927; n19 =

19120835.527; n20 = 42098544.558; n21 = 92940512.285; n22 = 203458923.000; n23 =

445270063.893; n24=985067938.878; n25=2166385706.058; n26=4766167206.672.

The universal values of coefficients are determined from the following formula:

n1u=n1−B∗; n2u=n2−B∗; . . .; n26u=n26−B∗,
m1u=m1/A

∗; m2u=m2/A
∗; . . .; m26u=m26/A

∗,

where, in turn:

A∗=

√

1

4π
; B∗=

Reκ

12.86
=
2320κ

12.86
; κ=log10

(

15.29/Re0.0567
)

=log10
(

15.29/23200.0567
)

.

The universal values of the laminar-turbulent weight function coefficients which

are based on scaling with Vardy-Brown coefficients are necessary to determine

a current form of the weight function in a numerical process. The current values

of coefficients which describe the weight function are determined on the basis of the

above determined universal coefficients according to the following scheme (Figure 4).

Re(n, e) =
v(n, e) · D

ν(n, e)

Re(n, e) > 2320

Reb = Re(n, e) Reb = 2320

n1a = n1u + B∗; n2a = n2u + B∗; . . . ; n26a = n26u + B∗;
m1a = m1uA∗; m2a = m2uA∗; . . . ; m26a = m26uA∗;

where: A∗ =

√

1

4π
; B∗ =

Rebκ

12.86
; κ = log10

(

15.29/Reb0.0567

)

weff(t̂,Reb) =

26
∑

i=1

miae−nia t̂

YES NO

Figure 4. A scheme of the weight function selection

The above presented weight function has the following range of application:

0≤Re≤ 107 and 10−9≤ t̂≤∞.

5. Simulation studies and their comparison
with the results of experimental studies

In order to assess which model best simulates an unsteady flow with cavitation,

computer simulations were performed. Their results were compared with the results
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of experimental studies conducted within the framework of the research project

No. N504 029 31/2026 by A. Adamkowski and M. Lewandowski at a test station

used for waterhammer effect studies at the PAS Institute of Fluid-Flow Machines in

Gdansk (Figure 5). The main component of the test station is a pressure conduit

made of copper L=98.56m in length, D=0.016m in inside diameter and e=0.001m

in wall thickness. The conduit is spirally reeled on a steel roll with a diameter of

approximately 1.7m and it is stiffly mounted thereon in order to minimize vibrations

excited by the waterhammer effect. The conduit’s angle of inclination α is not larger

than 0.5◦. A ball valve with a quick shutoff action was installed next to a low pressure

tank (the valve makes it possible to shut off the flow suddenly, almost instantaneously

and fully). The speed of a complete shutoff was investigated and the shutoff time never

exceeded 0.003 s which amounted to 1% of the propagation period of a pressure wave

in this conduit (4L/c).

Five absolute pressure sensors (composed of semiconductor transducers) were

mounted along the investigated conduit. The sensors’ transfer band frequency was

0.2kHz, their precision – 0.2% and their measuring range – 0–4Mpa, which means

that it was possible to record pressure changes in a time step of 0.0005 s (1/2000Hz)

which amounts to 0.17% of the propagation period of a pressure wave (4L/a≈ 0.3 s).
The average flow velocity measurements were conducted with a turbine flowmeter

whose range of application was 1.5m3/h (4.2 ·10−4m3/s) and its precision was 1%.
The experimental system had been vented before the studies were commenced.

Figure 5. Test stand layout

5.1. Additional parameters of the system

Wave pressure propagation velocity: c=1280m/s

Working liquid: water

Working liquid temperature : 22.6◦C

Liquid density: ρ=1000kg/m3

Water vapor density : ρp=0.8kg/m
3

Liquid kinematic viscosity: νc=9.493 ·10−7m2/s
Water vapor viscosity: νp=8.7 ·10−9m2/s
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Initial flow velocity – run I: v0=1.9m/s

Initial flow velocity – run II: v0=2.76m/s

Pressure at the pressurized reservoir – run I: pt=406kPa

Pressure at the pressurized reservoir – run II: pt=682kPa

5.2. Quantitative analysis

Valuation of maximum pressure values and times of its occurrence in the

analyzed transient flow is very important from the point of view of operational

specificity. No mathematical quantitative methods useful for comparison of simulated

runs with reference to experimental runs are shown in the available articles concerning

a transient flow with cavitation. All authors have focused only on a qualitative

estimate.

Figure 6. Transient pipe flow with cavitation

A quantitative analysis in this research work will rely on appointment of two

parameters (pp and tp) characterizing the degree of adjustment to an experimental

run. Values of maximum pressures (Figure 6 – p1 to pn) for all pressure amplitudes

of the researched run make it possible to assign the following parameter ppi:

ppi=
psi−pei
pei

·100%, (23)

where pei – value of the maximum pressure on the analyzed i amplitude, based on an

analysis of experimental results; psi – value of the maximum pressure on the analyzed

i amplitude, based on an analysis of the simulated results.

The value of the above parameters ppi, depends on the n value of the analyzed

pressure amplitudes. Knowing all the above parameters for the analyzed runs it is

possible to determine the following parameter:

pp=
n
∑

i=1

|ppi|
n

. (24)
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A similar analysis will be carried out for the time (Figure 1 – t1 to tn) of

appearance of pressure amplitudes:

tpi=
tsi− tei
tei

·100%, (25)

where tei – time of appearance of i amplitude of pressure, based on an analysis of

experimental results; tsi – time of appearance of i amplitude of pressure, based on an

analysis of simulated results.

When all tpi values for the analyzed run are known, it is possible do describe

the correspondence of the simulation with reference to the experimental run with the

following parameters:

tp=
n
∑

i=1

|tpi|
n
. (26)

When the values of pp and tp get lower, then it is better to adjust the simulated

runs with reference to the experimental runs.

5.3. Results of simulations

A detailed quantitative and qualitative analysis will concern changes of pressure

in a pipe cross section near the valve because it is where the result of hydraulic impact

which take place in waterhammer case with cavitation will be strongest. Two runs

Figure 7. Pressure runs at the cross-section near the valve

(run I: v0=1.9m/s; left – quasi-steady resistance, right – unsteady resistance)
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Figure 8. Pressure runs at the cross-section near the valve

(run II: v0=2.76m/s; left – quasi-steady resistance, right – unsteady resistance)

Table 1. Quantitative analysis – unsteady hydraulic resistance

CSM CSMA CSMG BCM
parameter

model model model model

pp [%] (run I) 7.6243 6.4420 20.6780 3.5918

pp [%] (run II) 6.2687 4.8740 9.1263 4.1309

tp [%] (run I) 5.1134 1.8429 9.9296 4.8729

tp [%] (run II) 3.6856 2.8320 5.1370 4.0735

Table 2. Quantitative analysis – quasi-steady hydraulic resistance

CSM CSMA CSMG BCM
parameter

model model model model

pp [%] (run I) 17.0534 29.8039 10.9550 13.3190

pp [%] (run II) 11.8069 13.7999 19.6891 10.9295

tp [%] (run I) 3.2108 7.8393 4.6517 2.3111

tp [%] (run II) 1.0113 4.9971 2.3227 1.4609

will be analyzed. The results of both simulation and experimental studies (pressure

variations near the valve) are shown below.
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Only new modified models which take into consideration unsteady hydraulic

resistance will be considered in a qualitative analysis of the above examples of

simulation studies. All the above presented graphs of models using the quasi-steady

resistance (which can be seen on the left hand side in Figures 7 and 8) have been

presented for comparison purposes only, to show to the reader of this present paper

a significant difference between them and the models in which unsteady resistance

has been taken into account (these models have been shown on the right hand side of

Figures 7 and 8).

A detailed qualitative analysis of the obtained results (run I, run II and all other

runs not shown in this work) showed that almost all the models of an unsteady flow

with cavitation (which took into consideration unsteady hydraulic resistance) were

quite good in simulating the investigated flow. It was only the vapor-gas cavitation

model (CSMG) that was characterized by excessive dumping and consequently the

results obtained while using the model had serious errors. Adamkowski’s model

(CSMA) was best at simulating the times of successive pressure amplitudes. Both

CSM and BCM models were characterized by greater dumping than the CSMA model

owing to which they simulated the appearance of successive amplitudes slightly earlier

than in the experiment.

The results of the quantitative analysis are shown below in Table 1 and Table 2.

The first eight pressure amplitudes were analyzed in run I and only six in

the next run (run II). The quantitative analysis shows that the BCM model has the

best agreement in terms of simulating maximum pressures (it is not clearly visible in

Figures 7 and 8). This analysis confirms also a conclusion from the qualitative analysis

that Adamkowski’s model is the best model for simulating the times of successive

pressure amplitudes. Models in which unsteady hydraulic resistance is included have

shown a definitely better degree of adjusting than models using quasi-steady resistance

(see percentage results in Table 1 and Table 2).

6. Conclusions

Four models of an unsteady flow with cavitation have been presented at first

and then compared in this paper. Three models, i.e. the so-called discrete models

are based on the column separation theory. These include the traditional model of

column separation (CSM), Adamkowski’s model (CSMA) and the vapor-gas cavitation

model (CSMG). The BCM model is continuous and, according to the cavitation areas,

cavitation can take place at any section of a pressure conduit, not only at nodal

sections.

The detailed conclusions drawn on the basis of all the above studies are as

follows:

• the CSM, BCM and CSMA models which use a new, effective model of unsteady
hydraulic resistance are very good at simulating unsteady states with cavitation.

The best of all the three models is Adamkowski’s model of column separation

(CSMA) which correctly simulates both the time when successive pressure

amplitudes appear and their respective maximum values;

• the vapor-gas cavitation model (CSMG) which takes into account unsteady
hydraulic resistance is characterized with too intensive dumping and therefore
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it cannot be commonly used. The model was developed at the time when

unsteady hydraulic resistance was not taken into account and when scholars

only considered their quasi-steady character. At that time the model provided

the best consistency of all other models, which is evidenced by the earlier

presented simulations (Figures 7 and 8 – the graphs on the left hand side).

• other discrepancies which can be seen between simulation and experimental
runs are probably due to: changes of the average propagation velocity of

a pressure wave which are caused by gas cavitation (during an unsteady

flow with cavitation), the fact that convective derivatives were omitted, the

assumption made for simplicity purposes that liquid movement had one-

dimensional character, errors of numerical methods.
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