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Abstract: A model of electro-magneto-thermo-mechanics for electroconducting polarized non-

ferromagnetic medium is proposed which takes into account the local mass displacement in addition

to the local electric charge displacement. The corresponding key set of equations is written. Using the

isothermal approximation, the model is applied to describe the interface inhomogeneity of a stressed

state, the polarization and coupled electric charge in thin dielectric films. An anomalous dependence

of the electric capacity on the thickness of a thin dielectric film, observed experimentally by Mead,

is also studied and is shown to be well captured by the present approach.

Keywords: coupled electro-magneto-thermo-mechanical processes, non-local materials, local mass

displacement, interfacial phenomena, thin dielectric films

1. Introduction

It is well known that the linearized classical theory of piezoelectricity does

not take into account the interaction between the mechanical and electromagnetic

fields in isotropic materials [1, 2]. However, some experimental investigations have

demonstrated that piezoelectric phenomena can also be observed in centrosymmetric

crystals [2]. In [3, 4] the anomalous dependence of the capacitance of a thin dielectric

film on its thickness has been reported. This effect cannot be described by the classical

Voight theory. The classical piezoelectric theory predicts the electric potential linear

distribution across the film, and that the polarization vector is constant within a thin

film, which contradicts the experimental results of Mead [3, 4]. Such disagreements
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between the classical theory and the experiment have stimulated development of new

models.

One of the first attempts to account for interactions between the mechanical

and electromagnetic fields in isotropic materials has been made in [5] where the

parameters space which describes the state of a dielectric has been extended to

contain the tensors of induced charges and electromagnetic stresses in addition to

usual parameters, such as temperature, entropy, strain tensor and mechanical stresses.

In [6] a gradient model of piezoelectrics has been proposed on the basis of the Toupin

linear theory [7, 8], in which model it is assumed that the state of a dielectric

depends on the polarization gradient. The model modified in this way describes

correctly an anomalous dependence of the capacitance of a thin dielectric layer on

its thickness [9, 10], observed experimentally by Mead [3, 4]. It also predicts the non-

linear distribution of the electric potential and polarization in thin dielectric films

[9, 10].

Unlike gradient models in which the functional dependence of the internal

energy on the polarization gradient is postulate, a nonlocal model, proposed in [11, 12],

is constructed taking into account the the local mass displacement process (in addition

to the local displacement of the electric charge). The physical reason for the local mass

displacement is the reordering of the molecular structure of a solid. Such reordering

can be caused by a change of the locations of atoms at the interface due to the surface

formation or due to the polarization of the whole solid, or due to the displacement

of the neighboring subsystems of a heterogeneous solid in case of an accelerating

motion.

The local mass displacement leads to an extension of the state parameter

space and nonlocal constitutive equations, to a redefinition of the stress tensor

and additional bulk ponderomotive forces [11, 12]. In addition to the conventional

conjugated parameters (such as strain and stress tensors, temperature and entropy,

the electrical field intensity vector and the vector of polarization), two additional pairs

of parameters are introduced:

(i) the specific density of an induced mass ρm and the reduced potential µ
′
π =

µπ−µ;
(ii) the specific mass displacement πm and the reduced potential gradient ∇µ′π.

Here µπ is the energy measure of the influence of the mass displacement on the internal

energy and µ is the chemical potential. πm =Πm/ρ, where Πm is the vector of the

local mass displacement, ρ is the mass density, ρm= ρmπ/ρ, where ρmπ =−∇·Πm is
the induced mass density.

The purpose of this paper is to analyze the above-mentioned mathematical

model. The model equations are presented and discussed in detail in Section 2. Using

the linear approximation, we will show that our approach brings a correct description

of the surface polarization of a solid body and the inhomogeneity of a stress-strained

state (Section 3.1), and describes the Mead anomaly properly (Section 3.2). A brief

summary of our work is given in Section 4.
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2. The model

At first model equations are introduced and discussed, then the linear approxi-

mation is considered which will be applied in Section 3 to study coupled electromag-

netic fields in a thin dielectric film.

2.1. A basic set of equations

A complete set of equations of a model of electro-magneto-thermo-mechanics of

an electroconducting non-ferromagnetic isotropic polarized medium with local mass

and charge displacements includes [11, 12]:

– the momentum equation:

ρ
dv

dt
=∇· σ̂∗+Fe+ρF∗; (1)

– the mass and entropy balance equations:

∂ρ

∂t
+∇·(ρv)= 0, (2)

ρT
ds

dt
=−∇·Js+Tσs+ρℜ; (3)

– the Maxwell’s equations:

∇·B =0, ∇·D = ρe, ∇×E =−∂B
∂t
, ∇×H =Jef ; (4)

– the conservation law of the induced mass and electric charges:

∂ρmπ
∂t
+∇·Jms=0, (5)

∂ρeπ
∂t
+∇·Jes=0; (6)

– the state equations which in the linear approximation takes the form:

s= s0−
[

asT (T −T0)+ρ−10 aeT e+aρT ρm
]

, (7)

σ̂∗=2a
σ
2 ê+[a

σ
1 e+aeT (T −T0)+aeρρm] Î , (8)

µ′π =µ
′

π0+a
µ
ρρm+ρ

−1
0 aeρe+aρT (T −T0), (9)

p =−apEE∗−aEµ∇µ′π, (10)

πm= a
π
µ∇µ′π+aEµE∗; (11)

– the relations between the fluxes and thermodynamical forces (kinetic relations):

Je∗=σeE∗+σeη∇T, Jq =−λ∇T +πtJe∗; (12)

– an expression which relates the strain tensor ê with the displacement vector u

(the so-called strain-displacement relation):

ê =
[

∇u+(∇u)T
]

/2. (13)

Here
σ̂∗= σ̂−ρ(E∗ ·p−ρmµ′π−πm ·∇µ′π) Î , (14)

F∗=F +ρm∇µ′π−πm ·∇∇µ′π, (15)

Fe= ρeE∗+

(

Je∗+
∂(ρp)

∂t

)

×B+ρ(∇E∗) ·p, (16)
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σs=Je∗ ·
E∗

T
−Jq ·

∇T
T 2
, (17)

E∗=E+v×B , Je∗=Je−ρev , (18)

where σ̂ is the Cauchy stress tensor, v is the mass center velocity, s is the specific

entropy and T is the absolute temperature. Js is the entropy flux density and

Jq = TJs is the heat flux density. σs is the entropy source strength, ℜ denotes the
distributed thermal sources. F is the mass force vector and Fe is the ponderomotive

force. E , H are electric and magnetic fields, and D , B are electric and magnetic

inductions. For the non-ferromagnetic medium, B = µ0H , D = ε0E +P , where P

denotes the local electric charge displacement (polarization vector), p =P/ρ is the

specific polarization vector, and ε0, µ0 are the electric permittivity and the magnetic

permeability of vacuum (electric and magnetic constants). ρe, ρeπ are the density

values of free and induced electric charges. Jef = Je+Jed+Jes is the total electric

current density, where Je is the electric current density (convection and conduction

currents), Jed = ε0 (∂E/∂t), and Jes = ∂P/∂t is the current density caused by the

ordering of a charged system (polarization current). Jms = ∂Πm/∂t is the vector of

a mass flux related to the local mass displacement. e≡ ê : Î is the first invariant of
the strain tensor, where Î is the unit tensor. ρ0 is the mass density in the reference

state, and aσ1 , a
σ
2 , a

s
T , a

µ
ρ , a

p
E , a

π
µ, aeT , aρT , aeρ, aEµ, σe, η, λ, and πt are material

parameters. s0 and µ
′
π0 is the entropy and the reduced potential µ

′
π in the reference

state, respectively. t is the time, and d.../dt = ∂ .../∂t+v ·∇. .. is the substantive
derivative. Finally, the upper index T denotes a transposed tensor.

It is noted that according to the state Equations (7)–(11) the polarization

fields and the displacement of mass are coupled: the electric polarization is caused

not only by the electric field but also by the gradient of µ′π. In the surface region of

a thin film the value of |∇µ′π| can be sufficiently large to induce an essential surface
polarization. This can be important in studies of the electro-magnetic emission caused

by the formation of a new surface within the body, or an electro-magnetic response

of the body to an external dynamic influence on its surface [11, 12].

Therefore the above-mentioned equations supplied by the appropriate boundary

conditions constitute a nonlocal theory of electro-magneto-thermo-elasticity of a

polarized medium and take into account the local displacements of mass and electric

charges. Such a theory is in fact an extension of the classical theory of piezoelectricity,

in which the mass displacement process is taken into account. This theory conforms

with electro-mechanical interactions in centrosymmetric materials including isotropic

materials [11–13].

2.2. The key set of equations

If the displacement vector u , temperature T , magnetic induction B , electric

field E and the function µ̃′π =µ
′
π−µ′π0 are selected as key functions, then the key set

of linear equations takes the form:

ρ0
∂2u

∂t2
=

(

aσ1 +a
σ
2 −
a2eρ
ρ0a
µ
ρ

)

∇(∇·u)+aσ2∆u+
(

aeT −
aeρaρT
aµρ

)

∇T+

+
aeρ
aµρ
∇µ̃′π+ρ0F ,

(19)
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(

asT −
a2ρT
aµρ

)

∂T

∂t
=(λ−πtσeη)∆T +T0

(

aeT −
aeρaρT
aµρ

)

∂ (∇·u)
∂t

+

+ρ0T0
aρT
aµρ

∂µ̃′π
∂t
−σeπt∇·E+ρ0ℜ,

(20)

∇·B =0, ∇×E =−∂B
∂t
, ∇· [(ε0−ρ0apE)E−ρ0aEµ∇µ̃′π] = ρe, (21)

∇×B =µ0σe (E+η∇T )+µ0 (ε0−ρ0apE)
∂E

∂t
−ρ0µ0aEµ

∂∇µ̃′π
∂t
, (22)

∆µ̃′π+
1

aπµa
µ
ρ
µ̃′π =

1

aπµa
µ
ρ

[

aeρ
ρ0
∇·u+aρT (T −T0)

]

− aEµ
aπµ
∇·E . (23)

It is noted that if the function µ̃′π is excluded from the set of Equations (19)–

(23), a set of linearized integro-differential (nonlocal) equations is obtained which

takes into account the interaction between the mechanical, thermal, and electro-

magnetic processes.

3. Example

As an example, the above-mentioned equations are applied to study the

coupled electromechanical fields in thin dielectric films. For the sake of simplicity

the isothermal approximation is used and our considerations are restricted to the

processes of deformation, polarization, and mass displacement.

3.1. Interface inhomogeneity of mechanical stresses, polarization

and electric charges

An infinite elastic polarized layer of an ideal dielectric is considered. At time

t=0 the layer is cut from an infinite medium in such a way that at time t> 0 it is in

contact with a medium which behaves as a vacuum with regards to its electromagnetic

properties. It is assumed that the layer is 2l in thickness and it is bounded by planes

x=±l which are free of stresses. The potential µ′π at x=±l is zero.
In this case, the basic functions u = (u,0,0),E = (E,0,0) and µ̃′π are the of

space coordinate x and time t functions only.

Consequently, in the absence of a body force the set of Equations (19)–(23) for

the layer −l≤x≤ l can be written as follows:

ρ0
∂2u

∂t2
=

(

aσ1 +2a
σ
2 −
a2eρ
ρ0a
µ
ρ

)

∂2u

∂x2
+
aeρ
aµρ

∂µ̃′π
∂x
, (24)

µ0 (ε0−ρ0apE)
∂2ϕ

∂t∂x
+ρ0µ0aEµ

∂2µ̃′π
∂t∂x

=0, (25)

∂2µ̃′π
∂x2
+
1

aπµa
µ
ρ
µ̃′π =

1

aπµa
µ
ρ

aeρ
ρ0

∂u

∂x
+
aEµ
aπµ

∂2ϕ

∂x2
, (26)

where ϕ is the electric potential and E=−∂ϕ/∂x.
The set of equations for the potential ϕv of the electric field in vacuum (x<−l,

x> l) is:
∂2ϕv
∂x2
−ε0µ0

∂2ϕv
∂t2
=0. (27)

Note that the non-zero component Ev of the electric field in vacuum Ev = (Ev,0,0)

and the potential are related by Ev =−∂ϕv/∂x.
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Taking into account the continuity condition for the electric potential, the

boundary and radiation conditions become:
(

aσ1 +2a
σ
2 −
a2eρ
ρ0a
µ
ρ

)

∂u

∂x
+
aeρ
aµρ
µ̃′π =0, (28)

µ̃′π =−µ′π0, ϕ=ϕv if x=±l, (29)

lim
x→±∞

(

∂ϕv
∂x
±√ε0µ0

∂ϕv
∂t

)

=0. (30)

We suppose that all the unknown functions are zero at t=0.

By neglecting the inertial forces, the solution of the boundary problem becomes:

σyy=σzz≡σ(x,t)=−µ′π0
aeρ
aµρ











1− aσ1

aσ1+2a
σ
2−
a2eρ
ρ0a
µ
ρ

(

1−
a2eρ
ρ0aσ1a

µ
ρ

)











cosh(λx)

cosh(λl)
θ(t), (31)

µ̃′π (x,t)=−µ′π0
cosh(λx)

cosh(λl)
θ(t), E (x,t)=−λµ′π0

ρ0aEµ
ε0−ρ0apE

sinh(λx)

cosh(λl)
θ(t), (32)

ϕ(x,t)=µ′π0
ρ0aEµ
ε0−ρ0apE

cosh(λx)

cosh(λl)
θ(t), p(x,t)=λµ′π0

ε0aEµ
ε0−ρ0apE

sinh(λx)

cosh(λl)
θ(t) (33)

for −l≤x≤ l, and

ϕv (x,t)=

{

µ′π0ρ0aEµ (ε0−ρ0apE)
−1
θ
(

t+
√
ε0µ0 (x+ l)

)

, for x<−l,
µ′π0ρ0aEµ (ε0−ρ0apE)

−1
θ
(

t−√ε0µ0 (x− l)
)

, for x> l,
(34)

where θ(x) is the Heaviside step function, σyy and σzz are the non-zero components

of the stress tensor, and

λ2=− 1

aµρaπµ

[

1+
a2eρ
ρ0a
µ
ρ
· 1

aσ1 +2a
σ
2 −a2eρ/(ρ0aµρ )

]

×
[

1−
ρ0a
2
Eµ

aπµε0 (1+χ)+ρ0a
2
Eµ

]

> 0.

(35)

It is noted that aµρa
π
µ< 0 [13] and the quantity 1/λ has a length dimension and

describes the characteristic distances of our problem.

For the density of the bound surface charge σse(±l)= ρ0p(±l) for t> 0:

σse(±l)=µ′π0λaEµ
ε0ρ0
ε0−ρ0apE

tanh(λl) . (36)

An analysis of the solution shows that the distribution of the stresses σyy, σzz,

the reduced energy measure µ̃′π and functions E, ϕ, and p exhibit inhomogeneities

close to the surface. Figure 1 displays the distribution of the normalized stress σ/σ∗,

the electric potential ϕ/ϕ∗, and the electric polarization p/p∗ through layer, where:

σ∗=−µ′π0
aeρ
aµρ

[

1− aσ1
aσ1 +2a

σ
2 −a2eρ/(ρ0aµρ )

(

1−
a2eρ
ρ0a
µ
ρ

)]

, (37)

ϕ∗=µ′π0
ρ0aEµ
ε0−ρ0apE

, p∗=µ′π0
ε0λaEµ
ε0−ρ0apE

. (38)

As can be seen, thin layers (curves 1–3 in Figure 1) are characterized by

an overlay of the surface inhomogeneity while there is a well-defined bulk region
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Figure 1. The distribution of the stress σ/σ∗, electric potential ϕ/ϕ∗, and electric polarization

p/p∗ throughout the layer for λl=1.5, 2.5, 5, 10, 30 corresponding to the curves 1-5, respectively

Figure 2. The dependence of the normalized surface charge density σse/σ
∗
se on the normalized

layer thickness l∗=λl

characterized by a uniform (constant) profile for thicker layers (curves 4 and 5).

This effect manifests itself in the dependence of the surface charge density σse/σ
∗
se,

where σ∗se = µ
′
π0λaEµε0ρ0/(ε0−ρ0apE), on the layer thickness, as is apparent from

Figure 2.

The bounded charge (36) is induced at the surfaces of the layer while in the

vacuum the electric field momentum arises and propagates from x = ±l to ±∞.
Thus, the proposed model permits a description of the interface inhomogeneity of

the stress-strained state and the surface polarization in dielectrics, the appearance

of an electrical charge at surfaces as well as an electromagnetic signal caused by the

surface formation.

3.2. The Mead anomaly

Let us consider a layer of a dielectric with traction-free surfaces at x=±l. It is
supposed that the electric potential ϕ=±V is kept fixed on the corresponding surfaces
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of the dielectric. In such a case, Equations (24) and (25) become one-dimensional and

are reduced to:
(

aσ1 +2a
σ
2 −
a2eρ
ρ0a
µ
ρ

)

∂2u

∂x2
+
aeρ
aµρ

∂µ̃′π
∂x
=0,

(ε0−ρ0apE)
∂ϕ

∂x
+ρ0aEµ

∂µ̃′π
∂x
=0.

(39)

The boundary conditions for a traction-free dielectric layer with the voltage

applied at x=±l are:
(

aσ1 +2a
σ
2 −
a2eρ
ρ0a
µ
ρ

)

∂u

∂x
+
aeρ
aµρ
µ̃′π =0, ϕ=±V. (40)

Equations (26) and (39) need to be supplied with an additional boundary

condition. Similarly to the boundary problem formulation by Mindlin [9, 10], it is

assumed that at the layer surfaces x=±l the specific polarization p is proportional to
the value of the specific polarization calculated within the classical theory framework

pc=−(ε0χ/ρ0)V/l, namely:

apE
∂ϕ

∂x
−aEµ

∂µ̃′π
∂x
=−k ε0χ

ρ0

V

l
for x=±l, (41)

where χ is the dielectric susceptibility, k is the phenomenological constant, 0≤ k≤ 1.
The classical condition if k = 1 is obtained from the expression (41), while k = 0

corresponds to the polarization continuity across the interface [2, 9, 10].

After solving the boundary problem we obtain for non-zero components of the

stress tensor σyy =σzz ≡σ (x), potential µ̃′π, electric potential ϕ, and polarization p:

σ (x)=
2aσ2aeρ

(

ρ0a
µ
ρ

)−1

aσ1 +2a
σ
2 −a2eρ (ρ0aµρ )

−1
· ε0
aEµ
· V (k−1)(1+χ)
1+χ−1λlcoth(λl)

· sinh(λx)
sinh(λl)

,

µ̃′π =
ε0
ρ0aEµ

· V (k−1)(1+χ)
1+χ−1λlcoth(λl)

· sinh(λx)
sinh(λl)

,

ϕ(x)=V
x

l
+

V (k−1)
1+χ−1λlcoth(λl)

[

x

l
− sinh(λx)
sinh(λl)

]

,

p(x)=−χε0
ρ0
· V
l

[

1+(k−1) 1+χ
−1λlcosh(λx)sinh−1 (λl)

1+χ−1λlcoth(λl)

]

.

(42)

The capacitance C is defined as a ratio of the surface charge to the voltage drop

across the dielectric layer:

C =
1

2V

(

ε0
dϕ

dx
−ρ0p

)
∣

∣

∣

∣

x=±l

. (43)

Then

C−1=
2l

ε0 (1+χ)
· 1+χ(λl)

−1
tanh(λl)

1+kχ(λl)
−1
tanh(λl)

. (44)

are obtained for the inverse capacitance C−1 from the expressions (43) and (42).

We have taken advantage of the fact that apE =−χε0/ρ0.
The results of our calculations are shown in Figure 3. The solid lines are

obtained using Equation (44) while the dashed lines correspond to the classical
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(a) (b)

Figure 3. (a) Dependence of inverse capacitance on normalized film thickness. The solid line is

obtained using Equation (44) and the dashed line corresponds to the classical theory.

(b) Polarization (curves 1 and 2) and electric potential (curves 3 and 4) as functions of distance

x/l for λl=5 (curves 1 and 3) and λl=20 (curves 2 and 4). The line code as in (a)

theory of piezoelectrics. Figure 3(a) displays the relation between normalized inverse

capacitance and normalized thickness. As can be seen, the linear part of the plot in

Figure 3(a) is well above the curve obtained from the classical theory which is in

agreement with the experimental results [3]. Figure 3(b) illustrates the non-linearity

of polarization (curves 1 and 2) and the electric potential (curves 3 and 4) in films of

different thickness (curves 1, 3 and 2, 4 correspond to λl=5 and λl=20, respectively).

It is noted that similar results have also been obtained in [6, 9] where the gradient

model of piezoelectrics has been used.

4. Conclusions

Using the recently proposed model of the electro-magneto-thermo-mechanics of

dielectric materials which takes into account the local mass displacement (see [11, 12]

for details), the surface inhomogeneity of the stress-strained state of a dielectric film,

the surface polarization and the electric charge as well as the electromagnetic signals

induced by the surface formation and their dependence on the film thickness and

material characteristics have been studied. We have shown that the formation of

a new surface in the dielectric leads to an electromagnetic “signal” which can be

used, for instance, for passive (electromagnetic) diagnostics of structures built on

dielectric materials.

It has also been shown that such a model adequately describes the anomalous

dependence of the electric capacitance of a thin dielectric film on its thickness and

the non-linearity of the electric field distribution inside the film. The results obtained

herein can be useful in studies of the strength parameters of thin dielectric films and

the electromagnetic emission at destruction of dielectric materials.
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