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Abstract: An approximate analytical solution of a two dimensional problem for stationary Navier-

Stokes, continuity and Fourier-Kirchhoff equations describing a free convective heat transfer from

an isothermal cone is presented. The problem formulation is based on assumptions typical for

natural convection: non-compressibility and the Boussinesq approximation. The solution is based

on Frobenius expansions at the vicinities of two points: the initial point and the singular point of

the boundary layer equation. Numerical matching of the expansions and Nusselt number evaluations

are traced.

Keywords: natural convection, Fourier-Kirchhoff equations, boundary layer equation, isothermal
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1. Introduction

The results of a theoretical and experimental study of free convective flows

from heating objects are widely published and they are very useful for engineers

and designers to determine convective heat losses from apparatus, devices, pipes in

industrial or power installations, electronic equipment, architectonic objects, etc.

There are many publications on flat (vertical, horizontal and inclined) as well

as cylindrical and spherical surfaces. It is obvious from an analysis of the literature

data that only several papers can be found for heating surface conical configurations,

for example [1–5] and [6]. It is only four out of about 120 results that are concerned

with conical vertical surfaces in the review of Churchill’s paper [7]. As we have found

only one paper concerning the horizontal cone, written by Oosthuizen [6], we have

decided to continue those investigations and extend this subject [8, 9]. Moreover, the

only experimental studies have been performed in [6].
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The presented paper is devoted to a general theoretical study of the problem

of describing a boundary layer near an isothermal surface.

A horizontal position of the cone does not permit to apply the above mentioned

approach because of a symmetry break by the gravity field. The proposed physical

model of the flow is based on boundary layer approximations made in momentum

and energy equations which permit only a convective tangential heat and momentum

transfer. Two kinds of coordinates: a cylindrical coordinate system coupled with

the cone surface and a special local system are used to apply such model for the

investigated geometry related to the gravity field direction (horizontal cone) [9].

The local coordinate system selection is motivated by the physical model in which

the coordinate curves are connected with stream lines. This statement is in good

agreement with a picture of the pattern flow that we have observed directly [8]. The

curve’s tangent vector is directed along the total of the forces of surface interaction

and gravitation.

An approximate analytical solution of a simplified convective flow induced by

an isothermal conical body with a horizontal axis of symmetry is considered. The

selected coordinate system within the frame of simplifications typical for laminar

natural convection and for Pr≈ 1 makes it possible to decrease the number of basic
equations. Following the transformations, the basic set of two equations for the

thermal boundary layer results in an ordinary differential equation of second order

with a singularity [9]. The solution method used is the power series expansion near

the point of singularity of the basic equation for the boundary layer thickness as

a function of local coordinates.

The approach of [9] is continued and developed in this article. Our considera-

tions are based on the parameterization of power series expansion at the singularity

point by the boundary layer thickness at this (singularity) point and the expansion

is matched to other expansion in the vicinity of the conventional starting point of

the boundary layer. The principal feature of this expansion is that its complicated

structure arises from the nonlinearity of the basic equation for the boundary layer

thickness and geometry of the cone.

Two possible ways of behavior are observed when analyzing the Frobenius

solution at this starting point, one of which prevails in some cone angle values range.

The solutions are matched at the point and the parameters of expansion are found

numerically. The correspondent Nusselt numbers are evaluated and tabulated basing

on the selected parameters.

In Section 2, the cone geometry and physical model are presented and a deriva-

tion of the equation describing the boundary layer thickness is reviewed. In Section 3,

the boundary layer thickness asymptotic expansion is found at the starting point

ε = −εm when analyzing a Frobenius-like solution in the vicinity of this point. In
Section 4, this solution is matched with a solution in the vicinity of point ε=0 and

the Nusselt number is evaluated numerically.

The theoretical considerations are compared with the experiment results basing

on the Nusselt number values.
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Figure 1. A coordinate system of an isothermal horizontal conical surface transferring heat

by free convection [9]

2. A free convective boundary layer on an isothermal

horizontal cone

2.1. Geometry

A cone with radius R and height H with a coordinate system is shown in

Figure 1. The cone is horizontal and it is in a gravity field which is described by the

gravity vector ḡ.

A free convective boundary layer on the horizontal conical surface has been

investigated in this study. a cone horizontally immersed in a fluid at the temperature

of Tw has been examined. The following parameters have been used to describe conical

surface:

1. α – the angle between the base and lateral surface of the cone, it can obtain

values from α=0 (the vertical round plate case) to α= π2 (horizontal cylinder

case);

2. the red curve S shown in Figure 1 is a stream line with molecules of the fluid

mean movement alongside. The angle ε=−εm and ε= εm is the beginning and
the end of the boundary layer;

3. ρ0 – expressed by the base and the angle εm as shown in Figure 2 (red curve).

The following vectors may be distinguished at an arbitrary point M on the

cone’s surface (see Figure 1):

• normal vector σ̄ to the surface:

σ̄= ı̄sinαsinε+ ̄sinαsinε− k̄cosα; (1)
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Figure 2. The cone base plot with the quantity ρ0

• tangent τ̄ to the surface:

τ̄ =
S̄

S
=
−ı̄(1−sin2αsin2ε)+ ̄sin2αsinεcosε− k̄cosαsinαsinε

√

1−sin2αsin2ε
. (2)

S̄ is defined as:

S̄= ḡ−(ḡ, σ̄)σ̄, (3)

where ḡ is the gravitation acceleration vector.

2.2. The physical model

Natural convection which has been of interest in previous studies has made it

possible to assume incompressibility and a laminar flow of the fluid. Based on former

observations, inertia forces are considered to be negligibly small, hence, they can be

ignored in our model. On the contrary, the viscosity forces play a significant role in our

considerations, influencing future calculations. To create the Navier-Stokes equations,

the authors have assumed that the thermal and hydraulic boundary layer thicknesses

are equal. This allowed us to use the basic Navier-Stokes equations in two directions:

• tangent

ν
∂2Wτ

∂σ2
−gτβ(T −T∞)−

1

ρf

∂p

∂τ
=0; (4)

• normal

−gσβ(T −T∞)−
1

ρf

∂p

∂σ
=0, (5)

where:

gσ = σ̄ · ḡ (6)

gτ = τ̄ · ḡ. (7)

Assuming that the temperature distribution depends mainly on the distance

from the cone’s surface, the Fourier-Kirchhoff equation which confirms the former

assumption has been used:

Θ=
T −T∞
Tw−T∞

=
(

1−
σ

δ

)2

. (8)

The δ is the boundary layer thickness, T∞ is the constant temperature of the fluid in

infinity and Tw is the cone temperature. Both of them are shown in Figure 1.
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In the article [9] the authors solved the Navier-Stokes and the Fourier-Kirchhoff

equation deriving the equation which describes the dimensionless boundary layer

thickness [10, 11]:

y4(ε)E
∂2y(ε)

∂ε2
+3y3(ε)E

(

∂y(ε)

∂ε

)2

+y3(ε)
∂y(ε)

∂ε
G+y5(ε)H+y4(ε)F =

= r2(1−sin2αsin2ε)cos−2cos
2αε.

(9)

The coefficients in Equation (9) are defined by:

E=
5

9
(cos(2+cos

2α)ε)sinαsinε, (10)

G=3(cos(1−cos
2α)ε)r(cos2ε+cos2α−cos2εcos2α)+

+
8

9
(cos(3+cos

2α)εsinα)y(ε), (11)

H =
2

9

sinεsinα

sin2αsin2ε−1
cos(2+cos

2α)ε(sin2εcos4α+3cos2α+cos2ε), (12)

F =
rsin2α(1−sin2αsin2ε)

cos(cos2α)ε
sinε. (13)

In Equation (9) the authors use new variables: the dimensionless boundary

layer thickness y(ε) and the dimensionless radius r which are defined by:

y(ε)= δK1/3, (14)

r= ρ0K
1/3, (15)

where:

K =
Ra

240R3
. (16)

Equation (9) is the final nonlinear ordinary differential equation describing the

boundary layer thickness.

3. Solution in the vicinity of point ε=−εm
The main aim of this paper has been to find the solution of an equation in

the vicinity of point ε=−εm which is also the beginning of the boundary layer. It is
followed by matching two solutions; in the vicinity of point ε=0 and point ε=−εm,
respectively. In [9], owing to the solution of Equation (9) it has been possible to obtain

an asymptotic solution like the Taylor series in the vicinity of point ε=0:

y (ε)= y (0)+gε+fε2/2+ . .. (17)

where, approximately (we left three terms in the series):

g=
1

3

r

y3 (0)
(18)

f =−
1

3

r2

y7 (0)
(19)

y(0)=
4

√

1+
√
7

12
r
[

π−2arcsin
( ρ

R

)]

(20)
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Equation (17) is the dimensionless boundary layer thickness. It is known that:

δ= y(ε)K−
1

3 . (21)

Thus, the boundary layer thickness at the point ε=0 is:

δ(ε)=
4

√

240ρ0R3

Ra









4

√

1+
√
7

12

[

π−2arcsin
(ρ0
R

)]

+

+
ε

3
(

1+
√
7

12

[

π−2arcsin
(ρ0
R

)])
3

4

−
ε2

6
(

1+
√
7

12

[

π−2arcsin
(ρ0
R

)])
7

4









.

(22)

The solution (17) of Equation (9) in the vicinity of point ε = −εm is not
a satisfactory approximation. Obtaining asymptotic solution of Equation (9) in the

vicinity of the point ε=−εm, hence, having found a matching point we have been able
to introduce corrections to the Equation (22). To achieve the foregoing, the solution

in the vicinity of the point ε=−εm to be expressed via series the Frobenius factor
(ε+εm)

µ is taken into account:

y=(ε+εm)
µ(a0+a1(ε+εm)+a2(ε+εm)

2+ . ..). (23)

A substitution of the boundary layer thickness (9) into the equation yields two

possibilities. To find a coefficient µ in Equation (23) all coefficients in Equation (9)

are assumed to be of a Taylor series expansion form. The terms of the same power

are collected and the coefficients by these powers are equalized to zero. The values

of coefficient µ for a general conical surface case are found to be equal to 25 and

µ= 14 . In the limit α→ 0 (the vertical round plate case) we get conincidence with
the known result (the only contribution µ= 14 survives). In further studies the round

plate contribution is suppressed, hence rather big values of α are considered.

For an approximate solution in the vicinity of the point ε=−εm we left the
only first term in Equation (23):

y(ε)= a0(ε+εm)
2

5 . (24)

The approximate solution (24) together with Equation (9) can be used to find

coefficient a0. Assuming that:

(ε+εm)= z (25)

and also that:

y(z)= a0z
2

5 (26)

using Equation (9) the following equation is obtained:

a40z
8

5E

(

−
6

25

a0

z
8

5

)

+3a30z
6

5E
4

25

a20

z
6

5

+a40z
6

5

2

5

1

z
3

5

G+a50z
2H+a40z

8

5F =

= r2(1−sin2αsin2ε)cos−2cos
2αε.

(27)

Comparing expressions by the term z0, the result is:

6

25
a50E= r

2(1−sin2αsin2εm)cos−2cos
2αεm. (28)
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At the point ε=−εm=arccos(ρ0/R) the following solution is provided:

6

25
a50E0= r

2

(

1−sin2α
(

1−
ρ20
R2

))

(ρ0
R

)−2cos2α

, (29)

where E0 is defined by:

E0=Eε=−εm =
5

9
(sinα)

(ρ0
R

)cos2α+2
√

1−
ρ20
R2
. (30)

Thus, Equation (29) results in the expression on a0:

a0=
5

√

√

√

√

√

15r2

2(sinα)
(ρ0
R

)3cos2α+2
√

1−
ρ20
R2

(

1−
(

sin2α
)

(

1−
ρ20
R2

))

. (31)

Therefore, our final solution is the following:

g(ε)=











5

√

√

√

√

√

15r2

2(sinα)
(ρ0
R

)3cos2α+2
√

1−
ρ20
R2

(

1−
(

sin2α
)

(

1−
ρ20
R2

))











(ε+εm)
2

5 . (32)

A change of the notation from y(ε) to g(ε) allows us to distinguish easily both

solutions as two different points. The solution g(ε) is the boundary layer thickness at

point ε=−εm, while −εm is the beginning of the boundary layer.
This leads to an evaluation of the two solutions in the vicinity of two points:

ε= 0 (Equation (17)) and ε=−εm (Equation (32)). The purpose of this work is to
compare these two solutions and obtain a matching point. one cone with the following

values of coefficients is considered to achieve this purpose:

1. α = π4 is chosen as this is a case between the vertical plate case and the

horizontal cylinder case;

2. the coefficient ρ0=0.7 m value is taken from the experiment [8];

3. to simplify the calculations, it has been assumed that the cone base radius is

equal to one;

4. the following coefficients depend on α, ρ0 and R which permits to estimate their

values: −εm=1.5586, a0=2.9716, y0=1.2344.

It is not possible to find a matching point using the above mentioned values.

Nevertheless, it can be easily done when some parameters are changed. The matching

point is not obtained by changing the µ value from 2
5 to

1
4 . On the contrary, it can

be obtained by changing the a0 parameter. The most essential results are obtained

by changing the y0 coefficient (the dimensionless boundary layer thickness at point

ε=0). See Table 1.

Table 1. Parameter y0 dependence on the matching point value and the boundary layer thickness

y0 matching point boundary layer thickness

1.49 −1.4762 0.9943

1.45 −1.4766 0.8492

1.39 −1.4771 0.6558

1.35 −1.4838 0.5107

1.25 −1.5344 0.0271
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Figure 3. Comparison of the boundary layer plots for y0=1.25cm

Moreover, the matching point is obtained by even a small change in parameter

y(0) (Figure 3).

Owing to that, it is possible to provide an estimation of new Nusselt number

values whereby theoretical considerations can be compared with experimental results.

4. Nusselt number

A new variable y(0) at point ε= εs is needed to calculate the Nusselt number,

where εs is the matching point. The following equation is considered:

y (ε)= y (0)+
1

3

rε

y3 (0)
−
1

6

r2ε2

y7 (0)
. (33)

In this situation ε= εs.

The expression described by Equation (33) and the expression on the boundary

layer in Equation (32) meet at the matching point, thus they can be compared:

g (ε)= a0

(

εs+arccos
(ρ0
R

))
2

5

. (34)

In the end, the following solution is obtained:

a0

(

εs+arccos
(ρ0
R

))
2

5

= y (0)+
1

3

rεs
y3 (0)

−
1

6

r2ε2s
y7 (0)

, (35)

where:

a0=
5

√

√

√

√

√

15r2

2(sinα)
(ρ0
R

)2cos2α
√

1−
ρ20
R2

(ρ0
R

)cos2α+2

(

1−
(

sin2α
)

(

1−
ρ20
R2

))

. (36)

If the matching point (εs) is very close to point −εm as is shown in Figure 3, a new
boundary layer thickness at ε=0 point is changing slightly, but in a significant way.

According to that, the following expression is presented:

y (0)= y0(0)+ξy1 (0)=
4

√

1+
√
7

12
r
[

π−2arcsin
(ρ0
R

)]

+ξy1 (0) , (37)
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where ξ is very small:

ξ≪ 1. (38)

Now, the Taylor expansion of Equation (37) can be used and put to Equa-

tion (35). As y1(0) is very small, ξ = 1 can be selected and the term: ξy1(0) will

remain small and Equation (35) can be written as:

a0

(

εs+arccos
(ρ0
R

))
2

5

= y0+
1

3

rεs
y30
−
1

6

r2ε2s
y70
+y1−

r

y40
y1εs+

7

6

r2

y80
y1ε
2
s, (39)

where the variables y0 and y1 are defined as:

y0 (0)= y0,

y1 (0)= y1.
(40)

Let us introduce a known variable y0 which gives:

a0

(

εs+arccos
(ρ0
R

))
2

5

=
4

√

1+
√
7

12
r
[

π−2arcsin
(ρ0
R

)]

+

+
1

3

rεs
[

4

√

1+
√
7

12
r
(

π−2arcsin
(ρ0
R

))

]
3

4

−
1

6

r2ε2s
[

4

√

1+
√
7

12
r
(

π−2arcsin
(ρ0
R

))

]
7

4

+

+y1−
rεsy1

1+
√
7

12
r
(

π−2arcsin
(ρ0
R

))

+
7

6

r2ε2sy1
[

1+
√
7

12
r
(

π−2arcsin
(ρ0
R

))

]2 .

(41)

This linear equation having been solved, a new variable y1 is obtained which is

equal to:

y1=
D

2
εs

(

π−2arcsin
ρ0
R

) 1+
√
7

6

−
14

3

ε2s
(

π−2arcsin
ρ0
R

)2
(

1+
√
7

6

)2 −1
. (42)

And the new boundary layer thickness value at point ε=0 is equal to:

y(0)=
4

√

1+
√
7

12
r
[

π−2arcsin
(ρ0
R

)]

+

+ξ
D

2
εs

(

π−2arcsin
ρ0
R

) 1+
√
7

6

−
14

3

ε2s
(

π−2arcsin
ρ0
R

)2
(

1+
√
7

6

)2 −1
, (43)

where:

D=−a0
(

εs+arccos
ρ0
R

)
2

5

+
4

√

1

2
r
(

π−2arcsin
ρ0
R

) 1+
√
7

6
+

+
1

3
r

εs

4

√

1

2
r
(

π−2arcsin
ρ0
R

) 1+
√
7

6

3

4

−
1

6
r2

ε2s

4

√

1

2
r
(

π−2arcsin
ρ0
R

) 1+
√
7

6

7

4

(44)
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As a result, a local solution at the ε= εs point, called a matching point, has been

obtained. It is also known that both y(ε) = δK
1

3 and the boundary layer thickness

and radius r equations are:

δ= y(ε)K−
1

3 , (45)

r= ρ0K
1

3 , (46)

where:

K =
Ra

240R3
. (47)

The Nusselt number mean value for whole conic surface is defined by the

following equation:

Num=
2R

S

∫ π/2

0

∫ εm

−εm

1

δ
dAk, (48)

where dAk as described in paper [9], is equal to:

dAk =cosα ·(cosε)−2cos
2α ·R2 sinεm(cosεm)2cos

2α−1dεmdε. (49)

It is known that our boundary layer thickness changes for a small value of ξy1.

Thus, it can be written as:

δ(ε)=

[

y0(0)+ξy1(0)+
1

3

rε

[y0(0)+ξy1(0)]
3 −
1

6

r2ε2

[y0(0)+ξy1(0)]
7

]

(

240R3

Ra

)
1

3

. (50)

The boundary layer thickness value is obtained using the Taylor expansion of the

Equation (39):

δ(ε)=

(

240R3

Ra

)
1

3
(

y0+
1

3

rε

y30
−
1

6

r2ε2

y70
+y1−

r

y40
y1ε+

7

6

r2

y80
y1ε
2

)

, (51)

where:

δ0(ε)=

(

240R3

Ra

)
1

3
(

y0+
1

3

rε

y30
−
1

6

r2ε2

y70

)

(52)

is the boundary layer thickness value which has been calculated in [9]; and where:

δ1(ε)=

(

240R3

Ra

)
1

3
(

y1−
r

y40
y1ε+

7

6

r2

y80
y1ε
2

)

(53)

is the boundary layer thickness correction. The value δ1(ε) contains the parameter εs,

which approximate value is taken as εm in further evaluations.

Equation (52) and Equation (53) having been included in Equation (48) and

assuming that the boundary layer thickness is changing slightly, the following solution

is obtained:

Num=

∫ π/2

0

∫ εm

−εm

1

δ0(ε)+ξδ1(ε)
dAk. (54)

Assuming that ξ=1 and using a Taylor expansion inside the integral:

1

δ0(ε)+ξδ1(ε)
=
1

δ0(ε)
+
∂

∂ξ

[

1

δ0(ε)+ξδ1(ε)

]

ξ=0

+ . ..=
1

δ0(ε)
+
−δ1(ε)

(δ0(ε))
2 , (55)

Equation (54) takes the form:

Num=

∫ π/2

0

∫ εm

−εm

1

δ0(ε)
dAk−

∫ π/2

0

∫ εm

−εm

δ1(ε)

(δ0(ε))
2 dAk. (56)
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The integral
∫ π/2

0

∫ εm
−εm

1
δ0(ε)
dAk is computed in paper [1], hence the following integral:

I =

∫ π/2

0

∫ εm

−εm

δ1(ε)

(δ0(ε))
2 dAk (57)

needs to be calculated, where δ1(ε) and dAk are given by Equation (53) and

Equation (49), respectively.

The method described precisely in [8] has been used to solve the integral (57).

The integral has been calculated numerically for the following numbers of integration

steps: n=300, for the internal integral and p=150, for the external one.

Taking into account Equation (56) the Nusselt number can be calculated and

compared with the result from [8]. The result of this calculation is shown in Table 2.

Table 2. Nusselt number correction based on the boundary layer thickness new value,

Equation (50)

Angle 30◦ 45◦ 60◦ 75◦

Nusr for δ= y
0(0)K−

1

3 6.2698 6.0189 5.1944 2.5145

Correction of the Nusselt number −0.1970 0.0006 −0.0099 −0.0034
Percentage change of Nusselt number 3.15 0.01 0.17 0.13

New Nusselt number 6.4668 6.0183 5.2043 2.5179

When the boundary layer thickness parameter y0(0) is corrected, the Nusselt

number changes. The Nusselt number change tendency falls generally within the scope

of a comparison between theory and experiment [8]. It follows from an evaluation

of the Nusselt number that the correction is small which is in accordance with

our assumptions (see conclusion (38)). It may be concluded that there are many

reasons for the Nusselt number to account for a complete theory. It should be noted

that approximations have been used to solve Equation (9). The account of possible

discrepancies could be the subject of a future analysis.

5. Conclusions

The theory of convective heat transfer from a surface is based on boundary layer

notion, its thickness dependence on a surface points allows to evaluate the Nusselt

number integrating across the surface. In the case of horizontal conic surface we

consider here the equation for the boundary layer thickness is rather complicated

nonlinear ordinary differential equation (9) in ε with variable coefficients that also

depend on other variable r as a parameter. A numerical solution of this equation could

give the necessary dependence of the boundary layer thickness on ε,r for every value of

basic angle α of the cone. Numeric approach however is not simple enough to analise

the dependencies of the heat transfer properties on problem parameters (Ra number,

etc.). The analytic approximate integration we develop here give results close to

experimentsand allows to follow the parameter dependencies iin a rather simple way.

We hope it could serve as an useful tool in engeneering. Note that the parameter εs
(matching curve coordinate) may be chosen to fit better experimental data.
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