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Abstract: In order to check the validity of parameterization of electron states on the Fermi surface
developed in the preceding paper, this parameterization is applied to the calculation of some definite
crystal properties. The first property is the density of electron states versus energy in simple cubic and
body-centered cubic crystal lattices, examined formerly on the basis of the Bloch parameterization
of electron states by Jelitto; the other property is the length of some special arcs extended on the
surfaces. The parameterizations of both approaches, that of the present paper and that developed
on the basis of the Bloch states, are found to give results remaining in remarkable agreement.

Keywords: Fermi surfaces of crystalline solids, electron orbits induced in the magnetic field, density
of electron states, orbit lengths and arc lengths on the Fermi surfaces

1. Introduction

A difficulty of a conventional description of the Fermi surface done on the
basis of the Bloch states is that this kind of parameterization does not make, in
general, any reference to the symmetry properties of the mentioned surface. This
situation can be changed if a special direction of the Brillouin zone, for example, one
of the symmetry axes of that zone, is taken into account (see Part I, [1]). Then all
states on the surface lying in a plane normal to the axis can be labeled by the same
value of the parameter aq called the amplitude. The origin of the amplitude notion is
connected with the oscillatory behavior of an electron on the Fermi surface when this
electron is submitted to the action of a magnetic field directed along the chosen axis
of symmetry [2].

In general, the electron states lying on the Fermi surface can be considered
as a set of planar parallel orbits which are normal to the applied field. Beyond ay,
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118 T. Roliriski and S. Olszewski

the states on a given orbit can be labeled only by a single supplementary variable
introduced below as u. On the other hand, the parameter ay is coupled with the
Fermi energy with the aid of the wave-vector coordinate k, = z taken parallel to the
chosen axis of symmetry and direction of the field.

This kind of classification of states allowed us, in the first step, to obtain in [1]
a better insight into the extremal behavior of some electron observables on the Fermi
surface than it could be done before; in the next step, the calculation of the curvature
parameters of the surface has been facilitated in a considerable degree.

The aim of the present paper is to check the validity of parameterization
developed in [1] by applying it to the crystal properties known from the Bloch’s
theory. In the first step, the density of electron states versus energy obtained very
accurately with the aid of the Bloch’s method by Jelitto [3] has been compared, in
two crystal cases, with the density of states calculated on the basis of the present
method. In the second step, the length of arcs for some special cases of the Fermi
surfaces has been considered. The results of both approaches to parameterization of
the Fermi surface, that of the present paper and that based on the Bloch states, are
found to remain in remarkable agreement.

2. The (u,v)-parameterization of Fermi surfaces applied
in the calculation of the density of states

Taking the tightly-bound s-electrons in the sc lattice as an example our choice
of parameterization is:

z(u,v) =u, (1)
y(u,v) = arccos(1 — cosu+ cosv), (2)
where on the basis of (32) and (40) in [1] we have put:
v =ao, (3)
and
z(u,v) = arccos(2 — E*° — cosv) = z(v), (4)
on the basis of Equations (29) and (40) in [1]. The limits of the parameters are:
O<u<w (5)

for the variable u, and
0<v<ay™ (6)

for the variable v. The limit of af*®* in Equation (6) is the value of ay given in

Equation (36) in [1].

In the first step of an approach to the density of states in the sc lattice, we
calculate the 1/8 part of the area of the plane z = const occupied by the electrons.
We obtain from Equation (2):

fw) 1
S(v) :/ arccos(1 — cosu+ cosv)du — §f2(v), (7)
0

where f(v) is the function of v calculated from the requirement:

COST = COSY. (8)
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Because of Equations (32) and (40) in [1], we have obtained the following formula for
the limit of u=u"™ for the case when Equation (8) is satisfied:

2 —2cosul™ =1 —cosag. 9)

In view of Equation (3), Equation (9) gives:

. 1
f(v) =u"™ =arccos (ﬂ> . (10)
In the next step, S(v) is integrated with the aid of dz equal to:
dz=— Sy dv (11)

[1—(2— E5c—cosv)?]1/2

over the interval given in Equation (6) giving 1/16 of N**(E*°), the total number
of states enclosed within the Fermi surface having the energy E®¢. The details of the
integration are presented in the Appendix. For the data of the density of states versus
energy which is:

o d Zmazx dNtot (Esc)
see Table 1.
In the parameterization of the Fermi surface for the bcc lattice is:
z(u,v) =u, (13)
Cosv
= 14
y(u,v) = arccos (cosu) , (14)
v =ag, (15)
1— Ebcc
= )= . 16
z(u,v) = arccos ( - ) z(v) (16)

The limits of the variables u and v entering Equations (13)—(16) can be
calculated in a way similar to that applied in the sc case. For the 1/8 part of the
area occupied in a plane z = const, we obtain:

S(v) = /O T recos (2 du— % £2(0), (17)

where, in view of the assumption (8) taken also for the bce case:
f(v) =u"™ = arccos(cos'/?v) (18)
on the basis of Equations (33) and (40) of Part I [1]. The function S(v) is integrated

next, with the aid of the variable increment dz equal to:

1 _Ebcc :
dz=— Y (19)

L e \ 2 1/2 cos2v '
1_( COSv )

max

over the interval of v equal to (6), in which a'®* is defined again by Equation (30)
in [1]. The density of states in the bcc lattice versus energy done with the aid of

parameterization given in Equations (13)—(16) is presented in Table 2 (some details
of the calculations are given in the Appendix).
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120 T. Roliriski and S. Olszewski

Table 1. Density of the tightly-bound s-electron states in the sc lattice calculated with the aid
of (u,v)-parameterization of the electron orbits for different energies £5¢. Only the
closed orbits within the interval 0 < £ < 2 are considered. The data are compared with
the density of states obtained by Jelitto [3] on the basis of a conventional Bloch
parameterization of the Fermi surfaces

E5¢ | density | density | ratio of | E®¢ | density | density | ratio of

by the by column 3 by the by column 3
present | Jelitto and present | Jelitto and
theory column 2 theory column 2

0.01 1.7816 | 1.7816 1.0000 1.05 | 25.0617 | 25.0617 1.0000
0.02 | 2.5259 | 2.5259 1.0000 1.1 26.1521 | 26.1521 1.0000
0.03 | 3.1014 | 3.1014 1.0000 1.15 | 27.2777 | 27.2777 1.0000
0.04 | 3.5902 | 3.5902 1.0000 1.2 | 28.4428 | 28.4428 1.0000
0.05 | 4.0242 | 4.0242 1.0000 1.25 | 29.6524 | 29.6524 1.0000
0.1 5.7643 | 5.7643 1.0000 1.3 | 30.9120 | 30.9120 1.0000
0.15 | 7.1521 7.1521 1.0000 1.35 | 32.2282 | 32.2281 1.0000
0.2 8.3683 | 8.3683 1.0000 1.4 | 33.6085 | 33.6085 1.0000
0.25 | 9.4825 | 9.4825 1.0000 1.45 | 35.0621 | 35.0621 1.0000
0.3 10.5302 | 10.5302 1.0000 1.5 | 36.6000 | 36.6000 1.0000
0.35 | 11.5330 | 11.5329 1.0000 1.55 | 38.2360 | 38.2360 1.0000
0.4 | 12.5047 | 12.5047 1.0000 1.6 | 39.9876 | 39.9876 1.0000
0.45 | 13.4554 | 13.4554 1.0000 1.65 | 41.8777 | 41.8776 1.0000
0.5 14.3926 | 14.3926 1.0000 1.7 | 43.9374 | 43.9373 1.0000
0.55 | 15.3223 | 15.3223 1.0000 1.75 | 46.2112 | 46.2112 1.0000
0.6 16.2493 | 16.2493 1.0000 1.8 | 48.7670 | 48.7669 1.0000
0.65 | 17.1778 | 17.1778 1.0000 1.85 | 51.7176 | 51.7175 1.0000
0.7 | 18.1114 | 18.1114 1.0000 1.9 | 55.2820 | 55.2819 1.0000
0.75 | 19.0538 | 19.0537 1.0000 1.95 | 60.0209 | 60.0208 1.0000
0.8 | 20.0076 | 20.0076 1.0000 1.96 | 61.2437 | 61.2436 1.0000
0.85 | 20.9764 | 20.9764 1.0000 1.97 | 62.6382 | 62.6381 1.0000
0.9 | 21.9630 | 21.9630 1.0000 1.98 | 64.3008 | 64.3007 1.0000
0.95 | 22.9706 | 22.9706 1.0000 1.99 | 66.4796 | 66.4795 1.0000
1.0 | 24.0024 | 24.0024 1.0000

3. Arc lengths and orbit lengths lying on the Fermi surface

Some arcs on the Fermi surface, for example, those lying in a plane parallel
to the magnetic field and containing axis z cannot be classified as those belonging
to u = const or v = const. Calculations for such arcs require, in general, a rather
complicated formula for the arc element, viz. [4, 5]:

ds = (Edu® +2F dudv+ Gdv?)'/?, (20)
where 9 2
o oF oF or
p=(5). =32 6= () (21)

and 7 is a position vector having the coordinates x = z(u,v), y =y(u,v), z = z(u,v).
This complication can be avoided by combining the equation for the electron energy
with that for a plane in which the arc is located. In the first step, we consider a plane

y=0, (22)

equivalent to the plane z =0 by symmetry, which contains both the axis z parallel to
the magnetic field and the examined arc.
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Table 2. Density of the tightly-bound s-electron states in the bce lattice calculated with the aid
of (u,v)-parameterization of the electron orbits for different energies £P°°. Only the
closed orbits within the interval 0 < EP°° < 1 are considered. The data are compared
with those obtained by Jelitto [3] on the basis of conventional Bloch parameterization

of the Fermi surfaces

EPe | density | density | ratio of | EP | density

by the by column 3 by the
present | Jelitto and present
theory column 2 theory

density | ratio of

by column 3
Jelitto and
column 2

0.001 | 4.4992 | 4.4992 | 1.0000 | 0.60 | 206.478
0.006 | 11.0624 | 11.0624 | 1.0000 | 0.65 | 233.304
0.011 | 15.0352 | 15.0352 | 1.0000 | 0.70 | 265.440
0.016 | 18.2021 | 18.2020 | 1.0000 | 0.75 | 305.180
0.021 | 20.9326 | 20.9326 | 1.0000 | 0.80 | 356.502
0.03 | 25.1924 | 25.1923 | 1.0000 | 0.85 | 427.188
0.04 | 29.3150 | 29.3150 | 1.0000 | 0.90 | 535.656
0.05 | 33.0314 | 33.0313 | 1.0000 | 0.91 | 565.552
0.06 | 36.4692 | 36.4692 | 1.0000 | 0.92 | 599.812
0.07 | 39.7044 | 39.7045 | 1.0000 | 0.93 | 639.726
0.08 | 42.7864 | 42.7863 | 1.0000 | 0.94 | 687.222
0.09 | 45.7490 | 45.7489 | 1.0000 | 0.95 | 745.360
0.10 | 48.6174 | 48.6173 | 1.0000 | 0.955 | 779.928
0.15 | 62.0846 | 62.0846 | 1.0000 | 0.96 | 819.414
0.20 | 74.9000 | 74.8999 | 1.0000 | 0.965 | 865.256
0.25 | 87.6892 | 87.6892 | 1.0000 | 0.97 | 919.594
0.30 |100.843 |100.843 1.0000 | 0.975 | 985.830
0.35 |114.676 |114.676 1.0000 | 0.98 [1069.79

0.40 ]129.491 |129.491 1.0000 | 0.985 [1182.75

0.45 |145.620 |145.620 1.0000 | 0.99 [1350.94

0.50 |163.460 [163.460 1.0000 | 0.995 [1662.85

0.55 [183.518 [183.518 1.0000

206.478 | 1.0000
233.304 | 1.0000
265.439 | 1.0000
305.179 | 1.0000
356.502 1.0000
427.187 | 1.0000
535.655 | 1.0000
565.551 1.0000
599.811 1.0000
639.725 1.0000
687.220 | 1.0000
745.359 | 1.0000
779.927 | 1.0000
819.413 | 1.0000
865.253 | 1.0000
919.592 | 1.0000
985.827 | 1.0000
1069.79 1.0000
1182.74 1.0000
1350.94 1.0000
1662.84 1.0000

In the first step, the property (22) transforms the
lattice (see Equation (41) in [1]) into:

E*¢=2—cosx—cosz
which gives the derivative:

dz sinx sinx

energy expression in the sc

(23)

dr  sinz (17(27Escfcosx)2)1/2'

This result can be substituted to the integral for 1/4-th of the arc length:

max

1/2
I ojape ¢ dz\?
L | (H(dx

extended between z =0 and

max

dx (25)

The parameter af*** is coupled with E*¢, expressed for z=0 by the formula:

E*¢=1—cosay™,
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122 T. Roliriski and S. Olszewski

valid also for the case of y =0. In Table 3 we present the dependence of L\SIC on F*¢ as

well as the convergence of LT\C to its limiting value attained in effect of an approach
of F*¢ to:

E%=2 (28)
which is the upper limit of energy for the closed electron orbits obtained in the (z,y)
plane [2].

Table 3. Lengths of arcs Lﬂc and orbit lengths L%° on the Fermi surface of the sc lattice,
calculated as functions of the energy, E°¢, of the tightly-bound s-electrons. The L are
in a plane parallel to the axis z (y=0 or =0); the L5 are calculated in a plane normal
to the magnetic field (2 =0). Only the interval of energy corresponding to closed orbits
is considered in the calculations. The maximal values of (1/ 4)LT‘C and (1/4)L5° tend
to the value equal to v/27 calculated from the geometry of the Brillouin zone (see
Equation (31) and inferences below Equation (51)). The length of the edge of the
Brillouin zone is assumed as equal to 7

B | (oL | /aLe | Bx | (/e | (/4L
0.2 1.0064 | 1.0064 | 1.94 40232 | 4.0233
0.4 14433 | 1.4433 | 1.95 4.0605 | 4.0605
0.6 17948 | 1.7949 | 1.96 41015 | 4.1015
0.8 21077 | 21077 | 1.97 4.1478 | 4.1478
1.0 24014 | 2.4014 | 1.98 42024 | 4.2024
1.2 2.6883 | 2.6883 | 1.99 42731 | 4.2731
1.4 29796 | 2.9797 | 1.9998 | 4.4189 | 4.4189
1.6 3.2910 | 3.2910 | 1.99985 | 4.4221 | 4.4221
1.8 3.6571 | 3.6572 | 1.9999 | 4.4250 | 4.4259
1.9 3.8972 | 3.8073 | 1.99995 | 4.4300 | 4.4309
1.91 | 3.9261 | 3.8973 | 1.99997 | 4.4336 | 4.4336
192 | 3.9566 | 3.9566 | 1.99999 | 4.4375 | 4.4375
1.93 | 3.9888 | 3.9888 | 1.999998| 4.4405 | 4.4405

The length of arc (25) for this limiting case can also be estimated from the
conventional theory of the Brillouin zones [6, 7], because the arc (1/4)(Lj)™** on the
plane y =0, or x =0, is a straight line, going from one of the points:

(£7,0,0), (0,+£m,0) (29)

lying on the plane z =0 to one of the points:

(0,0,£m7) (30)
lying on the boundary of the zone, being a plane z =7 or z = —w. The length of
(1/4)(Lic)maX is therefore:

1 ] max ~
L) =100+ (1 —0)* + (7 —0)*]'/? = Var =444, (31)

the result which is close to that calculated for (1/4)L}° in Table 3.

An arc length Lﬁcc can be considered also for the Fermi surface in the bcc
lattice. The case of y =0 gives (see Equation (66) in [1]):

EP°=1—coszcosz (32)
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which leads to:

. 1 _Ebcc
dz sinxcosz s ( cosz )

dr  sinzcosx L e\ 2 1/2 ’
17< = ) COST

(33)

cosxT

The upper limit of the integral (25) is given by the plane z =0, so (see Equation (30)
in [1]):

T = g0 — arccos(1 — EP°). (34)
A substitution of Equation (33) for dz/dx under the integral in Equation (25) gives
Lﬁ“ as a function of EP*°. A maximum value of Lﬁ“ corresponds to the energy:

EPee=1 (35)
for which maximal closed orbits for the bce lattice in the planes z = const are also
obtained [2].

In this limiting case of the electron energy, viz. Equation (35), the arc length

(1/4)(Lﬁcc)max can be calculated directly from an examination of the Brillouin
zone [8]. The arc begins, for example, in one of the points:

(£7/2,0,0), or (0,£7/2,0), (36)
lying on the plane z =0 of the zone. Going next across one of the points:
(£7/2,0,£7/2), or (0,£7/2,£7/2), (37)

having the (z,y) coordinates the same as in Equation (36), the end point of the arc
(1/4)(L}ec)™™ is at one of the points:

(0,£7/2,£7/2), or (£n/2,0,£7/2), (38)

in which the z-coordinate considered in Equation (37) remains unchanged. In effect,
the length (1/4)(L}*)™** becomes:
1
4
A dependence of the length (1/4)Lh’CC calculated from Equations (25) and (33) on
EP¢and the convergence of this length to the limiting number given in Equation (39)
are presented in Table 4.

The orbit lengths, extended along the cross-sections of the Fermi surface with
the planes z = const, can be also easily calculated. For free electrons we have the
relations obtained from those for the crystal electron cases (see Equations (32)—(34)
in [1]) at small z, y and z:

(Lﬁcc)maxzw/2+7r/2:7r. (39)

ag =%+, (40)
hence
2B = g3 + 2* (41)
(see Equations (18) and (40) in [1]). The length of the circumference of a circle
represented by the Equation (40) is:

Liree = 27qy (42)

being proportional to the number of states lying on that circumference.

tq113k-e/123 17VI2009 BOP s.c., http://www.bop.com.pl



124 T. Roliriski and S. Olszewski

Table 4. Lengths of arcs L]‘TC” and orbit lengths L5 on the Fermi surface of the bec lattice
calculated as functions of energy E"°° of the tightly-bound s-electrons. Only the interval
of energy corresponding to the closed orbits is examined. The Lbcc are lying in a plane
y=0 (equivalent to x =0 by symmetry) containing the axis z; the L5e¢ are in a plane
z=0 normal to the magnetic field. The maximum values of (1/ 4)Lb“ and (1/4)Lhee
tend to the value equal to 7 calculated from the geometry of the Brlllouln zone (see
Equations (39) and (60)). The length of the edge of the zone is assumed equal to

(1/2)/3n
Ebcc (1/4)Lch (1/4)Llicc Ebcc (1/4)Lbcc (1/4)[/11%
0.1 0.7116 0.7116 0.96 2.7975 2.7978
0.2 1.0206 1.0206 0.97 2.8446 2.8449
0.3 1.2691 1.2692 0.98 2.8998 2.9002
0.4 1.4903 1.4904 0.99 2.9710 2.9715
0.5 1.6980 1.6981 0.9991 3.0907 3.0907
0.6 1.9009 1.9009 0.9992 3.0937 3.0937
0.7 2.1069 2.1069 0.9993 3.0968 3.0968
0.8 2.3270 2.3271 0.9994 3.1001 3.1001
0.9 2.5859 2.5860 0.9995 3.1037 3.1037
0.91 2.6163 2.6164 0.9996 3.1077 3.1077
0.92 2.6481 2.6483 0.9997 3.1122 3.1122
0.93 2.6816 2.6818 0.9998 3.1176 3.1176
0.94 2.7172 2.7174 0.9999 3.1246 3.1247
0.95 2.7555 2.7558 0.99999] 3.1362 3.1362

The method of calculating the orbit length in a crystal case is similar to that
applied before for the arcs. For the sc lattice, taken as an example, we have:

1 —cosag=2—cosx —cosy (43)
hence, for a constant ag,
sinzdx +sinydy =0 (44)
or J )
Yy sinz
- . 45
dx siny (45)

This provides us with one-fourth of the orbit length L% calculated at some value of

_Lbc_/ 1+ / 1— —COS$+COsa0) +Sml/;d1/2dx
\/ — (1 —cosx+cosag)?] (46)

/f(‘“’) (1—cosx+cosag)? +sin?z]'/?

=2

0 [1—(1—cosz+cosag)?]'/?

on condition that the relation between = and y given in (43) is taken into account.
In order to avoid the divergence of the integrand at the limit of x =ag, the integral
limit in Equation (46) has been changed, in the second step, to that attained at x =1y;
because of Equation (43) (see also Equations (8) and (10)), we obtain for this limit:

1
f(ap) = arccos (@) .

The length L%° can be made dependent on z if we note that ap and z are coupled by
the formula (see Equations (29) and (40) in [1]):

E%¢=2—cosag—cosz. (48)

(47)

tql13k-e/124 17VI2009 BOP s.c., http://www.bop.com.pl



New Kind of Parameterization Applied to the Fermi Surface of a Crystalline Solid... 125

The variable z is covering the interval:
—arccos(1 — E*°) < z < arccos(1 — E*) (49)

(see Equations (38) and (40) in [1]). The limits in Equation (49) correspond to a
situation when ag is decreased to its zero value, a maximum of ag for a given E°° can
be attained at z =0 and is corresponding to the relation:

E*¢=1—cosag (50)

(see Equation (48)).

In the next step, a maximal closed orbit on the plane z=0 can be obtained at
E®¢ =2, 50 ap = in this case [2], and the orbit itself is a square on the plane z =0 of
the Brillouin zone extended between the points:

(0,7,0), (m,0,0), (0,—m,0), (-m,0,0) (51)

each lying on the boundary of the Brillouin zone (the length of the lattice parameter
is assumed equal to a unit distance, therefore the square has the edge equal to 2%/ 2).
The dependence of (1/4)L5 on E*° is presented in Table 3, the maximum of (1/4)L5°
is equal to (1/4)(L|S‘C)maX calculated in Equation (30) (see Table 3).

For the bcce lattice, we have:

EP=1—cosagcosz (52)
and
COS @Gy = COST COSY, (53)
so a constant ag gives
—sinxcosydr —coszsinydy =0 (54)
or
dy  sinzcosy (55)
dr  coszsiny’

The formula for one-fourth of the orbit length having the amplitude ag is:

sm zcos?y\
Lb“ / 1+ dxf/ y) dz
cos%:sm Yy
2 2 1/2
sin“zcos?ag
= 1 d (56)
/0 ( + cos?x(cos? x — cos? ao)) *

Q/f(ao) 14+ sin?zcos?ag 1/2d
= x.
0 cos? x(cos?x —cos?ag)

In the calculation of (56) the relations (52) and (18) for v =ag have been taken into
account; the last step in Equation (56) makes it possible to avoid the divergence of the

integrand at « = ag. Expression (56) is a z-dependent quantity if we note that variable
z is coupled with ag on the basis of (52). The interval of z is extended between the
limits:

—arccos(1 — EP*°) < z < arccos(1 — EP*°) (57)
obtained from Equations (38) and (40) in [1].
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A maximum of a for a given EP°° is obtained at z =0 and satisfies the relation:
EP¢=1—cosag (58)

(see Equations (52) and (34)). A maximal closed orbit on the plane z =0 has:
ap=1m/2, (59)

because EP =1 in this case. The orbit has then the shape of a square with edges
equal to 7, and the corners of the square have the coordinates:

(—7/2,7/2,0), (w/2,7/2,0), (7/2,—7/2,0), (—7/2,—m/2,0) (60)

touching the boundary of the Brillouin zone in the plane z =0 (see [8]). This implies
that (1/4)(L5ec)max is equal to m (cf. here Equation (39)). For the dependence of
(1/4)Lh<¢ on EP<¢ see Table 4.

4. The validity of (u,v)-parameterization tested in the
examination of a spherical Fermi surface

The validity of the (u,v)-parameterization in the examination of the Fermi
surface can be checked also in the case of free electrons. In the first step, let us note
that for small E'®* the electron energy on the Fermi surface tends to:

Efre¢ — const (61)

(see Equation (18) in [1]). By taking small ag and small z, the electron energy in any

cubic lattice becomes:

2’2

Efree — % + = (62)
2 2

In the same conditions, a coupling between x, y and ag is represented by the
formula (40). A substitution of (40) into (62) provides us with the expression for:

372 y2 Z2
Efree — g - 63
2 + 2 + 2 (63)

equal to that given in Equation (18) in [1] (see also Equation (40) in [1]).
In the procedure of parameterization of the surface (61), we can use the same
variables (u,v) as in the case of the Fermi surface of the crystal electrons:

x=xs(u,v) =u, (64)
v=ayp, (65)
but here
y=ys(u,0)=(ag —u*)"? = (0* —u?)'/2. (66)
Simultaneously, because of Equations (62) and (65), we have:
2= zg(uyv) = (2B —2)1/2 (67)

which is solely a function of the variable v. Our test is limited to the arc-length
parameters (21) entering (20). We have:

0x 2 AYs 2 0z 2 u?
Es_(@u) +<8u> +(8u) _1+v27u27 (68)
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o 81‘8 81‘5 8?/5 8ys aZs 825 . uv
T 8v+8u%+8u ov w2 —u2’ (69)
axs : ays ? 623 2 v? v?
GS = = . 70
(8’0) +<8’U> +(81}) U2_u2+2Efrcc_,02 ( )

Half of the length of the arc along the u-curve (v=const) can be calculated from the
formula:

a0 ao vdu
vV Esdu= —_—
sQU /ao (02 —u2)1/2

—agp —

/a“ du . U

=ag ——— _ —qgparcsin | —
2

gy (@R —u?)1/? ao

obtained on the basis of Equation (68) and the relation (65). This provides us with
an expected orbit length on a free-electron Fermi surface (see Equation (42)).

One-fourth of the length of the arc lying in a plane containing the z-axis parallel
to the magnetic field can be calculated by referring to the expression for the electron
energy. Taking, for example, the case of y=0, we have:

u=aq (71)
=Tap,
u=—aop

2Efree _ ZCZ +22, (72)
from which
0=xdr+zdz, (73)
SO d d
z T y
oz A 74
dx 2’ dov 7’ (74)
and
) VIERE ;o\ 1/2
7LH :/ <1 + ) dx
4 0 P2
V3BT (75)
:(2Efree)1/2 da :(QEfree)1/2arcsin1: Z(zEfree)l/Z
0 \ /2Efree _ $2 2

provides us with an expected result for 1/4 of the arc length on a spherical surface.
The upper limit of the integral (75) is that obtained from (72) at z=0.

An area of the parameterised Fermi surface can be obtained by choosing 1/8
of the whole area for the calculations. From Equations (68)—(70) we have:

(2Efree)1/2v

2\1/2 __
(EsGs_Fs) 2= (Uz_u2)1/2(2Efree_v2)1/2' (76)
This gives:
ag'™ v ag™ vdv v du
d du = 2Efree 1/2/ /
/0 v/o u ( ) 0 (2Efree_,u2)1/2 o (v2—u2)1/2
. free 1/21 o ; T
- (2E ) 9 /O dv (2Efree —U2)1/2 ( )
_ _(2Efree)1/2%<2Efree _U2)1/2 v=ag™ :ﬂ_Efree
v=0

which is 1/8 of the surface of a sphere having radius (2E7°°)!/2. The case of
ap®x = (2E°°)1/2 is attained at z =0 (see Equation (62)).
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5. Summary

The properties of three-dimensional Fermi surfaces are found to be much easier
to examine when the idea of symmetry, due — for example — to the presence of an
external magnetic field acting along one of the crystallographic symmetry axes, is
applied. This facility is due mainly to parameterization properties of the electron
states when the effect of symmetry is taken into account. In particular, the states
lying in the same plane of the reciprocal space normal to the symmetry axis are
coupled together, forming an orbit on the Fermi surface characteristic for each plane.
Since the positions of the planes can change continuously along the field, the orbits
cover the whole of the Fermi surface.

The accuracy of the new kind of parameterization of the electron states is
illustrated for the Fermi surfaces of the tightly-bound s-electrons in cubic crystal
lattices taken as examples.

In the first step, the validity of parameterization developed in the former
paper (Part I) is checked in train of calculations of the density of states versus the
electron energy. These calculations of the Fermi surface done on the basis of the Bloch
parameterization by Jelitto are compared with the density of states obtained from the
present method.

In the second step, the special arc lengths on the Fermi surface — easily
obtainable from the Bloch theory — are compared with an estimate of the lengths of
arcs done with the aid of the present formalism. The agreement of the data calculated
in the framework of both kinds of the applied parameterizations, Bloch’s and the
present one, is remarkable.

Appendix. Integrals needed for calculation of the density
of states in the sc and bcc crystal lattices

The number of states in a crystal lattice is proportional to the volume enclosed
by the Fermi surface:

E'™% (2 y, 2) = const. (A1)
This surface, in the case of the sc lattice, is expressed by the formula (41) in [1]. If

we use the parameterization (1)—(4), we can present this volume as follows:

Zmas f(v)

1
N (E5¢) = arccos(1 4 cosv — cosu)du — ff () ]. (A2)
/ 0/

With the aid of Equation (10), the volume (A2) can be represented by the expression:

Zmazx

N*Y(E*) =8 / dz

0
arccos( W) ) (A3)
1+4cosv
X |2 arccos(1 4 cosv — cosu)du — | arccos —5
0
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In the next step, the right-hand side of Equation (A3) refers to E*¢ explicitly.
Because of Equations (38), (40) in [1] and Equation (11), the formula (A3) is
transformed into:

arccos(1—E*®°)

sinvdv
N (E*) =8 0/ [1—(2— B> —cosv)2]L/2
arccos( Lo ) ) (A4)
x |2 / arccos(1+ cosv —cosu)du — <arccos <1+;OSU>)
0
A simplification of (A4) is obtained by a substitution:
cosv=1—F; (A5)
where F| is a part of the electron energy depending solely on = and y. This leads to:
dE | =sinvdv (A6)
and
o dE ;|
Nt (F) :8/ T+ B, )2/?
° (A7)

arccos(1—FE /2) s )
X | 2 / arccos(2— F| —cosu)du— (arccos (1 — f))
0

In the next step, the function:

f(E*,E,)=8arcsin(1—FE*“+F)) (A8)
introduced to calculations gives:
tot sC af scC sc
N (E ): —(E ,EJ_)~g‘ (EJ_)CZEJ_, (A9)
oF)
0

where
arccos(1—E /2)

2
g (FL)=2 / arccos(2— FE| —cosu)du— (arccos (1%)) . (A10)

0
The derivative function of f, viz.:
of 8
E€ E,)= All

is singular for £/} = E*°. In order to avoid this singularity in the differentiation process
of (A9) with respect to E®*°, we introduce the function:

fs(E*,E, ) =8arcsin[(1— E*+ F, )d], (A12)
for some 0 <d <1 (§~1), and obtain an expression for the approximate number of
states:
e )
NPYE) = i(ESC,EL)~gs‘3(El)dEJ_, (A13)
0E
0
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dependent on d. Because of the relation:

Ofs rse o v 86
g, FEL )‘[1_(1—ESC+EL)262]1/2’

(A14)

the integrand of Equation (A13) is a well-defined function for all energies £/, on the
interval 0 < E| < E*¢ <2. Now, the differentiation of (A13) with respect to E*¢ gives:

AN (%) o2 ‘ ‘
dEsc /8ESC£5E' E§C7El).gsc(EJ-)dEJ-
(A15)

af(; sc sc
+E(E E1L)-g*(EL)

B, =FEsc

By the method of integration by parts, we arrive at:

sc

AN (E) dfs dg*(E1)
= JoR o PR
dEs° / g (P L) =g AL
0 (A16)

Afs
aESC

+ (ESC7EJ_) _gSC (EJ_)

E | =FEs¢ aEL E | =Esc
But in view of the definition of f5 (see Equation (A12)):

dfs __B0g(E™)
OEsc By —ge (1_(52)1/2’

(B*,E1)-g%(EL)

and
ofs _ 80g%(B%)
OE, Ey=E (1—52)1/2.

The results (A17) and (A18) simplify Equation (A16) into the formula:

- (B EL) g% (EL)

e
ngot(Esc) B af5

dEsc - aEsc
0

dg*(E.)
dE |

(E*,E,)- dE, . (A19)

Here, the differentiation of Equation (A10) with respect to E, gives:

( ) arccos(1—FE, /2)
dg*°(E L / du
—— =2 A20
dE | [1—(2—E, —cosu)?]1/2’ (A20)
0

which provides us with an approximate formula for the density of states (A19).

It can be demonstrated that the difference between Equation (A19) and the
exact formula for the density of states, obtained by putting § =1 in Equation (A19),
viz.:

ESC
dNtot(Esc) B af
dEsc - HEsc
0

dg**(E.)

N(E™)=

(E*.E,)- dE, (A21)

tends to zero while § — 1. Therefore, Equation (A19) applied in the limiting process
of 6 — 1 can be used in the calculation of the N(E®°) data given in Table 1.
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A similar integration calculation can be applied for N (EP°¢), being the density
of electron states in the bcc lattice (see Table 2). In this case, with the aid of
Equations (17)—(19), we obtain:

Ebcc
dNtot(Ebcc) dEl
N(E*) = ——— 2 =16
( ) dEbcc / [(1_EL)2_(1_Ebcc)2]1/2
0 (A22)
arccosv/1—F

o / du
[cos?u—(1—E )21 /2
0
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