
TASK QUARTERLY 13 No 1–2, 117–131

NEW KIND OF PARAMETERIZATION

APPLIED TO THE FERMI SURFACE

OF A CRYSTALLINE SOLID.

PART II: DENSITY OF STATES

AND LENGTHS OF ARCS CALCULATED

AS A CHECK OF THE THEORY
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Abstract: In order to check the validity of parameterization of electron states on the Fermi surface

developed in the preceding paper, this parameterization is applied to the calculation of some definite

crystal properties. The first property is the density of electron states versus energy in simple cubic and

body-centered cubic crystal lattices, examined formerly on the basis of the Bloch parameterization

of electron states by Jelitto; the other property is the length of some special arcs extended on the

surfaces. The parameterizations of both approaches, that of the present paper and that developed

on the basis of the Bloch states, are found to give results remaining in remarkable agreement.

Keywords: Fermi surfaces of crystalline solids, electron orbits induced in the magnetic field, density

of electron states, orbit lengths and arc lengths on the Fermi surfaces

1. Introduction

A difficulty of a conventional description of the Fermi surface done on the

basis of the Bloch states is that this kind of parameterization does not make, in

general, any reference to the symmetry properties of the mentioned surface. This

situation can be changed if a special direction of the Brillouin zone, for example, one

of the symmetry axes of that zone, is taken into account (see Part I, [1]). Then all

states on the surface lying in a plane normal to the axis can be labeled by the same

value of the parameter a0 called the amplitude. The origin of the amplitude notion is

connected with the oscillatory behavior of an electron on the Fermi surface when this

electron is submitted to the action of a magnetic field directed along the chosen axis

of symmetry [2].

In general, the electron states lying on the Fermi surface can be considered

as a set of planar parallel orbits which are normal to the applied field. Beyond a0,
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the states on a given orbit can be labeled only by a single supplementary variable

introduced below as u. On the other hand, the parameter a0 is coupled with the

Fermi energy with the aid of the wave-vector coordinate kz ≡ z taken parallel to the
chosen axis of symmetry and direction of the field.

This kind of classification of states allowed us, in the first step, to obtain in [1]

a better insight into the extremal behavior of some electron observables on the Fermi

surface than it could be done before; in the next step, the calculation of the curvature

parameters of the surface has been facilitated in a considerable degree.

The aim of the present paper is to check the validity of parameterization

developed in [1] by applying it to the crystal properties known from the Bloch’s

theory. In the first step, the density of electron states versus energy obtained very

accurately with the aid of the Bloch’s method by Jelitto [3] has been compared, in

two crystal cases, with the density of states calculated on the basis of the present

method. In the second step, the length of arcs for some special cases of the Fermi

surfaces has been considered. The results of both approaches to parameterization of

the Fermi surface, that of the present paper and that based on the Bloch states, are

found to remain in remarkable agreement.

2. The (u,v)-parameterization of Fermi surfaces applied
in the calculation of the density of states

Taking the tightly-bound s-electrons in the sc lattice as an example our choice

of parameterization is:

x(u,v)=u, (1)

y(u,v)= arccos(1−cosu+cosv), (2)

where on the basis of (32) and (40) in [1] we have put:

v= a0, (3)

and

z(u,v)= arccos(2−Esc−cosv)= z(v), (4)

on the basis of Equations (29) and (40) in [1]. The limits of the parameters are:

0<u<v (5)

for the variable u, and

0<v<amax0 (6)

for the variable v. The limit of amax0 in Equation (6) is the value of a0 given in

Equation (36) in [1].

In the first step of an approach to the density of states in the sc lattice, we

calculate the 1/8 part of the area of the plane z = const occupied by the electrons.

We obtain from Equation (2):

S(v)=

∫ f(v)

0

arccos(1−cosu+cosv)du− 1
2
f2(v), (7)

where f(v) is the function of v calculated from the requirement:

cosx=cosy. (8)
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Because of Equations (32) and (40) in [1], we have obtained the following formula for

the limit of u=ulim for the case when Equation (8) is satisfied:

2−2cosulim=1−cosa0. (9)

In view of Equation (3), Equation (9) gives:

f(v)=ulim=arccos

(

1+cosv

2

)

. (10)

In the next step, S(v) is integrated with the aid of dz equal to:

dz=− sinv

[1−(2−Esc−cosv)2]1/2 dv (11)

over the interval given in Equation (6) giving 1/16 of N tot(Esc), the total number

of states enclosed within the Fermi surface having the energy Esc. The details of the

integration are presented in the Appendix. For the data of the density of states versus

energy which is:

N(Esc)= 16
d

dEsc

∫ zmax

0

S(v)dz=
dN tot(Esc)

dEsc
, (12)

see Table 1.

In the parameterization of the Fermi surface for the bcc lattice is:

x(u,v)=u, (13)

y(u,v)= arccos
( cosv

cosu

)

, (14)

v= a0, (15)

z(u,v)= arccos

(

1−Ebcc
cosv

)

= z(v). (16)

The limits of the variables u and v entering Equations (13)–(16) can be

calculated in a way similar to that applied in the sc case. For the 1/8 part of the

area occupied in a plane z=const, we obtain:

S(v)=

∫ f(v)

0

arccos
( cosv

cosu

)

du− 1
2
f2(v), (17)

where, in view of the assumption (8) taken also for the bcc case:

f(v)=ulim=arccos(cos1/2v) (18)

on the basis of Equations (33) and (40) of Part I [1]. The function S(v) is integrated

next, with the aid of the variable increment dz equal to:

dz=− 1−Ebcc
(

1−
(

1−Ebcc
cosv

)2
)1/2

sinv

cos2v
dv, (19)

over the interval of v equal to (6), in which amax0 is defined again by Equation (30)

in [1]. The density of states in the bcc lattice versus energy done with the aid of

parameterization given in Equations (13)–(16) is presented in Table 2 (some details

of the calculations are given in the Appendix).
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Table 1. Density of the tightly-bound s-electron states in the sc lattice calculated with the aid

of (u,v)-parameterization of the electron orbits for different energies Esc. Only the

closed orbits within the interval 0<Esc< 2 are considered. The data are compared with

the density of states obtained by Jelitto [3] on the basis of a conventional Bloch

parameterization of the Fermi surfaces

Esc density

by the

present

theory

density

by

Jelitto

ratio of

column 3

and

column 2

Esc density

by the

present

theory

density

by

Jelitto

ratio of

column 3

and

column 2

0.01 1.7816 1.7816 1.0000 1.05 25.0617 25.0617 1.0000

0.02 2.5259 2.5259 1.0000 1.1 26.1521 26.1521 1.0000

0.03 3.1014 3.1014 1.0000 1.15 27.2777 27.2777 1.0000

0.04 3.5902 3.5902 1.0000 1.2 28.4428 28.4428 1.0000

0.05 4.0242 4.0242 1.0000 1.25 29.6524 29.6524 1.0000

0.1 5.7643 5.7643 1.0000 1.3 30.9120 30.9120 1.0000

0.15 7.1521 7.1521 1.0000 1.35 32.2282 32.2281 1.0000

0.2 8.3683 8.3683 1.0000 1.4 33.6085 33.6085 1.0000

0.25 9.4825 9.4825 1.0000 1.45 35.0621 35.0621 1.0000

0.3 10.5302 10.5302 1.0000 1.5 36.6000 36.6000 1.0000

0.35 11.5330 11.5329 1.0000 1.55 38.2360 38.2360 1.0000

0.4 12.5047 12.5047 1.0000 1.6 39.9876 39.9876 1.0000

0.45 13.4554 13.4554 1.0000 1.65 41.8777 41.8776 1.0000

0.5 14.3926 14.3926 1.0000 1.7 43.9374 43.9373 1.0000

0.55 15.3223 15.3223 1.0000 1.75 46.2112 46.2112 1.0000

0.6 16.2493 16.2493 1.0000 1.8 48.7670 48.7669 1.0000

0.65 17.1778 17.1778 1.0000 1.85 51.7176 51.7175 1.0000

0.7 18.1114 18.1114 1.0000 1.9 55.2820 55.2819 1.0000

0.75 19.0538 19.0537 1.0000 1.95 60.0209 60.0208 1.0000

0.8 20.0076 20.0076 1.0000 1.96 61.2437 61.2436 1.0000

0.85 20.9764 20.9764 1.0000 1.97 62.6382 62.6381 1.0000

0.9 21.9630 21.9630 1.0000 1.98 64.3008 64.3007 1.0000

0.95 22.9706 22.9706 1.0000 1.99 66.4796 66.4795 1.0000

1.0 24.0024 24.0024 1.0000

3. Arc lengths and orbit lengths lying on the Fermi surface

Some arcs on the Fermi surface, for example, those lying in a plane parallel

to the magnetic field and containing axis z cannot be classified as those belonging

to u = const or v = const. Calculations for such arcs require, in general, a rather

complicated formula for the arc element, viz. [4, 5]:

ds=(Edu2+2Fdudv+Gdv2)1/2, (20)

where

E=

(

∂~r

∂u

)2

, F =
∂~r

∂u
· ∂~r
∂v
, G=

(

∂~r

∂v

)2

, (21)

and ~r is a position vector having the coordinates x= x(u,v), y= y(u,v), z = z(u,v).

This complication can be avoided by combining the equation for the electron energy

with that for a plane in which the arc is located. In the first step, we consider a plane

y=0, (22)

equivalent to the plane x=0 by symmetry, which contains both the axis z parallel to

the magnetic field and the examined arc.
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Table 2. Density of the tightly-bound s-electron states in the bcc lattice calculated with the aid

of (u,v)-parameterization of the electron orbits for different energies Ebcc. Only the

closed orbits within the interval 0<Ebcc< 1 are considered. The data are compared

with those obtained by Jelitto [3] on the basis of conventional Bloch parameterization

of the Fermi surfaces

Ebcc density

by the

present

theory

density

by

Jelitto

ratio of

column 3

and

column 2

Ebcc density

by the

present

theory

density

by

Jelitto

ratio of

column 3

and

column 2

0.001 4.4992 4.4992 1.0000 0.60 206.478 206.478 1.0000

0.006 11.0624 11.0624 1.0000 0.65 233.304 233.304 1.0000

0.011 15.0352 15.0352 1.0000 0.70 265.440 265.439 1.0000

0.016 18.2021 18.2020 1.0000 0.75 305.180 305.179 1.0000

0.021 20.9326 20.9326 1.0000 0.80 356.502 356.502 1.0000

0.03 25.1924 25.1923 1.0000 0.85 427.188 427.187 1.0000

0.04 29.3150 29.3150 1.0000 0.90 535.656 535.655 1.0000

0.05 33.0314 33.0313 1.0000 0.91 565.552 565.551 1.0000

0.06 36.4692 36.4692 1.0000 0.92 599.812 599.811 1.0000

0.07 39.7044 39.7045 1.0000 0.93 639.726 639.725 1.0000

0.08 42.7864 42.7863 1.0000 0.94 687.222 687.220 1.0000

0.09 45.7490 45.7489 1.0000 0.95 745.360 745.359 1.0000

0.10 48.6174 48.6173 1.0000 0.955 779.928 779.927 1.0000

0.15 62.0846 62.0846 1.0000 0.96 819.414 819.413 1.0000

0.20 74.9000 74.8999 1.0000 0.965 865.256 865.253 1.0000

0.25 87.6892 87.6892 1.0000 0.97 919.594 919.592 1.0000

0.30 100.843 100.843 1.0000 0.975 985.830 985.827 1.0000

0.35 114.676 114.676 1.0000 0.98 1069.79 1069.79 1.0000

0.40 129.491 129.491 1.0000 0.985 1182.75 1182.74 1.0000

0.45 145.620 145.620 1.0000 0.99 1350.94 1350.94 1.0000

0.50 163.460 163.460 1.0000 0.995 1662.85 1662.84 1.0000

0.55 183.518 183.518 1.0000

In the first step, the property (22) transforms the energy expression in the sc

lattice (see Equation (41) in [1]) into:

Esc=2−cosx−cosz (23)

which gives the derivative:

dz

dx
=− sinx
sinz
=− sinx

(1−(2−Esc−cosx)2)1/2
. (24)

This result can be substituted to the integral for 1/4-th of the arc length:

1

4
Llatt‖ =

∫ xmax

0

(

1+

(

dz

dx

)2
)1/2

dx (25)

extended between x=0 and

xmax= amax0 . (26)

The parameter amax0 is coupled with Esc, expressed for z=0 by the formula:

Esc=1−cosamax0 , (27)
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valid also for the case of y=0. In Table 3 we present the dependence of Lsc‖ on E
sc, as

well as the convergence of Lsc‖ to its limiting value attained in effect of an approach

of Esc to:

Esc=2 (28)

which is the upper limit of energy for the closed electron orbits obtained in the (x,y)

plane [2].

Table 3. Lengths of arcs Lsc‖ and orbit lengths L
sc
⊥ on the Fermi surface of the sc lattice,

calculated as functions of the energy, Esc, of the tightly-bound s-electrons. The Lsc‖ are
in a plane parallel to the axis z (y=0 or x=0); the Lsc⊥ are calculated in a plane normal
to the magnetic field (z=0). Only the interval of energy corresponding to closed orbits

is considered in the calculations. The maximal values of (1/4)Lsc‖ and (1/4)L
sc
⊥ tend

to the value equal to
√
2π calculated from the geometry of the Brillouin zone (see

Equation (31) and inferences below Equation (51)). The length of the edge of the

Brillouin zone is assumed as equal to π

Esc (1/4)Lsc‖ (1/4)Lsc⊥ Esc (1/4)Lsc‖ (1/4)Lsc⊥

0.2 1.0064 1.0064 1.94 4.0232 4.0233

0.4 1.4433 1.4433 1.95 4.0605 4.0605

0.6 1.7948 1.7949 1.96 4.1015 4.1015

0.8 2.1077 2.1077 1.97 4.1478 4.1478

1.0 2.4014 2.4014 1.98 4.2024 4.2024

1.2 2.6883 2.6883 1.99 4.2731 4.2731

1.4 2.9796 2.9797 1.9998 4.4189 4.4189

1.6 3.2910 3.2910 1.99985 4.4221 4.4221

1.8 3.6571 3.6572 1.9999 4.4259 4.4259

1.9 3.8972 3.8973 1.99995 4.4309 4.4309

1.91 3.9261 3.8973 1.99997 4.4336 4.4336

1.92 3.9566 3.9566 1.99999 4.4375 4.4375

1.93 3.9888 3.9888 1.999998 4.4405 4.4405

The length of arc (25) for this limiting case can also be estimated from the

conventional theory of the Brillouin zones [6, 7], because the arc (1/4)(Lsc‖ )
max on the

plane y=0, or x=0, is a straight line, going from one of the points:

(±π,0,0), (0,±π,0) (29)

lying on the plane z=0 to one of the points:

(0,0,±π) (30)

lying on the boundary of the zone, being a plane z = π or z = −π. The length of
(1/4)(Lsc‖ )

max is therefore:

1

4
(Lsc‖ )

max= [(0−0)2+(π−0)2+(π−0)2]1/2=
√
2π∼=4.44, (31)

the result which is close to that calculated for (1/4)Lsc‖ in Table 3.

An arc length Lbcc‖ can be considered also for the Fermi surface in the bcc

lattice. The case of y=0 gives (see Equation (66) in [1]):

Ebcc=1−cosxcosz (32)
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which leads to:

dz

dx
=− sinxcosz
sinzcosx

=−
sinx

(

1−Ebcc
cosx

)

(

1−
(

1−Ebcc
cosx

)2
)1/2

cosx

. (33)

The upper limit of the integral (25) is given by the plane z=0, so (see Equation (30)

in [1]):

xmax= amax0 =arccos(1−Ebcc). (34)

A substitution of Equation (33) for dz/dx under the integral in Equation (25) gives

Lbcc‖ as a function of E
bcc. A maximum value of Lbcc‖ corresponds to the energy:

Ebcc=1 (35)

for which maximal closed orbits for the bcc lattice in the planes z = const are also

obtained [2].

In this limiting case of the electron energy, viz. Equation (35), the arc length

(1/4)(Lbcc‖ )
max can be calculated directly from an examination of the Brillouin

zone [8]. The arc begins, for example, in one of the points:

(±π/2,0,0), or (0,±π/2,0), (36)

lying on the plane z=0 of the zone. Going next across one of the points:

(±π/2,0,±π/2), or (0,±π/2,±π/2), (37)

having the (x,y) coordinates the same as in Equation (36), the end point of the arc

(1/4)(Lbcc‖ )
max is at one of the points:

(0,±π/2,±π/2), or (±π/2,0,±π/2), (38)

in which the z-coordinate considered in Equation (37) remains unchanged. In effect,

the length (1/4)(Lbcc‖ )
max becomes:

1

4
(Lbcc‖ )

max=π/2+π/2=π. (39)

A dependence of the length (1/4)Lbcc‖ calculated from Equations (25) and (33) on

Ebcc, and the convergence of this length to the limiting number given in Equation (39)

are presented in Table 4.

The orbit lengths, extended along the cross-sections of the Fermi surface with

the planes z = const, can be also easily calculated. For free electrons we have the

relations obtained from those for the crystal electron cases (see Equations (32)–(34)

in [1]) at small x, y and z:

a20=x
2+y2, (40)

hence

2Efree= a20+z
2 (41)

(see Equations (18) and (40) in [1]). The length of the circumference of a circle

represented by the Equation (40) is:

Lfree⊥ =2πa0 (42)

being proportional to the number of states lying on that circumference.
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Table 4. Lengths of arcs Lbcc‖ and orbit lengths L
bcc
⊥ on the Fermi surface of the bcc lattice

calculated as functions of energy Ebcc of the tightly-bound s-electrons. Only the interval

of energy corresponding to the closed orbits is examined. The Lbcc‖ are lying in a plane

y=0 (equivalent to x=0 by symmetry) containing the axis z; the Lbcc⊥ are in a plane
z=0 normal to the magnetic field. The maximum values of (1/4)Lbcc‖ and (1/4)L

bcc
⊥

tend to the value equal to π calculated from the geometry of the Brillouin zone (see

Equations (39) and (60)). The length of the edge of the zone is assumed equal to

(1/2)
√
3π

Ebcc (1/4)Lbcc‖ (1/4)Lbcc⊥ Ebcc (1/4)Lbcc‖ (1/4)Lbcc⊥

0.1 0.7116 0.7116 0.96 2.7975 2.7978

0.2 1.0206 1.0206 0.97 2.8446 2.8449

0.3 1.2691 1.2692 0.98 2.8998 2.9002

0.4 1.4903 1.4904 0.99 2.9710 2.9715

0.5 1.6980 1.6981 0.9991 3.0907 3.0907

0.6 1.9009 1.9009 0.9992 3.0937 3.0937

0.7 2.1069 2.1069 0.9993 3.0968 3.0968

0.8 2.3270 2.3271 0.9994 3.1001 3.1001

0.9 2.5859 2.5860 0.9995 3.1037 3.1037

0.91 2.6163 2.6164 0.9996 3.1077 3.1077

0.92 2.6481 2.6483 0.9997 3.1122 3.1122

0.93 2.6816 2.6818 0.9998 3.1176 3.1176

0.94 2.7172 2.7174 0.9999 3.1246 3.1247

0.95 2.7555 2.7558 0.99999 3.1362 3.1362

The method of calculating the orbit length in a crystal case is similar to that

applied before for the arcs. For the sc lattice, taken as an example, we have:

1−cosa0=2−cosx−cosy (43)

hence, for a constant a0,

sinxdx+sinydy=0 (44)

or
dy

dx
=− sinx
siny
. (45)

This provides us with one-fourth of the orbit length Lsc⊥ calculated at some value of
a0:

1

4
Lsc⊥ =

∫ a0

0

√

1+

(

dy

dx

)2

dx=

∫ a0

0

[1−(1−cosx+cosa0)2+sin2x]1/2
[1−(1−cosx+cosa0)2]1/2

dx

=2

∫ f(a0)

0

[1−(1−cosx+cosa0)2+sin2x]1/2
[1−(1−cosx+cosa0)2]1/2

dx

(46)

on condition that the relation between x and y given in (43) is taken into account.

In order to avoid the divergence of the integrand at the limit of x= a0, the integral

limit in Equation (46) has been changed, in the second step, to that attained at x= y;

because of Equation (43) (see also Equations (8) and (10)), we obtain for this limit:

f(a0)= arccos

(

1+cosa0
2

)

. (47)

The length Lsc⊥ can be made dependent on z if we note that a0 and z are coupled by
the formula (see Equations (29) and (40) in [1]):

Esc=2−cosa0−cosz. (48)
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The variable z is covering the interval:

−arccos(1−Esc)<z < arccos(1−Esc) (49)

(see Equations (38) and (40) in [1]). The limits in Equation (49) correspond to a

situation when a0 is decreased to its zero value, a maximum of a0 for a given E
sc can

be attained at z=0 and is corresponding to the relation:

Esc=1−cosa0 (50)

(see Equation (48)).

In the next step, a maximal closed orbit on the plane z=0 can be obtained at

Esc=2, so a0=π in this case [2], and the orbit itself is a square on the plane z=0 of

the Brillouin zone extended between the points:

(0,π,0), (π,0,0), (0,−π,0), (−π,0,0) (51)

each lying on the boundary of the Brillouin zone (the length of the lattice parameter

is assumed equal to a unit distance, therefore the square has the edge equal to 21/2π).

The dependence of (1/4)Lsc⊥ on E
sc is presented in Table 3, the maximum of (1/4)Lsc⊥

is equal to (1/4)(Lsc‖ )
max calculated in Equation (30) (see Table 3).

For the bcc lattice, we have:

Ebcc=1−cosa0 cosz (52)

and

cosa0=cosxcosy, (53)

so a constant a0 gives

−sinxcosydx−cosxsinydy=0 (54)

or
dy

dx
=− sinxcosy
cosxsiny

. (55)

The formula for one-fourth of the orbit length having the amplitude a0 is:

1

4
Lbcc⊥ =

∫ a0

0

√

1+

(

dy

dx

)2

dx=

∫ a0

0

(

1+
sin2xcos2y

cos2xsin2y

)1/2

dx

=

∫ a0

0

(

1+
sin2xcos2a0

cos2x(cos2x−cos2a0)

)1/2

dx

=2

∫ f(a0)

0

(

1+
sin2xcos2a0

cos2x(cos2x−cos2a0)

)1/2

dx.

(56)

In the calculation of (56) the relations (52) and (18) for v= a0 have been taken into

account; the last step in Equation (56) makes it possible to avoid the divergence of the

integrand at x= a0. Expression (56) is a z-dependent quantity if we note that variable

z is coupled with a0 on the basis of (52). The interval of z is extended between the

limits:

−arccos(1−Ebcc)<z < arccos(1−Ebcc) (57)

obtained from Equations (38) and (40) in [1].
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A maximum of a0 for a given E
bcc is obtained at z=0 and satisfies the relation:

Ebcc=1−cosa0 (58)

(see Equations (52) and (34)). A maximal closed orbit on the plane z=0 has:

a0=π/2, (59)

because Ebcc = 1 in this case. The orbit has then the shape of a square with edges

equal to π, and the corners of the square have the coordinates:

(−π/2,π/2,0), (π/2,π/2,0), (π/2,−π/2,0), (−π/2,−π/2,0) (60)

touching the boundary of the Brillouin zone in the plane z=0 (see [8]). This implies

that (1/4)(Lbcc⊥ )
max is equal to π (cf. here Equation (39)). For the dependence of

(1/4)Lbcc⊥ on E
bcc see Table 4.

4. The validity of (u,v)-parameterization tested in the

examination of a spherical Fermi surface

The validity of the (u,v)-parameterization in the examination of the Fermi

surface can be checked also in the case of free electrons. In the first step, let us note

that for small Elatt, the electron energy on the Fermi surface tends to:

Efree=const (61)

(see Equation (18) in [1]). By taking small a0 and small z, the electron energy in any

cubic lattice becomes:

Efree=
a20
2
+
z2

2
. (62)

In the same conditions, a coupling between x, y and a0 is represented by the

formula (40). A substitution of (40) into (62) provides us with the expression for:

Efree=
x2

2
+
y2

2
+
z2

2
(63)

equal to that given in Equation (18) in [1] (see also Equation (40) in [1]).

In the procedure of parameterization of the surface (61), we can use the same

variables (u,v) as in the case of the Fermi surface of the crystal electrons:

x=xs(u,v)=u, (64)

v= a0, (65)

but here

y= ys(u,v)= (a
2
0−u2)1/2=(v2−u2)1/2. (66)

Simultaneously, because of Equations (62) and (65), we have:

z= zs(u,v)= (2E
free−v2)1/2 (67)

which is solely a function of the variable v. Our test is limited to the arc-length

parameters (21) entering (20). We have:

Es=

(

∂xs
∂u

)2

+

(

∂ys
∂u

)2

+

(

∂zs
∂u

)2

=1+
u2

v2−u2 , (68)
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Fs=
∂xs
∂u

∂xs
∂v
+
∂ys
∂u

∂ys
∂v
+
∂zs
∂u

∂zs
∂v
=− uv

v2−u2 , (69)

Gs=

(

∂xs
∂v

)2

+

(

∂ys
∂v

)2

+

(

∂zs
∂v

)2

=
v2

v2−u2 +
v2

2Efree−v2 . (70)

Half of the length of the arc along the u-curve (v=const) can be calculated from the

formula:
∫ a0

−a0

√

Esdu=

∫ a0

−a0

vdu

(v2−u2)1/2

= a0

∫ a0

−a0

du

(a20−u2)1/2
= a0arcsin

(

u

a0

)∣

∣

∣

∣

u=a0

u=−a0
=πa0,

(71)

obtained on the basis of Equation (68) and the relation (65). This provides us with

an expected orbit length on a free-electron Fermi surface (see Equation (42)).

One-fourth of the length of the arc lying in a plane containing the z-axis parallel

to the magnetic field can be calculated by referring to the expression for the electron

energy. Taking, for example, the case of y=0, we have:

2Efree=x2+z2, (72)

from which

0=xdx+zdz, (73)

so
dz

dx
=−x
z
,

dy

dx
=0, (74)

and

1

4
L‖=

∫

√
2Efree

0

(

1+
x2

z2

)1/2

dx

=(2Efree)1/2
∫

√
2Efree

0

dx√
2Efree−x2

=(2Efree)1/2arcsin1=
π

2
(2Efree)1/2

(75)

provides us with an expected result for 1/4 of the arc length on a spherical surface.

The upper limit of the integral (75) is that obtained from (72) at z=0.

An area of the parameterised Fermi surface can be obtained by choosing 1/8

of the whole area for the calculations. From Equations (68)–(70) we have:

(EsGs−F 2s )1/2=
(2Efree)1/2v

(v2−u2)1/2(2Efree−v2)1/2 . (76)

This gives:
∫ amax0

0

dv

∫ v

0

du=(2Efree)1/2
∫ amax0

0

vdv

(2Efree−v2)1/2
∫ v

0

du

(v2−u2)1/2

=(2Efree)1/2
π

2

∫ amax0

0

dv
v

(2Efree−v2)1/2

= −(2Efree)1/2π
2
(2Efree−v2)1/2

∣

∣

∣

v=amax0

v=0
=πEfree

(77)

which is 1/8 of the surface of a sphere having radius (2Efree)1/2. The case of

amax0 =(2Efree)1/2 is attained at z=0 (see Equation (62)).
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5. Summary

The properties of three-dimensional Fermi surfaces are found to be much easier

to examine when the idea of symmetry, due – for example – to the presence of an

external magnetic field acting along one of the crystallographic symmetry axes, is

applied. This facility is due mainly to parameterization properties of the electron

states when the effect of symmetry is taken into account. In particular, the states

lying in the same plane of the reciprocal space normal to the symmetry axis are

coupled together, forming an orbit on the Fermi surface characteristic for each plane.

Since the positions of the planes can change continuously along the field, the orbits

cover the whole of the Fermi surface.

The accuracy of the new kind of parameterization of the electron states is

illustrated for the Fermi surfaces of the tightly-bound s-electrons in cubic crystal

lattices taken as examples.

In the first step, the validity of parameterization developed in the former

paper (Part I) is checked in train of calculations of the density of states versus the

electron energy. These calculations of the Fermi surface done on the basis of the Bloch

parameterization by Jelitto are compared with the density of states obtained from the

present method.

In the second step, the special arc lengths on the Fermi surface – easily

obtainable from the Bloch theory – are compared with an estimate of the lengths of

arcs done with the aid of the present formalism. The agreement of the data calculated

in the framework of both kinds of the applied parameterizations, Bloch’s and the

present one, is remarkable.

Appendix. Integrals needed for calculation of the density

of states in the sc and bcc crystal lattices

The number of states in a crystal lattice is proportional to the volume enclosed

by the Fermi surface:

Elatt(x,y,z)= const. (A1)

This surface, in the case of the sc lattice, is expressed by the formula (41) in [1]. If

we use the parameterization (1)–(4), we can present this volume as follows:

N tot(Esc)= 16

zmax
∫

0

dz







f(v)
∫

0

arccos(1+cosv−cosu)du− 1
2
f2(v)






. (A2)

With the aid of Equation (10), the volume (A2) can be represented by the expression:

N tot(Esc)= 8

zmax
∫

0

dz

×






2

arccos( 1+cosv2 )
∫

0

arccos(1+cosv−cosu)du−
(

arccos

(

1+cosv

2

))2






.

(A3)
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In the next step, the right-hand side of Equation (A3) refers to Esc explicitly.

Because of Equations (38), (40) in [1] and Equation (11), the formula (A3) is

transformed into:

N tot(Esc)= 8

arccos(1−Esc)
∫

0

sinvdv

[1−(2−Esc−cosv)2]1/2

×






2

arccos( 1+cosv2 )
∫

0

arccos(1+cosv−cosu)du−
(

arccos

(

1+cosv

2

))2






.

(A4)

A simplification of (A4) is obtained by a substitution:

cosv=1−E⊥ (A5)

where E⊥ is a part of the electron energy depending solely on x and y. This leads to:

dE⊥=sinvdv (A6)

and

N tot(Esc)= 8

Esc
∫

0

dE⊥
[1−(1−Esc+E⊥)2]1/2

×






2

arccos(1−E⊥/2)
∫

0

arccos(2−E⊥−cosu)du−
(

arccos

(

1− E⊥
2

))2






.

(A7)

In the next step, the function:

f(Esc,E⊥)= 8arcsin(1−Esc+E⊥) (A8)

introduced to calculations gives:

N tot(Esc)=

Esc
∫

0

∂f

∂E⊥
(Esc,E⊥) ·gsc(E⊥)dE⊥, (A9)

where

gsc(E⊥)= 2

arccos(1−E⊥/2)
∫

0

arccos(2−E⊥−cosu)du−
(

arccos

(

1− E⊥
2

))2

. (A10)

The derivative function of f , viz.:

∂f

∂E⊥
(Esc,E⊥)=

8

[1−(1−Esc+E⊥)2]1/2
, (A11)

is singular for E⊥=Esc. In order to avoid this singularity in the differentiation process
of (A9) with respect to Esc, we introduce the function:

fδ(E
sc,E⊥)= 8arcsin[(1−Esc+E⊥)δ], (A12)

for some 0< δ < 1 (δ∼ 1), and obtain an expression for the approximate number of
states:

N totδ (E
sc)=

Esc
∫

0

∂fδ
∂E⊥
(Esc,E⊥) ·gsc(E⊥)dE⊥, (A13)
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dependent on δ. Because of the relation:

∂fδ
∂E⊥
(Esc,E⊥)=

8δ

[1−(1−Esc+E⊥)2δ2]1/2
, (A14)

the integrand of Equation (A13) is a well-defined function for all energies E⊥ on the

interval 0≤E⊥≤Esc≤ 2. Now, the differentiation of (A13) with respect to Esc gives:

dN totδ (E
sc)

dEsc
=

Esc
∫

0

∂2fδ
∂Esc∂E⊥

(Esc,E⊥) ·gsc(E⊥)dE⊥

+
∂fδ
∂E⊥
(Esc,E⊥) ·gsc(E⊥)

∣

∣

∣

∣

E⊥=Esc
.

(A15)

By the method of integration by parts, we arrive at:

dN totδ (E
sc)

dEsc
=−

Esc
∫

0

∂fδ
∂Esc
(Esc,E⊥) ·

dgsc(E⊥)

dE⊥
dE⊥

+
∂fδ
∂Esc
(Esc,E⊥) ·gsc(E⊥)

∣

∣

∣

∣

E⊥=Esc
+
∂fδ
∂E⊥
(Esc,E⊥) ·gsc(E⊥)

∣

∣

∣

∣

E⊥=Esc
.

(A16)

But in view of the definition of fδ (see Equation (A12)):

∂fδ
∂Esc
(Esc,E⊥) ·gsc(E⊥)

∣

∣

∣

∣

E⊥=Esc
=−8δg

sc(Esc)

(1−δ2)1/2 , (A17)

and
∂fδ
∂E⊥
(Esc,E⊥) ·gsc(E⊥)

∣

∣

∣

∣

E⊥=Esc
=
8δgsc(Esc)

(1−δ2)1/2 . (A18)

The results (A17) and (A18) simplify Equation (A16) into the formula:

dN totδ (E
sc)

dEsc
=−

Esc
∫

0

∂fδ
∂Esc
(Esc,E⊥) ·

dgsc(E⊥)

dE⊥
dE⊥. (A19)

Here, the differentiation of Equation (A10) with respect to E⊥ gives:

dgsc(E⊥)

dE⊥
=2

arccos(1−E⊥/2)
∫

0

du

[1−(2−E⊥−cosu)2]1/2
, (A20)

which provides us with an approximate formula for the density of states (A19).

It can be demonstrated that the difference between Equation (A19) and the

exact formula for the density of states, obtained by putting δ=1 in Equation (A19),

viz.:

N(Esc)=
dN tot(Esc)

dEsc
=−

Esc
∫

0

∂f

∂Esc
(Esc,E⊥) ·

dgsc(E⊥)

dE⊥
dE⊥, (A21)

tends to zero while δ−→ 1. Therefore, Equation (A19) applied in the limiting process
of δ−→ 1 can be used in the calculation of the N(Esc) data given in Table 1.
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A similar integration calculation can be applied for N(Ebcc), being the density

of electron states in the bcc lattice (see Table 2). In this case, with the aid of

Equations (17)–(19), we obtain:

N(Ebcc)=
dN tot(Ebcc)

dEbcc
=16

Ebcc
∫

0

dE⊥
[(1−E⊥)2−(1−Ebcc)2]1/2

×
arccos

√
1−E⊥

∫

0

du

[cos2u−(1−E⊥)2]1/2
.

(A22)

References

[1] Olszewski S and Roliński T 2009 TASK Quart. 13 99 (the precedent paper)

[2] Olszewski S, Rolinski T and Kwiatkowski T 1999 Phys Rev B 59 3740

[3] Jelitto R J 1969 J. Phys. Chem. Solids 30 609

[4] Lass H 1950 Vector and Tensor Analysis, McGraw-Hill, New York

[5] Oprea J 1997 Differential Geometry and its Applications, Prentice Hall, New York

[6] Sommerfeld A and Bethe H 1933 Handbuch d. Physik (Geiger H and Scheel K, Eds), Springer,

Berlin, 24

[7] Jones H 1975 The Theory of Brillouin Zones and Electronic Structure in Crystals 2nd Edition,

North-Holland, Amsterdam

[8] Reitz J R 1955 Solid State Physics (Seitz F and Turnbull D, Eds), Academic, New York, 1

tq113k-e/131 17VI2009 BOP s.c., http://www.bop.com.pl



132 TASK QUARTERLY 13 No 1–2

tq113k-e/132 17VI2009 BOP s.c., http://www.bop.com.pl


