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Abstract: A magnetic field applied to a crystalline solid causes the electron states on the Fermi

surface to circulate along the orbits located on the planes normal to the applied field. For a sufficiently

weak field the separate orbits can cover the whole closed Fermi surface. A suitable parameterization of

the states on the orbits should be done in a different way than a conventional parameterization applied

for the electron states by Bloch. This new kind of parameterization becomes quite simple when the

magnetic field is assumed to be directed parallel to one of the crystallographic axes. Computationally,

a new description of the electron states on the Fermi surface becomes on many occasions more flexible

in its use than the Bloch’s one. The simplifications concern mainly an examination of the curvature

parameters of the Fermi surface and extremal properties of the electron observables, for example

that of electron velocity. Solely the states in the cubic crystal lattices were considered as examples.

Keywords: Fermi surfaces of crystalline solids, electron orbits induced in the magnetic field,

curvature properties of the Fermi surfaces

1. Introduction

An examination of the Fermi surfaces of crystalline solids is as old as the quan-

tum theory of the solid state [1]. Nevertheless, a detailed mathematical description of

such surfaces is still considered to be a difficult task. The problem becomes important

already in the calculation of the fundamental parameters of the electron structure of

solids, for example the density of the electron states in a crystal lattice considered as

a function of the state energy Elatt and per unit volume. This density is given by the

formula:

N(Elatt)=
1

(2π)3

∫

dS~k
∣

∣grad~kE
latt
∣

∣

, (1)

on condition that the spin degeneracy of the electron states can be neglected. The

integral presented in Equation (1) is extended over the surface of a constant energy
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100 S. Olszewski and T. Roliński

in the space of the wave vector ~k (see [2–4]). The surface geometry, especially the

critical points of that space, defined by the equation:
∣

∣grad~kE
latt
∣

∣=0 (2)

can be of importance here.

A similar problem was examined some time ago for the phonon energy spectra

and the phonon density of states in solids [4–7], but an analysis of this kind for

surfaces of constant electron energy seems to be lacking. One reason for this difficulty

can be attributed to the complicated structure of the functional dependence:

Elatt=Elatt(kx,ky,kz), (3)

representing the electron energy in a solid in terms of the wave-vector components kx,

ky and kz. Simultaneously, the geometry of the Fermi surfaces gains importance, espe-

cially in examining the properties of metals in external high-frequency fields [8–10],

because a detailed knowledge of the curvature parameters of the Fermi surfaces is

required here. An example are the calculations of the cyclotron resonance effects in

a metal skin layer, where an integration over the Fermi-surface area whose element is

equal to:

dS~k =R1R2dΩ~k = dΩ~k/K, (4)

should be performed [8]. The R1 and R2 are the principal radii of curvature at some

point of the Fermi surface. Consequently, K is the Gaussian curvature at that point,

and dΩ~k is an element of the solid angle. A special interest can be attributed to the

regions of zero-curvature of the Fermi surface [10].

In general, the difficulties connected with an examination of the curvature

properties of the Fermi surfaces can be associated with the parameterization of the

electron states on these surfaces. In principle, the solution of Equation (3) for any

two pairs of the wave vector parameters (k
(1)
x ,k

(1)
y ) and (k

(2)
x ,k

(2)
y ) provides us with:

k(1)z 6= k(2)z (5)

for a given constant value of Elatt. This kind of a solution does not represent

a convenient basis for a classification of the states. However, the situation can be

much improved when the electrons on the Fermi surface are submitted to the action

of a constant magnetic field directed, say, along axis z. Physically, because of the well-

known property of the conservation of energy in a magnetic field, the effect of the

field is that electrons change the random motion possessed in the absence of that field

into a much more regular motion, along the planar orbits located on the surfaces of

a constant energy. As a consequence of that change, the parameterization of the energy

surface may refer to the properties of the orbits. In the absence of a crystal lattice, the

orbits are circles, both in the normal and reciprocal space. However, the presence of

a crystal lattice changes these circles into orbits of a more complicated shape. In the

reciprocal space, the orbits become cross-sectional lines of the planes normal to the

magnetic field with the Fermi surface. Both kinds of planar motion, viz. that along the

circles as well as that along the orbits obtained in the presence of the crystal lattice,

can be projected on some direction, say x, located in the orbit plane. If the x-line

passes through the central point of the area enclosed by the orbit, the electron motion

projected on that line gives us an oscillatory motion characteristic of any orbital case.
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For free electrons, this motion is represented by a perfectly harmonic oscillator [11],

but in the case of an electron in a crystal lattice, a non-linear oscillatory motion is

obtained [12]. Since the electrons gyrate along the Fermi surface in a plane normal to

the applied field, it is only the variables kx and ky that are changed for the constant

kz. In consequence, if the equations for the electron motion in the magnetic field are

solved, a full set of coordinates, kx and ky, on the Fermi surface are obtained which

have the same kz. Computationally, an especially convenient situation is attained

when the field is directed along one of the symmetry axes of a crystal. This crystal

can be assumed to belong, for example, to the cubic point group of symmetry.

We assume that the Fermi surface is practically unchanged upon the action

of the magnetic field on a metal sample. In other words, we neglect the quantum

structure of the Landau levels. Only very strong fields, for example those exceeding

104T (see e.g. [13]), can collect all electrons in a metal on a single Landau level,

which provides us with an evident deformation of the Fermi surface. But when the

applied field is a small fraction, for example one-hundredth or one-thousandth of such

a strong field, the electrons are arranged on hundreds or thousands of the Landau

levels distributed quasi-continuously along the variable kz. In effect, this large number

of Landau levels per unit of energy gives, in particular, the density of electron states

in a solid that is practically unchanged from that obtained in the absence of the

magnetic field, on condition that the interval of energy taken as the energy unit is

not too small [14].

Consequently, our aim is to perform, in the first step, a suitable parameteri-

zation of the Fermi surfaces (Sections 2 and 3). This new parameterization is next

applied to examine the extremal properties of the velocity observables on the Fermi

surfaces (Section 4). In the next step, the curvature properties of the surfaces sur-

rounding the central point of the first Brillouin zone are calculated (Section 5). A check

of the theory is done in Part II (the next paper) through its application to the density

of states in the crystal lattices as well as an examination of the arc lengths on the

surface.

2. The Fermi surface parameterized in the presence

of a magnetic field

The Lorentz equation applied in a special case of the magnetic field ~B directed

along axis z gives the following equations of motion for the electron wave packet in

a plane parallel to (x,y) [15–18]:

h̄
dkx
dt
= vyeBz =

1

h̄

∂Elatt

∂ky
eBz, (6)

h̄
dky
dt
=−vxeBz =−

1

h̄

∂Elatt

∂kx
eBz. (7)

Here, the well-known reference of Elatt to the components of the electron velocity vx
and vy is applied [2, 16]. By putting:

e= h̄=Bz =1, (8)
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the pair of (6) and (7) becomes equivalent to the pair of Hamilton equations:

dkx
dt
=
∂Elatt

∂ky
, (9)

dky
dt
=−∂E

latt

∂kx
, (10)

in which the Hamiltonian

Elatt=H (11)

is a known function of the canonical variables [19]

kx=x (12)

and

ky = px. (13)

The electric field contribution has been neglected in Equations (6)–(10) [20].

The motion problem of an electron in a crystal submitted to the action of the

magnetic field can be reduced to that of a one-dimensional oscillator (see [12] and

Equations (21) and (22) given below). The dispersion surfaces Elatt(kx,ky,kz) taken

as our examples refer to the tightly-bound s-electrons in cubic lattices (see e.g. [3, 21]):

Esc=3−coskx−cosky−coskz (14)

for the simple-cubic (sc) lattice,

Ebcc=1−coskx cosky coskz (15)

for the body-centered cubic (bcc) lattice, and

2Efcc=3−coskx cosky−cosky coskz−coskz coskx (16)

for the face-centered cubic (fcc) lattice. The lattice parameter alatt and the factors

dependent on the hopping, or atomic interaction, integrals multiplying the cos-like

expressions in Equations (14)–(16) have been abbreviated to unity (see e.g. [21]).

This could be done because these constant parameters do not influence the shape

properties of the examined surfaces Elatt(kx,ky,kz).

The constant terms before the cos-like expressions in Equations (14)–(16) are

chosen in such a way that at

kx≈ ky ≈ kz ≈ 0 (17)

Elatt(kx,ky,kz) is equal to the free-electron formula for energy

Esc≈Ebcc≈Efcc≈Efree= 1
2
(k2x+k

2
y+k

2
z) (18)

on condition h̄=m=1.

The last expression in Equation (18) taken for H provides us with the following

Hamilton equations, obtained on the basis of Equations (9) and (10):

dkx
dt
≡ k̇x= ky, (19)

dky
dt
≡ k̇y =−kx. (20)
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After the second differentiation process is performed in Equations (19) and (20), these

equations are reduced to the harmonic-oscillator equations for kx and ky:

k̈x= k̇y =−kx, or k̈x+kx=0, (21)

k̈y =−k̇x=−ky, or k̈y+ky =0. (22)

Evidently, for the choice of the constant terms represented in Equation (8), the

oscillator frequencies of kx and ky given by Equations (21) and (22) are equal to

the unity:

ω0=1. (23)

On the other hand, by taking the full expression for Efree, as well by neglecting

the abbreviation (8) and that done below Equation (18), we obtain the well-known

formula for the free-electron gyration frequency:

Ω0=
eBz
mc
. (24)

The presence of the crystal lattice modifies the linear (harmonic) oscillator

equations (21) and (22) into nonlinear ones (see [12] and Table 1). The nonlinear

equations for kx and ky can be solved, for example, with the aid of the Fourier

series [12], but a more direct method of solution is also possible [14]. These solutions

define us the electron coordinates kx and ky in the reciprocal space as functions of

time; only closed electron orbits are considered by the method. Simultaneously, in the

solution of the equations of motion, the frequency of the electron gyration modified

by the presence of the crystal lattice, viz.:

ω 6=ω0=1, (25)

can be also calculated (see e.g. [12, 14]).

Table 1. Oscillator equations for tightly-bound s-electrons gyrating in crystal cubic lattices upon

the action of a constant magnetic field directed along axis z [12]. The x= kx variable

is taken into account, but the same equations are also valid for the px= ky variable;

both variables x and px together with a0, the amplitude of the oscillatory motion [12],

are considered in a plane normal to the magnetic field. The oscillator equation

for the fcc lattice depends both on kz and a0

sc lattice:
d2x

dt2
=−sinx(1−cosx+cosa0);

bcc lattice:
d2x

dt2
=−1
2
sin(2x);

fcc lattice:

d2x

dt2
=− 1

(1+coskz)2
1

2
sin2x+coskz sinx× [2+2coskz−(1−cosa0)(1+coskz)−cosxcoskz ]}.

However, the exact dependencies of kx and ky on time are not necessary to

examine the Fermi surfaces, since the sole fundamental properties of the electron

oscillators can be of importance here. These properties are connected with the
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conditions satisfied at the limiting points of the oscillatory motion. If a0 is the

amplitude of that motion, we have [12]:

x= kx=±a0 =⇒ px= ky =0 (26)

and

x= kx=0 =⇒ px= ky =±a0. (27)

Consequently, x and px are enclosed within the interval:

−a0≤x,px≤ a0. (28)

Because the energy is conserved in the course of motion, the expressions for the

electron energies can easily be represented with the aid of the limiting properties of

the oscillators [12, 14]:

Esc=2−cosa0−coskz, (29)

Ebcc=1−cosa0 coskz, (30)

2Efcc=3−cosa0−(1+cosa0)coskz. (31)

A comparison of the results in Equations (29)–(31) with the original formu-

lae (14)–(16) for energy allows us to couple the amplitude, a0, with the coordinates

kx and ky on the planar electron orbit in the reciprocal space. We obtain:

cosa0=2−Esc−coskz =coskx+cosky−1 (32)

for the sc lattice,

cosa0=
1−Ebcc
coskz

=coskx cosky (33)

for the bcc lattice, and

cosa0=
3−2Efcc−coskz
1+coskz

=
coskx cosky+(coskx+cosky−1)coskz

1+coskz
(34)

for the fcc lattice; when coskz is replaced by a function of a0 and E
fcc we have:

cosa0=
coskx cosky+(coskx+cosky−1)(3−2Efcc)
3−2Efcc−coskx cosky+coskx+cosky

(35)

for the fcc lattice.

Let us note that a constant value of Elatt in the formulae (29)–(31) couples

the amplitude, a0, with the coordinate kz. In the next step, the constant a0 in

Equations (32), (33) and (35) couples kx with ky along the orbit. These properties

are of much use in the examination of the curvature properties of the Fermi surfaces

(see Section 5).

3. Limiting equations for electron orbits

For the case of kz =0 Equations (29)–(31) give the same result:

Elatt=Esc=Ebcc=Efcc=1−cosa0, (36)

but the parameters on the orbits which are different than energy, for example the

frequency of the electron gyration, vary for different lattice kinds also for kz =0 [12].

The amplitude a0 obtained from Equation (36) has its maximum value for a given

tq113j-e/104 17VI2009 BOP s.c., http://www.bop.com.pl



New Kind of Parameterization Applied to the Fermi Surface of a Crystalline Solid... 105

Elatt because for kz 6=0 the orbits are reduced to smaller a0 giving the limiting value
of:

a0=0 (37)

at

|kz|= kmaxz =arccos(1−Elatt). (38)

This formula for kmaxz is valid for the Elatt of all three cubic lattices. The kx
and ky for a0 different than zero are given by Equations (29)–(31), respectively, for

a given lattice type. The limits which should be imposed on Elatt in the case of closed

orbits are discussed in [12, 14] (see also Section 4). In the following sections, the

observables on the Fermi surfaces as well as the parameters characterizing the shape

of these surfaces, are calculated.

4. Application of the orbits: electron velocity examined

as a function of the position of electron states

on the Fermi surface

The power of the method developed above can be demonstrated in the exami-

nation of the electron velocity, v, taken as an example. In particular, the function:

v2= |grad~kE
latt|2 (39)

(h̄=1) is considered. Let us note that v2, as well as the energy Elatt(kx,ky,kz), are

independent of the vector potential, so they remain uninfluenced by the magnetic field

(see e.g. [22]).

Henceforth, for the sake of brevity, the wave vector components kx, ky, and kz
are replaced by their subscripts x, y, z, viz.:

kx≡x, ky ≡ y, kz ≡ z. (40)

Hence, for example, the electron energy in the simple cubic lattice is expressed, in

reference to Equation (14), as:

Esc=3−cosx−cosy−cosz (41)

and Efree in Equation (18) becomes:

Efree=
1

2
(x2+y2+z2). (42)

Due to Equations (39) and (41), the velocity squared in the sc lattice is:

v2=sin2x+sin2y+sin2z. (43)

This expression can be separated into a component normal to the magnetic field, viz.:

v2⊥=sin
2x+sin2y (44)

and a component parallel to the field, viz.:

v2‖ =sin
2z. (45)

For closed electron orbits, the planar motion energy is (see Equations (32) and (40),

and [12]):

Esc⊥ =2−cosx−cosy=1−cosa0. (46)
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Since Esc⊥ and a0 remain constant during the electron motion along the orbit,

we obtain from Equations (44) and (46):

v2⊥=2−cos2x−(1+cosa0−cosx)2

=2−2u2+2u(1+cosa0)−(1+cosa0)2,
(47)

where a substitution of

u=cosx (48)

has been done in the second step of (47). The position of the extremum of v2⊥, defined

by the equation:

∂v2⊥
∂u
=−4u+2(1+cosa0)= 0, (49)

indicates a maximum because
∂2v2⊥
∂u2
=−4< 0. (50)

The result of Equation (49), viz.:

u=umax=
1

2
(1+cosa0), (51)

substituted into Equation (47) gives:

(v2⊥)
max=2− 1

2
(1+cosa0)

2≈ a20. (52)

The last step in Equation (52) is obtained for small a0. It is equal to double the value

of the planar electron energy in Equation (46) considered at small x, y, and a0:

Esc⊥
∼= x

2

2
+
y2

2
=
a20
2
=Efree⊥ . (53)

Formula (53) holds because of Equation (42) which gives Efree⊥ when the term z2 is

neglected.

The velocity squared for the direction parallel to the magnetic field can be

examined in a similar way. From Equations (45), (46), and (41) we have:

v2‖ =1−cos2z=1−(2−Esc−cosa0)2 (54)

which provides us with the extremum condition:

∂v2‖

∂a0
=−2(2−Esc−cosa0)sina0=0. (55)

The extremum at a0=0 gives a maximum of v
2
‖ for the interval:

0<Esc< 1, (56)

because in this case:

∂2v2‖

∂a20
=−2cosa0(2−Esc−cosa0)−2sin2a0

∣

∣

∣

a0=0
=−2(1−Esc)< 0, (57)

but for Esc> 1, the same a0=0 gives the position of a minimum.
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Another set of the extrema is given by a0 satisfying the relation:

cosa0=2−Esc, (58)

(see Equation (55)). In this case, the second derivative:

∂2v2‖

∂a20
=−2sin2a0=−2[1−(2−Esc)2] =−2(−1+Esc)(3−Esc) (59)

gives a maximum of v2‖ for E
sc> 1, and a minimum for Esc< 1. The case of Esc=3

cannot be realized by the closed orbits (see [12] and Equation (63) below).

A part of Esc which can be associated with the motion along the field is (see

Equations (29), (40), (41) and (46)):

Esc‖ =E
sc−Esc⊥ =1−cosz=1−(2−Esc−cosa0)=−1+cosa0+Esc. (60)

For a0=0, we obtain:

Esc‖ =E
sc (61)

which means that the whole of the electron energy is equal to that of the motion along

the field because Esc⊥ =0 at the same time (see Equation (46)). From Equation (54)

we have, in this case:

v2‖ =1−(1−Esc)2=Esc(2−Esc) (62)

which is a positive number for the energy interval:

0<Esc< 2. (63)

In the extremum of v2‖ defined by Equation (58), we obtain the energy (60) of the

motion along the field independent of a0:

Esc‖ =−1+2−Esc+Esc=1. (64)

This energy becomes equal to the velocity square v2‖ calculated at the same extremum,

Equation (58) (see Equation (54)), viz.:

v2‖ =1−0=1. (65)

Similar examinations of v2 can be done in the bcc lattice. This is based on the

energy expression:

Ebcc=1−cosxcosycosz=1−cosa0 cosz, (66)

characteristic for the Fermi surface (see Equations (15) and (30)). For the planar

velocity squared, we have:

v2⊥=(sin
2xcos2y+cos2xsin2y)cos2z=(cos2y+cos2x−2cos2a0)cos2z

=

(

cos2a0
cos2x

+cos2x

)(

1−Ebcc
cosa0

)2

−2(1−Ebcc)2
(67)

on the basis of Equations (33) and (66). This expression has its extrema defined by

the equation:

cos2a0
(1−Ebcc)2

∂v2⊥
∂x
=
2cos2a0 sinx

cos3x
−2cosxsinx=

(

cos2a0
cos4x

−1
)

sin2x=0. (68)

This gives x=0 and

cos2x=cosa0 (69)

as the extreme positions; the point of x=π/2 cannot be attained in this case because

of the excess of cosy above unity (see Equations (33) and (40)).
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The second derivative of v2⊥ versus x gives the expression:

cos2a0
(1−Ebcc)2

∂2v2⊥
∂x2
=
4cos2a0 sinx

cos5x
sin2x+2

cos2a0
cos4x

cos2x−2cos2x. (70)

For x = 0 we obtain a maximum because of the negative result in Equation (70),

in virtue of 1 > cosa0. On the other hand, a substitution of Equation (69) into

Equation (70) gives:

cos2a0
(1−Ebcc)2

∂2v2⊥
∂x2
=
2cos2a0(1−cos22x)

cos6x
=
2

cosa0
(−4cos2a0+4cosa0)> 0, (71)

for 1> cosa0> 0, which implies a minimum at the point defined by Equation (69). In

the position of the maximum (x=0), we have:

v2⊥=(1+cos
2a0)

(

1−Ebcc
cosa0

)2

−2(1−Ebcc)2

=(1−Ebcc)2
(

1

cos2a0
−1
)

≈ (1−Ebcc)2a20.
(72)

The last step in Equation (72) refers to the free-electron behavior of v2⊥ at small a0,

since on the basis of Equations (39) and (42), we obtain:

(v2⊥)
free=x2+y2= a20, (73)

which is twice the value of Efree⊥ (see Equation (53)). A characteristic point is that, at

a0=0, we have v
2
⊥=0. On the other hand, the value of v

2
⊥ in the minimum position

defined by Equation (69) is equal to:

v2⊥=2(1−Ebcc)2
(

1

cosa0
−1
)

. (74)

In fact, the difference between the maximum in Equation (67) obtained at x=0 and

the minimum calculated in Equation (74) gives a positive number:

(v2⊥)
max−(v2⊥)min=(1−Ebcc)2

1

cos2a0
(1−cos2a0−2cosa0+2cos2a0)

= (1−Ebcc)2 1

cos2a0
(1−cosa0)2.

(75)

For the velocity squared parallel to the field, we have, in the bcc lattice:

v2‖ =cos
2xcos2y sin2z=cos2a0

[

1−
(

1−Ebcc
cosa0

)2
]

=cos2a0−(1−Ebcc)2. (76)

Evidently, the maximum of v2‖ is at a0=0, giving the expression:

v2‖ =E
bcc(2−Ebcc), (77)

whereas the minimum is at a0=π/2. This value of a0 can be attained only at kz =0

(see [12]). Since Ebcc=1 in this case (see Equation (66)), we obtain in Equation (76)

the result:

v2‖ =0. (78)

The velocity extrema in the fcc case can be examined in a similar way.
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5. Curvature properties of the Fermi surfaces surrounding

the central point of the Brillouin zone

The curvature properties of the Fermi surfaces can be examined in two steps.

In the first one, the curvature:

κ=
|d2y/dx2|

[

1+
(

dy
dx

)2
]3/2
=
1

R⊥
(79)

on a plane of

z=const (80)

chosen for any

|z| ≡ |kz|< |kmaxz | (81)

below the upper limit of z≡ kz given in Equation (38), can be calculated [23–25]; for
a closed Fermi surface, R⊥ in Equation (79) is the radius of curvature of a planar

orbit on the surface. The coordinate z entering the function y= y(x,z) is considered

a constant parameter. In the calculation of Equation (79), the formulae (32)–(34) (or

Equation (35)) coupling x≡ kx and y≡ ky for any constant z, or constant a0, should
be applied. The dependence of κ on one of the planar coordinates of the orbit, say x,

can be plotted within the interval:

0<x<a0. (82)

The size of a0 entering Equation (82) is dictated by the size of the energy, E
latt,

and the actual value of kz ≡ z according to the formulae given in Equations (29)–
(31) (see Equations (32)–(34)). The parameter kz does influence the functional

dependence of κ on x solely in the case of the tightly-bound s-electrons in the fcc

lattice (see Equation (29)). The planes of z≡ kz = const may cover the whole of the
interval given by the limit defined in Equation (81). In Figure 1 a plot of 1/R⊥ in

Equation (79) is presented versus the variable x ≡ kx calculated for the sc lattice
within the interval (82), Figure 2 gives a similar plot of 1/R⊥ for the bcc lattice.

The next step of examination makes a direct reference to the three-dimensional

properties of the Fermi surface. For a closed Fermi surface surrounding the central

point of the Brillouin zone, it is convenient to transform Equations (29)–(31) (see also

Equation (40)) into the formulae:

z=arccos(2−Esc−cosa0) (83)

for the sc lattice,

z=arccos

(

1−Ebcc
cosa0

)

(84)

for the bcc lattice, and

z=arccos

(

3−2Efcc−cosa0
1+cosa0

)

(85)

for the fcc lattice. The useful derivatives [23, 24] become:

p=
∂z

∂x
=
∂z

∂a0

∂a0
∂x
, (86)
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Figure 1. The plot of the reciprocal curvature radius R−1⊥ (see Equation (79)) done for the planes

z=const in the sc lattice within the interval 0<x<a0; three values of a0 are taken into account

Figure 2. The plot of the reciprocal curvature radius R−1⊥ (see Equation (79)) done for the planes

z=const in the bcc lattice within the interval 0<x<a0; three values of a0 are taken into account
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q=
∂z

∂y
=
∂z

∂a0

∂a0
∂y
, (87)

r=
∂2z

∂x2
=
∂2z

∂a20

(

∂a0
∂x

)2

+
∂z

∂a0

∂2a0
∂x2
, (88)

s=
∂2z

∂x∂y
=
∂2z

∂a20

∂a0
∂x

∂a0
∂y
+
∂z

∂a0

∂2a0
∂x∂y

, (89)

t=
∂2z

∂y2
=
∂2z

∂a20

(

∂a0
∂y

)2

+
∂z

∂a0

∂2a0
∂y2
, (90)

are calculated with reference to the formulae (32)–(34) and (40). The derivatives (86)–

(90) represent expressions which enter the well-known quadratic equation for the

principal curvature radii R1 and R2 of the surface [25]:

(rt−s2)R2+(1+p2+q2)1/2[2pqs−(1+p2)t−(1+q2)r]R+(1+p2+q2)2=0. (91)

These radii, in turn, define the Gaussian curvature:

K =
1

R1R2
=

rt−s2
(1+p2+q2)2

, (92)

and the average curvature:

H =
1

2

(

1

R1
+
1

R2

)

=
r(1+q2)−2pqs+ t(1+p2)
2(1+p2+q2)3/2

. (93)

The radii R1 and R2 have the same sign on condition that:

rt−s2> 0. (94)

This holds, in general, for the convex Fermi surfaces extended about the central point

of the Brillouin zone. The Meusnièr theorem dictates that R1,R2> 0 in this case [26].

An advantage of the present method is that x and y entering Equations (83)–

(85) are coupled together by the formulae (32), (33), and (35) for any constant Elatt

and a0 corresponding to the closed orbits (see here also Equation (40)). For the Fermi

surfaces surrounding the central point of the first Brillouin zone this implies the energy

intervals:

0<Esc< 2 (95)

for the sc lattice,

0<Ebcc< 1 (96)

for the bcc lattice, and

0<Efcc< 3/2 (97)

for the fcc lattice, if a large interval of z is taken into account [12, 14]. In any such

case, the Elatt and a0 define the orbital line along the Fermi surface being located in

a plane parallel to (x,y). This property allows us to plot R1, R2, K, and H for such

a line. For example R1, R2, K, and H can be considered functions of the variable x

taken along the orbit within the interval (0,a0). The plots obtained in this way are

presented in Figures 3–9.

In the figures R−1⊥ is the reciprocal radius of curvature on the orbit located

in a plane normal to the axis z, which is parallel to the magnetic field. The orbit

parameter a0 is taken as a unit distance for the variable x, changing along the abscissa;
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Figure 3. Left part – reciprocal curvature radii: R−1⊥ – a continuous line, R
−1
1 – a dashed line,

R−12 – a dotted line; right part – the Gaussian curvature (K) – a continuous line,

the average curvature (H) – a dashed line;

sc lattice, a0=
1
10

√
2, z=0.1, Esc∼=0.015

0 0.5 1

0.8

1.2

0 0.5 1

0.6

0.7

0.5

Figure 4. Left part – reciprocal curvature radii: R−1⊥ – a continuous line, R
−1
1 – a dashed line,

R−12 – a dotted line; right part – the Gaussian curvature (K) – a continuous line,

the average curvature (H) – a dashed line;

sc lattice, a0=
1
4π, z=

1
3π, E

sc∼=0.792

Figure 5. Left part – reciprocal curvature radii: R−1⊥ – a continuous line, R
−1
1 – a dashed line,

R−12 – a dotted line; right part – the Gaussian curvature (K) – a continuous line,

the average curvature (H) – a dashed line;

sc lattice, a0=
1
4π, z=

3
4π, E

sc∼=2.00
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Figure 6. Left part – reciprocal curvature radii: R−1⊥ – a continuous line, R
−1
1 – a dashed line,

R−12 – a dotted line; right part – the Gaussian curvature (K) – a continuous line,

the average curvature (H) – a dashed line;

bcc lattice, a0=
1
4π, z=

1
4π, E

bcc∼=0.5

Figure 7. Left part – reciprocal curvature radii: R−1⊥ – a continuous line, R
−1
1 – a dashed line,

R−12 – a dotted line; right part – the Gaussian curvature (K) – a continuous line,

the average curvature (H) – a dashed line;

bcc lattice, a0=
1
3π, z=

1
4π, E

bcc∼=0.646

Elatt is the electron energy. The coupling between x,y,z,a0 and E
latt is given by

Equation (29), (32), and (40) for the sc lattice, by Equations (30), (33), and (40) for

the bcc lattice, and by Equations (31), (34), and (40) for the fcc lattice. For R−11 and

R−12 see Equation (91), for K see Equation (92), for H see Equation (93), for R
−1
⊥

see Equation (79).

Formally, instead of the functions:

z= f(x,y), (98)

given in Equations (83)–(85) and Equations (32)–(35), we might also define the

functions:

x= g(y,z), (99)

or

y=h(x,z), (100)

where the variables x, y, and z refer to the positions of the electron states on the Fermi

surface (see Equation (40)). But the variables y and z – entering g in Equation (99),
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Figure 8. Left part – reciprocal curvature radii: R−1⊥ – a continuous line, R
−1
1 – a dashed line,

R−12 – a dotted line; right part – the Gaussian curvature (K) – a continuous line,

the average curvature (H) – a dashed line;

fcc lattice, a0=
1
4π, z=

1
4π, E

fcc∼=0.542

Figure 9. Left part – reciprocal curvature radii: R−1⊥ – a continuous line, R
−1
1 – a dashed line,

R−12 – a dotted line; right part – the Gaussian curvature (K) – a continuous line,

the average curvature (H) – a dashed line;

fcc lattice, a0=
1
2π, z=

1
3π, E

fcc∼=1.25

or x and z entering h in Equation (100), cannot be coupled together in a simple way

along the Fermi surface. This property is possessed solely by the variables x and y in

a plane normal to the magnetic field. Therefore, only the choice of the function (98),

instead of the functions (99) or (100), becomes of a practical use.

6. Summary

A new kind of parameterization of electron states on the Fermi surfaces,

specialized to the case of tightly-bound s-electrons in cubic crystal lattices, has been

developed. The surfaces are extended about the central point of the Brillouin zone and

their symmetry properties with respect to one of the symmetry axes of the zone are

systematically taken into account for each lattice. The new kind of parameterization

allows one to get an easy insight into the curvature properties of the surfaces, as well

as to calculate the distribution of the electron observables (especially the velocity and

the relaxation time for magnetoresistance) over the surfaces.
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An examination of the efficiency of the theory in the calculation of typical

electron properties connected with the surfaces like the density of states versus energy

and the arc lengths extended on the surface is shifted to a separate paper (Part II).
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