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Abstract: In this paper we review Godunov-type numerical methods for one- and two-component

magnetohydrodynamic equations. Solving these equations numerically is a formidable task as a result

of the internal complexity of these equations and the requirements of ∇·B=0. We present several
results of advanced numerical simulations for complex systems. These results prove that the numerical

codes which are based on Godunov-type methods, cope with all problems very well.

Keywords: numerical simulations of hyperbolic equations, Godunov methods, magnetohydrody-

namics

1. Introduction

Plasma generally exhibits both collective (fluid-like) and individual (particle-

like) behavior. In the magnetohydrodynamic model, plasma is treated like a con-

ducting fluid having macroscopic parameters that accurately describe its particle-

like interactions, e.g. [1]. This model combines fluid equations and Maxwell’s equa-

tions. Although the MHD theory is the simplest self-consistent model describing the

macroscopic behavior of plasma, the full nonlinear equations are so complex that

simplifications are usually necessary to yield tractable problems. Therefore, many

solutions require numerical treatment. Finite-volume methods are one of several dif-

ferent techniques available to solve the MHD equations. They are simple to imple-

ment, easily adaptable to complex geometries, and well suited to handle nonlinear

terms.

Similarly to solutions of hydrodynamic and other hyperbolic equations solutions

of MHD equations exhibit the tendency to form large gradients (e.g. shock waves)

which are difficult for numerical modeling. The use of standard numerical schemes of

second-order accuracy or higher (e.g. the Lax-Fredrichs method) generates spurious

oscillations which destroy the solution’s monotonicity. Lower-order schemes, e.g. [2]

are generally free of oscillations, but they are dissipative enough to wash out much of
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the details. Therefore, there is a need to develop more advanced schemes which would

adequately represent the large gradient profiles.

The aim of this paper is to review the numerical methods for solving one-

and two-component MHD equations. In particular, in Section 2 we discuss most

of the problems which are associated with numerical solutions of these equations.

Sections 3 and 4 present conservative and non-conservative forms of MHD equations.

The eigenvalue problem of the Jacobian that results from quasi-linearization of these

equations is discussed in Section 5. Singularities which result in the eigen-value

problem are presented in Section 6. A Riemann problem is explored in Section 7.

Numerical schemes that clean the selenoidal condition are illustrated in Section 8.

A Riemann problem for two-component MHD equations is discussed in Section 9.

The results of numerical simulations for waves in a coronal loop and for solar wind

interaction with a non-magnetic body are presented in Sections 10 and 11, respectively.

The paper is completed by the following section which summarizes the main results

of this paper.

2. Problems with MHD equations

It is not a straightforward task to convert an Euler code to a MHD code

since various kinds of singularities are present in the MHD equations. Moreover,

due to the intrinsic complexity of the MHD equations, the development of numerical

techniques to solve these equations has been slower than for hydrodynamics (HD).

For instance, for a long time, most numerical schemes have been based on methods

dependent on artificial viscosity to represent shocks adequately, e.g. [3]. Although

these schemes have been used successfully in astrophysical applications, e.g. [4, 5],

the past experience with fully conservative, high-order upwind hydrodynamic codes

found those to be superior in many applications [6]. It is therefore natural to extend

such schemes to solve MHD conservation equations. However, there are two principal

difficulties associated with the numerical solution of MHD equations as compared to

hydrodynamic (HD) equations [7]. The first difficulty is that MHD equations possess

new families of waves. Moreover, MHD admits a variety of exotic wave structures

such as switch-on fast shocks, switch-off fast rarefactions, switch-off slow shocks, and

switch-on slow rarefactions. It is also possible to obtain compound waves of either

fast or slow waves. This has a considerable impact on the performance of algorithms

which are required to provide a stable and accurate capture of this entire range of

such structures, e.g. [8]. Roe and Balsara [7] list six cases that can potentially cause

trouble.

Another difficulty is that the MHD equations contain a magnetic field which has

to satisfy the divergence-free constraint, ∇·B=0. A local nonzero divergence of the
magnetic field indicates the existence of magnetic monopoles within the numerical cell

which leads to nonconservation of the magnetic flux across its surface. Accumulation

of the numerical errors associated with evolving the magnetic field components can

lead to a violation of this constraint, causing an artificial force parallel to the magnetic

field, and eventually it can force termination of the simulations.
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Despite these problems, many numerical schemes have been developed for

the MHD equations. These schemes reveal either conservative or non-conservative

properties of the equations.

3. Conservative form of the MHD equations

The MHD equations can be written in the conservative form:

u,t+∇· f =0, ∇·B=0, (1)

where:

u=(̺,̺v,B,E)T , (2)

f =(̺v,̺vv+I(p+
B2

2
)−BB,vB−Bv, (3)

(E+p+
B2

2
)v−B(v ·B))T . (4)

Here I is the 3×3 identity matrix, vv stands for the 3×3 tensor vivj , and B has been
normalized by

√
µ.

The momentum equation of (1) can be rewritten as follows:

(̺v),t+∇·(̺vv)+∇(p+
B2

2
)−(B ·∇)B−B(∇·B)= 0. (5)

The last term of this equation should be equal to zero. If nevertheless ∇·B differs
from zero, it becomes an additional unphysical force which is parallel to B. This force

has a destabilizing effect on numerical algorithms. Brackbill and Barnes [9] have noted

that this instability can be removed by adding the term −B(∇·B) to the right hand
side of Equation (5). This procedure leads to a non-conservative form of the MHD

equations.

The plasma state of Equation (2)in the finite volume method is advanced in

time by evaluating the fluxes of Equation (4) at the interfaces between neighboring

states. In order for the Rankine-Hugoniot conditions to be satisfied at these interfaces,

these fluxes must contain some kind of dissipation and a flux limiter must be applied

to minimize the post-shock oscillation. To eliminate these oscillations, a spatially

averaged primitive state,

ũ=(¯̺,v̄,B̄,Ē)T (6)

is required at the interfaces. Brio and Wu [10] have concluded that such averaging is

possible only for the case of γ=2.

4. Non-conservative equations

The MHD equations can be written in a non-conservative form [11]:

u,t+∇· f =−∇·B(0,B,v,v ·B)T , ∇·B=0. (7)

It is interesting to check how this change effects the induction equation which can be

now written as:

B,t+v(∇·B)+B(∇·v)−(B ·∇)v=0. (8)

Taking the divergence of both sides and using the mass continuity equation, we obtain

an advection equation for the quantity ∇·B/̺, i.e.:
(∇·B
̺

)

,t

+v ·∇
(∇·B
̺

)

=0. (9)
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As a consequence of that we have introduced a new divergence wave which propagates

with the speed v. Thus, a partially conservative form of the multi-dimensional

equations, obtained by adding terms proportional to∇·B, retains the one-dimensional
eigen-value problem, with the addition of an eighth wave that convects ∇ ·B as
a passive scalar.

The original MHD equations can be written in a quasilinear form:

ū,t+Aū,x=0, (10)

where:

ū=(̺,̺v,B,p)T , (11)

A=



























vx ̺ 0 0 0 0 0 0

0 vx 0 0 −Bx̺
By
̺

Bz
̺

1

̺

0 0 vx 0 −By̺ −Bx̺ 0 0

0 0 0 vx −Bz̺ 0 −Bx̺ 0
0 0 0 0 0 0 0 0
0 By −Bx 0 −vy vx 0 0
0 Bz 0 −Bx −vz 0 vx 0
0 γp 0 0 (γ−1)v ·B 0 0 vx



























. (12)

It is noteworthy that the 5-th row from the top of the matrix A consists of zeros.

This is a consequence of the fact that (∇·B),t = 0. As a result of the zero row, we
find that the 8-th eigenvalue of A is zero, i.e.:

w8,t+0w
8
,x=0, (13)

where w8=Bx.

Equation (7) for u= ū can be written as:

ū,t+Aū,x=−



























0 0 0 0 0 0 0 0

0 0 0 0 Bx
̺ 0 0 0

0 0 0 0
By
̺ 0 0 0

0 0 0 0 Bz
̺ 0 0 0

0 0 0 0 vx 0 0 0
0 0 0 0 vy 0 0 0
0 0 0 0 vz 0 0 0
0 0 0 0 (γ−1)v ·B 0 0 0



























ū,x, (14)

where A is the matrix defined by Equation (11). This equation can be rewritten in

a quasilinear form:

ū,t+Āū,x=0, (15)

where:

Ā=



























vx ̺ 0 0 0 0 0 0

0 vx 0 0 0
By
̺

Bz
̺

1

̺

0 0 vx 0 0 −Bx̺ 0 0

0 0 0 vx 0 0 −Bx̺ 0
0 0 0 0 vx 0 0 0
0 By −Bx 0 0 vx 0 0
0 Bz 0 −Bx 0 0 vx 0
0 γp 0 0 0 0 0 vx



























. (16)
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Thus, we can see that the zero row has disappeared and the eight wave now satisfies

the advection equation:

w8,t+vxw
8
,x=0. (17)

As this wave carries non-zero magnetic field divergence it is nicknamed the divergence

wave.

5. Eigenvalues and eigenvectors

The Jacobian matrix Ā has the eigenvalues (λ) and left (l) and right (r)

eigenvectors which correspond to the following waves [11]:

• Four magnetosonic waves with:
λ±= vx±c±, (18)

l±=N±































0
±̺c±
∓BxBy̺c±
̺c2
±
−B2x

∓BxBz̺c±
̺c2
±
−B2x

0
By̺c

2

±

̺c2
±
−B2x

Bz̺c
2

±

̺c2
±
−B2x

1































T

, r±=N±





























̺
±c±
∓BxByc±
̺c2
±
−B2x

∓BxBzc±
̺c2
±
−B2x

0
By̺c

2

±

̺c2
±
−B2x

Bz̺c
2

±

̺c2
±
−B2x
γp





























, (19)

where N± stands for a normalization factor such that l±r±=1. This factor is

too complicated to be printed here. The superscript ± corresponds to the fast
(c+) and slow (c−) magnetosonic wave speeds;

• Two Alfvén waves with:
λa= vx±VA, (20)

la=
1

2
√
N
(0,0,−Bz,By,0,±

Bz√
̺
,∓By√
̺
,0), (21)

ra=
1√
N
(0,0,−Bz,By,0,±Bz

√
̺,∓By

√
̺,0)T , (22)

where N = 1/(B2y +B
2
z) is a normalized factor and the Alfvén speed VA =

Bx/
√
̺;

• One entropy wave with:
λe= vx, (23)

le=(1,0,0,0,0,0,0,
−1
c2s
), (24)

re=(1,0,0,0,0,0,0,0)T . (25)

Here the entropy s is defined as:

s= log

(

p

̺γ

)

; (26)

• One divergence wave with:
λdiv = vx, (27)
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ldiv =(0,0,0,0,1,0,0,0), (28)

rdiv =(0,0,0,0,1,0,0,0)T . (29)

6. Singularities

The Alfvén eigenvectors become singular when:

B⊥≡
√

B2y+B
2
z→ 0. (30)

The magnetosonic eigenvectors are singular for c2±→V 2A, c2+→ c2−. In the latter limit,
the wavespeeds c−, c+, and VA coincide. These singularities have to be considered

before writing any code. The first solution to this problem was provided by Brio [12].

Another approach was made by Zachary and Colella [13]. We describe it in some

details in the text below.

Let us define:

βy =
By
B⊥
, βz =

Bz
B⊥
. (31)

Then, the Alfvén eigenvectors can be written as follows:

la±=
1

2

(

0,0,±βz,∓βy,0,−
βzsgn(Bx)√

̺
,
βysgn(Bx)√

̺
,0

)

, (32)

ra±=(0,0,±βz,∓βy,0,−βz
√
̺sgn(Bx),βy

√
̺sgn(Bx),0)

T . (33)

The singularities in the Alfvén speed can be fixed by applying [10]:

lim
B⊥→0

βy = lim
B⊥→0

βz =
1√
2
. (34)

An elegant way of implementing the above limit into a code is to set:

βy =
By+ǫ

B⊥+ǫ
√
2
, ǫ<< 1. (35)

Now, we define:

α2−=
c2s−c2−
c2+−c2−

, α2+=
c2+−c2s
c2+−c2−

. (36)

A lengthy algebra leads to the eigenvectors for the magnetosonic waves [14]:

l+=
1

2c2s























0
±α+c+

∓α−c−βy sgn(Bx)
∓α−c−βz sgn(Bx)

0
α−csβy/

√
̺

α−csβz/
√
̺

α+/̺























T

, r+=























α+̺
±α+c+

∓α−c−βy sgn(Bx)
∓α−c−βz sgn(Bx)

0
α−csβy

√
̺

α−csβz
√
̺

α+̺c
2
s























, (37)

l−=
1

2c2s























0
±α−c−

±α+c+βy sgn(Bx)
±α+c+βz sgn(Bx)

0
−α+csβy/

√
̺

−α+csβz/
√
̺

α−/̺























T

, r−=























α−̺
±α−c−

±α+c+βy sgn(Bx)
±α+c+βz sgn(Bx)

0
−α+csβy

√
̺

−α+csβz
√
̺

α−̺c
2
s























. (38)
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These eigenvectors contain only the singularity which is called a triple umbilic T . It

occurs at c2+ = c
2
− = V

2
A when B⊥→ 0. The triple umbilic point is, where the fast,

slow, and Alfvén speeds coincide. It can be shown that around this point:

α−=cos
α

2
+δ−, α+=sin

α

2
+δ+, (39)

where:

tanα≡ Bx−cs
√
̺

B⊥
. (40)

The errors δ± satisfy:

|δ±| ≤
B⊥
4cs
√
̺
. (41)

For B⊥=0 it can be proved that α−=H(Bx−cs
√
̺) and α+=H(cs

√
̺−Bx), where

H is the Heaviside function.

7. Problems with MHD Riemann solver

An important problem in developing a scheme for MHD equations is that these

equations are neither strictly hyperbolic nor strictly convex, e.g. [10]. The MHD

equations form a non-strictly hyperbolic system as some eigenvalues may coincide at

some points and compound wave structures, involving both shocks and rarefactions

may sometimes develop. It occurs that when the magnetic field components are equal

to zero the eigenvectors become singular. These singularities can be removed by

renormalizing the eigenvectors [7, 12]. See also the comment at the end of Section 6.

Contrary to the hydrodynamic case, the Riemann problem for ideal MHD is not

completely consistent and unique as one of the Jacobian matrix eigenvalues is zero.

See Equation (13). This zero eigenvalue is non-physical as the eigenvalues should

appear either singly as the x-component of the flow, vx, or in pairs symmetric about

vx. Physical eigenvalues are given by Equations (18)–(29).

The zero eigenvalue leads to numerical difficulties associated with nonzero diver-

gence of the magnetic field. Consequently, the characteristics can become degenerate,

depending on the orientation of the magnetic field. It turns out that the solution of

this problem is to consider a form of the equations that is not strictly in a conservation

form [11]. See Equation (7).

8. Divergence cleaning schemes

There are several important issues in developing a new MHD code. One of

these is ensuring ∇·B=0, e.g. [15]. It is well known that incorrect treatment of an
induction equation will lead to a non-selenoidal field that varies in time, and hence,

causes the magnetic field to exert a non-physical force along field lines. It occurs

that discretization errors lead to a non-zero divergence over time. Physically, this

means that nothing maintains conservation of a magnetic flux in the Gauss’ law.

This error usually grows exponentially during the computations, causing an artificial

force parallel to the magnetic field, unphysical plasma transport orthogonal to B

as well as a loss of momentum and energy conservation, destroying the correctness

of the solutions [9]. Several remedies have been proposed. Brackbill and Barnes [9]

have found that the momentum equation can be reformulated into a non-conservative
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form to eliminate the parallel force. Harder (1987) has proposed a method of adding

a diffusion term in the induction equation that makes the divergence-free error

diffuse away from the source. Magnetic monopoles are locally suppressed by this

term but they are not completely eliminated. Ewans and Hawley (1988) have utilized

a numerical technique called constraint transport to transform the induction equation

in such a way that it maintains a vanishing divergence of the field components to

within machine round-off error by placing field components at appropriate locations of

a numerical cell. This technique was used by Stone and Norman [3] who implemented

a covariant formalism in the ZEUS code based on the finite-differences method. In

another constraint transport method, a magnetic field is kept divergence-free to within

machine round-off error by placing the magnetic field components at the interface

locations of the finite-difference grid [16].

Until recently, there were four traditional approaches to enforce the divergence-

free constraint:

(a) a magnetic vector potential, B=∇×A, approach. Then, the divergence-free
condition is satisfied automatically. The difficulty with this approach is that the

Lorentz force representation requires taking a second derivative of the vector

potentialA. This forces an application of higher-order numerical schemes. Even

then, serious problems can be encountered due to the anomalous Lorentz force

which apparently reveals itself in the neighborhood of large gradients;

(b) a projection scheme which forces the divergence-free constraint by solving

a Poisson equation to subtract off the portion of the magnetic field that leads

to non-zero divergence, e.g. [17]. The essence of this method is as follows. Let

us suppose that a magnetic field has a non-zero divergence, ∇·B 6=0. We can
fix this problem by adding a correction term Bc such that:

∇·(B+Bc)= 0. (42)

Clearly, Bc must not generate new current jc=
1

µ (∇×Bc)= 0. Hence,
∇×Bc=0, (43)

from which we conclude that:

Bc=∇φ, (44)

where φ is a scalar potential. Substituting Equation (44) into Equation (42) we

obtain:

∇2φ=−∇·B. (45)

This is the Poisson equation which has to be solved in the whole computational

domain. The resulting solution φ should be used to evaluate Bc according to

Equation (44) and this to clean the magnetic field B.

This method has its disadvantages. Its major drawback is that it requires

a global solution to the elliptic Equation (45) which is computationally ex-

pensive. Moreover, the global nature of the cleaning procedure violates the

hyperbolicity of the MHD equations in regions where the flow is supersonic and

superalfvénic;

(c) a staggered-grid approach in which the divergence-free constraint is satisfied by

placing the magnetic field components at the centroids of appropriate cell faces
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and volumetric variables such as mass, momentum and energy are stored at

the centroids of computational cells. The MHD equations on such a grid can be

approximated in a way that preserves the selenoidality of a discrete magnetic

field [3, 16]. This approach comes from incompressible fluid mechanics where

the velocity field must be kept divergence-free.

Staggered grids are expensive for storage and handling on meshes with hanging

nodes that are common to unstructured grid methods. Moreover, appropriate

Riemann solvers do not seem to work on staggered grids;

(d) the truncation-level error method which has been developed by Powell [11]. See

also [18–20]. That approach relies on an addition to the original set of MHD

equations the source term that is proportional to ∇·B. See Equation (7). By
that way any local ∇·B that is created is convected away in accordance with
Equation (9). That approach leads to the Riemann problem which has an eight-

wave structure, where seven of the waves are those used in previous works on

upwind methods, e.g. [21] for MHD, and the eight wave is associated with the

the magnetic field divergence. It has been found by Janhunen [22] that in the

case when the contribution to the total energy from the fluid pressure is small

in comparison to the magnetic and kinetic energies this approach may lead to

an unphysical intermediate state with negative fluid pressure. As a consequence

of such computing, the pressure from the conserved quantities may involve the

difference between two nearly equal terms and the errors result. Janhunen [22]

has shown that this problem can be overcome by discarding the source terms

in the energy and momentum equations, so that Equation (7) becomes:

u,t+∇· f =−∇·B(0,0,v,0)T , ∇·B=0. (46)

This equation has been derived from relativistic energy-momentum conserva-

tion by Dellar [15].

The question of divergence cleaning in a rather detailed way is taken up by

Balsara [23, 24]. Essentially, it boils down to saying that if the equations were exactly

solved in a discrete fluid dynamic code the divergence would stay at zero as if it had

been zero initially. In reality some small errors are made with every time-step. It is

only after a lot of time-steps that the errors build up. (This happens in the 7-th or

8-th wave models.) Thus, the cure of removing the divergence needs to be applied

only once in a while. Numerical experiments comparing various schemes with respect

to the ∇·B=0 constraint have been recently performed by Tóth [25] who has shown
that the truncation-level error method performs generally well. However, this method

accumulates so much magnetic monopoles in strongly discontinuous and stagnated

flows that they corrupt the solution.

9. A 9-th wave Riemann solver for two-component

MHD equations

To discuss the 9-th wave Riemann solver for two-component MHD equations it

is useful to denote densities of two-component plasma by ̺1 and ̺2. Then, the total

density is:

̺= ̺1+̺2. (47)
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The background potential field and source term are expressed by B0 and S, respec-

tively. Introducing new dependent variables:

u1=(̺,m,B1,E1,̺2)
T =(̺,mx,my,mz,

Bx−B0x,By−B0y,Bz−B0z,E−(B1·B0)/µ−B20/(2µ),̺2)T ,
(48)

with the rotation of dependent variables:

un=Tu=(̺,mn,Bn,E,̺2)
T =

(̺,mn,mt1,mt2,Bn,Bt1,Bt2,E,̺2)
T ,

(49)

the equation for u1 can be written as [26]:

∂

∂t

∫

u1dv+

∫

T−1F(u1n,B0n)ds=

∫

Sdv, (50)

where dv and ds are the volume and surface elements of the control volume and

T is a matrix which rotates the x-axis to the direction of a unit vector n normal

to the control volume surface. The flux function F in the normalized form is

written as:

F=





















































mn
p+ mnmn̺ + B

2

2µ − 1µBnBn−
B2
0

2µ +
1

µB0nB0n
mt1mn
̺ − 1µBt1Bn+ 1µB0t1B0n

mt2mn
̺ − 1µBt2Bn+ 1µB0t2B0n

0
mn
̺ Bt1−

mt1
̺ Bn

mn
̺ Bt2−

mt2
̺ Bn

mn
̺ (E1+

B2
1

2µ +p)−
B1n
µ

×(mn̺ B1n+
mt1
̺ B1t1+

mt2
̺ B1t2)

+B1t1µ (
mn
̺ B0t1−

mt1
̺ B0n)

+B1t2µ (
mn
̺ B0t2−

mt2
̺ B0n)

̺2
̺ mn





















































. (51)

Eigenvalues and eigenvectors

For the Jacobian matrix of the 9-th component flux function, eigenvalues λm,

m=1, .. . ,9 are:

λ1=m′n, (52)

λ2,3=m′n±|B′n|, (53)

λ4,5=m′n±c+, (54)

λ6,7=m′n±c−, (55)

λ8=0, (56)

λ9=m′n, (57)
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with the notation

u′n=(̺,m
′

n,B
′

n,E,̺2)
T =

(̺,mn/̺,mt1/̺,mt2/̺,Bn/
√
µ̺,Bt1/

√
µ̺,Bt2/

√
µ̺,E,̺2)

T .
(58)

Here, variables with ′ have a dimension of velocity and |B′n|, c+ and c− correspond
to Alfvén, fast and slow speeds, respectively. The eigenvectors rm which correspond

to λm are:

r1=



































1

m′n[A

m′t1

m′t2
0

0

0

m′2/2

0



































, (59)

r2,3=







































0

0

∓B′′t2·sgn(B′n)
±B′′t1·sgn(Bn)

0

B′′t2

√

µ
̺

−B′′t1
√

µ
̺

∓(B′′t2m′t1−B′′t1m′t2)·sgn(B′n)+(B′′t2B′1t1−B′′t1B′1t2)
0







































, (60)

r4,5=



































































af

af (m
′
n±c+)

afm
′
t1∓asB′′t1c+B′n

afm
′
t2∓asB′′t2c+B′n
0

asB
′′
t1c
2
+

√

µ
̺

asB
′′
t2c
2
+

√

µ
̺

af ·0.5·m′2+afc2+/(γ−1)±afc+m′n
∓asc+(B′′t1m′t1+B′′t2m′t2)B′n
+af (−1)/(γ−1)(c2+−c0)

+af (c
2
+−c0)(B′′t1B ′′1t1+B′′t2B ′′1t2)
/(B′′ 2t1 +B

′′ 2
t2 )

af̺2/̺



































































, (61)

tq113e-e/55 17VI2009 BOP s.c., http://www.bop.com.pl



56 K. Murawski

r6,7=























































as

as(m
′
n±c−)

asm
′
t1±afB′′t1

√
c0/c+·sgn(B′n)

asm
′
t2±afB′′t2

√
c0/c+·sgn(B′n)
0

−afB′′t1
√

µ
̺ c0/c

2
+

−afB′′t2
√

µ
̺ c0/c

2
+

as·0.5·m′2+asc2−/(γ−1)±asc−m′n
±af (B′′t1m′t1+B′′t2m′t2)

×√c0/c+·sgn(B′n)+as(−1)/(γ−1)(c2−−c0)
+as(c

2
−−c0)(B′′t1B ′′1t1+B′′t2B ′′1t2)
/(B′′ 2t1 +B

′′ 2
t2 )

as̺2/̺























































, (62)

r8=

































0

0

0

0

1

0

0

0

0

































, r9=

































1

m′n
m′t1
m′t2
0

0

0

0.5·m′2
1

































, (63)

where:

B′′t1=(B
′

t1+ǫ)/(B
′2
t1+B

′2
t2+2ǫ

2)1/2, (64)

B′′t2=(B
′

t2+ǫ)/(B
′2
t1+B

′2
t2+2ǫ

2)1/2, (65)

af =(c
2
+−B′2n )1/2/(c2+−c2−)1/2, (66)

as=(c
2
+−c0)1/2/(c2+−c2−)1/2c+. (67)

The symbol ǫ is a small number and c0 is the sound speed. Then the upwind numerical

flux Fij at the interface of control volumes i and j can be written as:

Fij =
1

2
[F(u1nj ,B0nj)+F(u1ni,B0ni)−

Rij |Λij |R−1ij (u1nj−u1ni)],
(68)

where the eigenvector matrix Rij and the eigenvalue matrix Λij are calculated from

the symmetric average of u1nj and u1ni. To get a higher-order accuracy, the MUSCL

approach is used with indices i and j being replaced by r and l, suffixes which indicate

variables just on the left and right sides of the interface [27].

It is noteworthy that a numerical scheme has been developed by Shyue [28]

to model multicomponent fluids with the general Mie-Grüneisen equation of state.

This scheme combines the Euler’s equations of gas dynamics with a set of effective

equations for the material-dependent functions.
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10. Implementation of the 8-th wave Riemann solver to

the problem of magetosonic waves in a coronal loop

This research has been motivated by the new observations of oscillations of

coronal loops, detected by the spacecrafts TRACE and SUMER/SOHO, and in the

ground-based solar eclipse imaging instrument SECIS [29–31]. They include short

period (1-10 s) oscillations which have been observed for several decades in the

modulated radio emission, e.g. [30], but it is only very recently that they have been

observationally identified in the optical band as propagating waves in a coronal loop

[32]. These oscillations are only in the SECIS data, TRACE and SOHO do not have

this resolution. It is believed that these oscillations are associated with MHD modes

of coronal plasma structures and, consequently, thet are an ideal tool for coronal

seismology [33, 34], an idea first put forward by Roberts, Edwin and Benz [35]. An

understanding of these oscillations is particularly important because they may shed

some light on the puzzles of coronal heating and the solar wind acceleration, providing

seismic information about the coronal plasma.

The theory of coronal loop oscillations has been developed in some detail for

the special case of a straight and infinite cylinder of a magnetic field by Edwin and

Roberts [36] who has shown thatMHD waves are guided by regions of low Alfvén speed,

typically corresponding to regions of high mass density, and thus they are able to form

distinctive wave packets. Such regions provide wave guides for fast magnetoacoustic

waves. Slow and Alfvén waves are naturally guided along magnetic field lines. In fact

the knowledge regarding MHD waves in the solar corona has increased significantly

over the last few years. For instance, an extensive investigation of MHD waves in

coronal loops has been carried on, e.g. [37, 38]. However, the improved resolution

of modern observational techniques motivates further development in the study of

theoretical aspects of coronal wave activity [30].

A number of theoretical aspects of the study of coronal loop oscillations,

connected with the effects of nonlinearity, stratification and 3D structuring remain

to be revealed. This subject is devoted to the present studies which are based on

numerical modeling of MHD wave processes.

As a consequence of the complexity of MHD waves in highly inhomogeneous

coronal plasma it is necessary to understand simpler phenomena which may play the

role of elementary building blocks in the construction of a more elaborated theory.

As a result, our strategy is to develop simpler models at the initial stage of the

research and progressively extend and generalize them to more complex models at

subsequent stages. The three-dimensional simulations that we propose in these studies

are motivated by the fact that real coronal loops exhibit in fact a multi-dimensional

geometry. Traditionally, the studies of kink and sausage modes of a straight magnetic

cylinder are performed in the 2.5D geometry. This approach does not allow us to

consider linear coupling of various modes, and to model processes of excitation of

the modes by an external or asymmetric source. Thus, in this study, we model

MHD oscillations of coronal loops with the use of a full-MHD 3D numerical code.

Additionally, the 3D simulations allow us to study the effects of excitation.

This paper concerns an infinitely long cylinder of a circular cross section, time-

signatures which are made by a wave signal which is collected in time at a fixed
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spatial location. The results of numerical simulations will be compared with the

earlier results [37, 38] and with the observational data [30]. MHD waves will be excited

impulsively inside a coronal loop. In these parametric studies the impulses will possess

various spatial profiles. This study is relevant to the case when the wavelength is

shorter than the scale height.

We consider the coronal plasma which is described by the following ideal

magnetohydrodynamic equations:

∂̺

∂t
+∇·(̺V)= 0 , (69)

∂ (̺V)

∂t
+∇· [(̺V)V] =−∇p+ 1

µ
(∇×B)×B , (70)

∂p

∂t
+∇·(pV)=−p(γ−1)∇·V , (71)

∂B

∂t
=∇×(V×B) , (72)

∇·B=0 , (73)

where ̺ is the mass density, V is the flow velocity, B is the magnetic field, p is the

pressure, µ is the magnetic permeability, and γ=5/3 is the adiabatic index.

As in a realistic model of a coronal loop, a number of effects crowd in and

complicate our understanding of the wave phenomena we assume a simple coronal

loop model. In this way, we consider briefly some of the effects that require evaluation,

if we are to explain the observed wave signatures in coronal loops. We enquire what

effects are most likely important, and we try to estimate the time-scales which they

produce.

In the model we discuss, a magnetically structured atmosphere in which the

magnetic field is uniform and directed in the z-direction. We ignore the effects of

gravity, field line curvature, twisted loops, non-circular cross-sections and approximate

the coronal loop by smooth plasma profiles in which the inhomogeneity occurs in the

r-direction, and the φ-direction is perpendicular both to the r- and z-directions.

In particular, we consider a loop of a cross-section radius a, field strength B0
and mass density ̺0 embedded in a magnetic environment with field strength Be and

mass density ̺e. The mass density ̺0(r) profile is chosen as [38]:

̺0(r)= ̺e+(̺i−̺e) sech4
( r

a

)

, (74)

where a is the loop radius, indices i and e denote quantities inside the loop and

outside the loop, respectively. The equilibrium magnetic field B0(r)ẑ and pressure

p0(r) profiles must satisfy the total pressure balance condition:

d

dr

(

p0(r)+
B20(r)

2µ

)

=0 . (75)

Hence, at the equilibrium the total (gas plus magnetic) pressure has to be constant.

In particular, the total pressure inside the coronal loop is equal to the total pressure

outside the coronal loop, i.e.:

pi+
B2i
2µ
= pe+

B2e
2µ
. (76)
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We adopt the magnetic field profile which corresponds to an open magnetic struc-

ture, viz.:

B0(r)=Be+(Bi−Be)sech4
( r

a

)

(77)

and the expression for p0(r) follows then from Equation (75).

Similarly as in [38] we specify the plasma β, density ratio d, and the ratio of

Alfvén speeds v as:

β≡ 2µpe
B2e
, d≡ ̺i

̺e
, v≡ cAe

cAi
, (78)

where cAe=Be/
√
µ̺e and cAi=Bi/

√
µ̺i. Henceforth, we choose and hold fixed

d=3.89, v=2, (79)

which gives us the plasma β=0.003.

10.1. Numerical model

MHD Equations (69)–(73) are solved numerically by using the FLASH code [39]

which is a nice tool for solving MHD equations numerically. The high-order Riemann

solver of a Roe type that is implemented in this code yields accurate results near

steep gradients and moving contact discontinuities. The MHD part is implemented

with using the Powell’s method [20] which allows the divergence of magnetic field to

be kept free to machine dependent round-off errors. The computer code is formally

second-order accurate in space and time.

The plasma equations are solved numerically on an x−y−z Eulerian box with
the dimension (−10a,10a)× (−10a,10a)× (−10a,10a). For most numerical runs 36
(18) the blocks have been chosen in the x,y (z) directions. The maximum refinement

level has been specified as 8. We apply free-boundary conditions at the boundaries

of the simulation region. This choice of boundary conditions is a consequence of an

extension of the real medium. In this way, we assume that MHD waves have no time

to travel the entire length of the loop and they have not reached the ends of the loop,

where line-tying in the dense lower atmosphere causes reflection, and so the wave

propagates freely as if the structure were open.

10.2. Impulsively generated MHD waves

Let us consider coronal plasma which is modeled by Equations (74) and (77).

Perturbations which are excited in the solar corona are very complex. Here, we focus

our attention on three separate cases which correspond to impulsively excited waves.

Such excitation may be due to a flare or any other sudden release of an energy process.

Introducing normalized variables, we shall measure plasma velocities in units

of cAe, the spatial variables in a and the time in units of the Alfvén transit time

tA= a/cAe.

10.2.1. Slow wave

One of the simplest conceivable models is the case when a slow magnetosonic

wave is initially present in the medium. Such wave can be effectively excited by setting

the following initial condition:

Vz(r,φ,z,t=0)=
Vz0

cosh2
( r

a

)

cosh2
(z

a

) , (80)
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Vr =Vφ=0 , (81)

where we choose the pulse amplitude Vz0=0.005.

The initial profile of Equations (80)–(81) excites oscillations in the perturbed

mass density profile:

δ̺≡ ̺−̺0 , (82)

which is shown in the top panel of Figure 1 at t=80. As a result of the initial impact,

the region above the initial pulse is compressed while the region z < 0 is rarefied.

These profiles are symmetric around the z-axis.

The above presented slow wave exhibits time-signatures which are made by

collecting wave signals in time at the detection point. As the slow pulse does not

experience any significant dispersive distortion, it preserves the information about

the initial pulse and we choose the detection point on the loop axis at z=4.

It has been shown by Roberts [35] that slow waves propagate with a speed

which is greater than cti and lower than csi. Here, csi is the sound speed inside the

coronal loop and cti is the so-called tube speed inside the coronal loop:

1

cti
=

√

1

c2si
+
1

c2Ai
. (83)

Thus, the speed cti is sub-sonic and sub-Alfvénic. For the low β plasma conditions, cti
is close to the sound speed inside the loop. It follows from the equilibrium conditions

that:
c2si
c2Ae
=
γ

2

(β+1)v2−d
dv2

. (84)

For a choice of the equilibrium parameters given by Equation (79), we have:

csi
cAe
≈ 0.077. (85)

Thus the slow wave should reach the detection point r = 0, z = 4 at t≈ 52 in good
agreement with Figure 1 (bottom panel).

Slow and fast magnetoacoustic waves are coupled, while in this case the Alfvén

wave decouples from the magnetosonic waves and therefore it is absent in the system.

As a consequence of this coupling, the fast wave must be present in the system, being

driven by the slow magnetosonic wave. However, the fast wave is of the amplitude

10−5 that is much lower than the slow wave amplitude. As a consequence of that, such

a small wave would be hardly detectable in the real system which always contains

a noisy background. Hence, this wave is insignificant and therefore it is not shown.

10.2.2. Fast sausage wave

In this case we initially launch a pulse of the form:

Vr(r,φ,z,t=0)=
V0r r

cosh2
( r

a

)

cosh2
(z

a

) , (86)

Vφ=Vz =0 . (87)

Here V0r =0.005 is a pulse amplitude. This pulse basically excites fast sausage

waves which correspond to symmetric pulsations of the loop, with the central axis

of this loop remaining undisturbed. In particular, the radial component of plasma
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Figure 1. The spatial profile of the perturbed mass density δ̺(x,y=0,z,t=80) (top panel)

and the time-signature which is obtained by measuring the wave signal in δ̺ at x= y=0, z=4: Vz
(bottom panel) in the case of the initially launched pulse of Equations (80)–(81)

which corresponds to an essentially slow wave
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Figure 2. The spatial profile of δ̺(x,y=0,z,t=9) (top panel) and a time-signature which

is obtained by measuring the mass density at the detection point x= y=0, z=0 (dashed line),

z=4 (dotted line), and z=9 (solid line) (bottom panel) in the case of the initial

conditions (86)–(87) that corresponds to a fast sausage wave
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motions disappears at this axis and it changes the sign at r=0. This wave is unable

to propagate for a sufficiently long wavelength as it leaks energy outside the loop.

This leakage is represented by the circular wave patterns in the top panel of Figure 2

which displays the spatial profile of δ̺ at t = 9. This profile corresponds to a fast

sausage mode and it is symmetric around the z-axis. The Alfvén wave is absent in

the system as it decouples from the magnetosonic waves.

Time-signatures that are associated with the fast sausage wave are shown in

Figure 2 (bottom panel). It should be noted that the fast sausage wave exhibits short-

period oscillations, the scenario which is quite different than in the case of the slow

wave of Figure 1 (bottom panel). These few-seconds oscillations are a result of the

fact that sausage modes are more dispersive than a slow wave and the former ones

are leaky for sufficiently long wavelength oscillations. As a consequence of that only

short oscillations are guided along the coronal loop.

10.2.3. Fast kink wave

A simple way to excite a fast kink wave in the system is to launch the following

pulse:

Vx(r,φ,z,t=0)=
Vx0

cosh2
(

x−x0
a

)

cosh2
(

y
a

)

cosh2
(

z
a

) , (88)

Vy =Vz =0 , (89)

where Vx0 = 0.005 is the pulse amplitude and x0 is its initial position. This pulse

excites a packet of waves in which the highest contribution has a fast kink wave.

A pure kink wave involves lateral displacements of the loop, maintaining a circular

cross-section, with the axis of the loop resembling a wriggling snake. We may view

this as a global mode of an oscillation of a coronal loop, moving the whole loop in its

vibration. This mode exists for all wavelengths as a trapped oscillation of the loop.

Obviously, the radial component of plasma motions at the loop center, r=0, generally

differs from zero, Vr 6=0.
Roberts [35] show that the kink mode moves at a speed ck which is determined

by both cAe and cAi; the kink mode speed is greater than cAi and lower than cAe. In

the long wavelength limit (λ≫ a), the phase speed of the principal kink wave is given
by the kink speed ck [35] such that:

ck =

√

̺ic2Ai+̺ec
2
Ae

̺i+̺e
. (90)

This speed is the mean Alfvén speed of the medium, intermediate between the Alfvén

speed inside the loop and the Alfvén speed in the ambient medium. It is interesting

that ck is closer to cAi, particularly for shorter waves. Consequently, the kink wave

reaches the detection point (r=0, z=4) at t≈ 8 in a good agreement with Figure 3.
This figure shows a signal in Bx as the perturbed mass density profile is of a low

magnitude and therefore it is not displayed.

Now, we will discuss the case of the initial pulse of Equations (88)–(89) with

x0=−10. Such pulse produces complex time-signatures. Indeed, Figure 4 shows time-
signatures which are made by collecting the perturbed mass density at three spatial

points: (a) (0,0,0) (dashed line); (a) (0,0,4) (dotted line); (a) (0,0,9) (solid line). It
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Figure 3. Time-signatures which are obtained by measuring appropriate signals in δBx at the

detection point x= y=0, z=0 (dashed line), z=4 (dotted line), and z=9 (solid line) in the case

of the initial conditions (88)–(89) with x0=0

is discernible that the time-signatures are more complex with a larger distance from

the exciter.

As the fast and slow waves are coupled we expect a signal being present in the

longitudinal component of velocity, Vz. Obviously, this signal is of a lower magnitude

that the signal in Vx (not shown). In this case, the initial condition (89) excites also

a signal in Vφ which corresponds to the Alfvén wave (not shown).

10.3. Concluding remarks

We have developed a simple model of the coronal plasma. This model makes

no allowance for loop curvature, stratification, nor is there any realistic modeling of

the coupling of the coronal plasma to the denser layers of the solar atmosphere. With

a use of this model, we have numerically simulated the coronal plasma’s response to

the impulsively generated MHD waves. We have adapted the FLASH code [39] which

is based on the Godunov-type method, e.g. [40]. In the Godunov method [2] the

interaction of a pair of numerical cells at their interface is assumed to take place

through a number of waves [41]. This yields an accurate scheme which avoids non-

physical oscillations in the vicinity of shock waves.

The primary result of the study reported on here is the demonstration of the

importance of the exciting conditions on the propagation of the magnetosonic waves.

Our results both complement and extend those of the earlier published studies, and

we have attempted to clarify some of the subtler aspects of the wave theory. By such
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Figure 4. The time-signature which is obtained by measuring the mass density at the detection

point x= y=0, z=0 (solid line), z=4 (dotted line), and z=9 (dashed line) which are generated

from the initial conditions (88)–(89) with x0=−10

approach we might embrace the important physical processes of oscillations studied

in geophysics, oceanography, atmospheric, and astrophysical contexts.

A slow pulse (Vz) is associated with a relatively strong perturbations of the

mass density. A fast sausage pulse (Vr) does not lead to localized perturbations of

the mass density in the loop. This is a consequence of the fact that short waves are

trapped by the loop while long waves are leaky. An infinitely long kink wave can

oscillate in a loop but when the initial pulse is located on the loop axis it does not

perturb significantly a mass density. On the other hand, the external pulse leads to

mass density alterations which lead to complex time-signatures.

11. The implementation of the 9-th wave Riemann solver

to the problem of solar wind interaction with Venus

The planet Venus has been the subject of intense investigation since Mariner

2 flew by the planet in the fall of 1962. Observations of Venus by orbital missions

have led to a significant improvement of our knowledge about the upper atmosphere

and ionosphere of Venus and their interaction with the solar wind. Since the internal

magnetic field of Venus is negligibly small or even nonexistent, the solar wind inter-

action with Venus differs from their terrestrial counterparts. This lack of a magnetic

field allows the solar wind to make direct contact with the ionosphere of the planet.

Pioneer Venus Orbiter (PVO) as well as other spacecraft observations have

revealed that the solar wind interaction with Venus leads to a highly structured

plasma, e.g. [42]. As a result of supersonic and superalfvénic solar wind flow, a bow
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shock forms upstream of the planet. The shock slows, heats, and also assists in

deflecting the solar wind. The shock which is a standing fast magnetosonic wave

for average solar wind conditions departs from the obstacle so that the plasma that

crossed the shock can flow around the planet. The bow shock size depends on the

solar wind Mach numbers, solar wind dynamic pressure as well as on the shape and

size of the ionosphere [43]. Apparent asymmetries in the shock shape result from the

interplanetary magnetic field which is oblique to the solar wind flow (IMF) [44].

Downstream of the bow shock is a sharp gradient in the electron density known

as ionopause. This is a region which separates the shocked and magnetized solar

wind plasma from the thermal ionospheric plasma. The ionopause forms the surface

of Venus at the altitude above where the ionospheric gas pressure is approximately

balanced by the incident pressure in the overlaying magnetic barrier. The ionopause

was observed to be typically located at about 300km in the subsolar region and

about 1000km near the terminator [42]. It is generally accepted that the height of the

terminator ionopause affects the transport of ionospheric plasma to the nightside. On

the occasion when the solar wind dynamic pressure is high enough to substantially

lower the terminator ionopause altitude, the nightside ionosphere observed by PVO

is found to be highly depleted [45, 46]. This phenomenon is called the disappearing

ionosphere.

The region between the bow shock and the ionopause is referred to as the

magnetosheath [42]. The magnetosheath by itself contains a region (close to the

ionopause) of enhanced magnetic pressure referred to as the magnetic barrier [47].

It is well known that Venus has a dayside exosphere which is dominated by

oxygen at altitudes above 400km from the planetary surface. The ionosphere is

a partially-ionized component of exosphere above about 140km from the surface

of Venus. This region contains electrons and various ion species such as O+, H+,

O+2 , CO
+
2 , and others. The ionosphere is approximately in photochemical equilibrium

below an altitude of about 200km at Venus for all ions. Above 200km, O+ becomes

the major ion in this region. The principal ionization source on the dayside is provided

by solar photoionization of thermospheric gases such as O by solar extreme ultraviolet

(EUV) radiation, although other ionization processes such as impact ionization

and charge exchange may also contribute in a major way. On the nightside, solar

photoionization does not contribute directly to the ionization, and the maintenance

of the nightside ionosphere requires ion transport from the dayside through the

terminator. The nightward ion flow is driven primarily by the large pressure gradient

at the terminator. The ion flow generally increases with the solar zenith angle (SZA),

reaching values larger than 7km/s downstream of the terminator [48]. Ion-neutral

chemical reactions and electron-ion charge exchange are both important processes in

the lower ionosphere.

The observations of the nightside ionosphere have provided evidence that the

ionospheric plasma is highly structured and dynamic, e.g. [49], often exhibiting large-

scale structures which are called tail rays. The ionosphere has a tendency to form

a central tail ray, often with rays on either side, to the north and south. The rays

have dimensions of the order of 1–3 ·103 km, decreasing in width at higher altitudes
[50]. Although the downstream extent of these structures has not been measured
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Figure 5. Pressure distribution around Venus. The equatorial and meridian planes are horizontal

and vertical, respectively

since spacecraft orbits crossed them almost horizontally, it is supposed that they

must extend tailward at least a few thousand kilometers downstream.

In the nightside ionosphere, there are also regions of mass density depletions

referred to as ionospheric holes [51]. The density in these holes is lower than in the

surrounding ionosphere by up to two orders of magnitude. The plasma in the holes

differs from that found in their surrounding; H+ becomes a major ion in the holes,

while O+ is the major ion outside. These holes are associated with a strong magnetic

field which points tailward [52].

Most recent numerical simulations of the three-dimensional interaction between

the solar wind and Venus have largely improved our understanding of the large

scale physical processes [4, 5, 26, 53, 54]. In particular, Murawski and Steinolfson [4]

included mass loading due to photoionization of the oxygen atoms and showed that

the solar wind was decelerated by the mass loading and the bow shock is pushed

farther outward from the planet. However, this model was developed for the case

when the IMF was parallel to the solar wind flow, simplifying the geometry to

two dimensions. This model was extended to three dimensions by Murawski and

Steinolfson [5] and the case of the IMF perpendicular to the solar wind flow was

considered. In another model, solar wind interaction with the ionosphere of Venus

was numerically simulated in the framework of two-component, three-dimensional

MHD model by Tanaka and Murawski [26]. This model is briefly described here. The

effect of a decreased ionospheric pressure which occurs under the condition of a high

speed solar wind or a low solar extreme ultraviolet (EUV) flux, was discussed by

Tanaka [54, 55]. The results of numerical simulations showed that the IMF penetrated
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from the magnetosheath to the dayside ionosphere so as to increase the ionospheric

total pressure.

The purpose of this subsection is to demonstrate that the basic features of the

solar wind interaction with the ionosphere of Venus can be reproduced by applying

a two-component MHD model which was developed by Tanaka and Murawski [26]

and Tanaka [54, 55]. This subsection is organized as follows. A numerical model of

the solar wind and ionospheric plasma dynamics is reviewed in Section 11.1. The

numerically obtained results and the discussion are presented in the following section.

This subsection closes with some concluding remarks.

11.1. Numerical model

We assume that the neutral atmosphere of Venus consists of oxygen atoms

and of the carbon dioxide molecules both of which are stratified gravitationally.

Their number densities at the lower boundary of the atmosphere are 1010 cm−3

and 5 · 1010 cm−3, respectively. The peak number densities occur at an altitude of
140km above the planetary surface, in agreement with the PVO observations [56].

The ionosphere is approximately in photochemical equilibrium at lower altitudes. O+

ions are produced primarily by the solar EUV incident on the neutral atmosphere,

O+ hν → O+, and by charge exchange with CO+2 ions, CO+2 +O → O+ +CO2.
These chemical reactions occur with the production rates q1 = 10

−10 (cm3s)−1 and

q2 = 10
−10 (cm3s)−1, respectively. The density of CO+2 ions is calculated from the

photo-chemical equilibrium. O+ ions experience some losses during their charge

exchange with molecules of the carbon dioxide, viz., O++CO2→CO+O+2 . The loss
rate for O+ ions is L1=9.4 ·10−10 (cm3s)−1.

CO+2 ions are produced by the photoionization of the carbon dioxide molecules,

CO2+ hν → CO+2 , and they experience charge losses during a chemical reaction
with the oxygen atoms, viz., CO+2 +O→ O+2 +CO. The loss rate for CO+2 ions is
L2=1.64 ·10−10 (cm3s)−1.

We assume that the solar wind plasma consists of H+ ions which the flow with

the same velocity as O+ ions. The set of equations used for a description of the solar

wind interaction with Venus is that of two-component, ideal MHD that includes mass

production and loss terms in the mass continuity equation, and aeronomical collision

and gravity terms in the momentum equation. We solve the following set of MHD

equations as an initial value problem:

u,t+F,x+G,y+H,z =S. (91)

Here, the state vector of nine dependent variables is:

u=(̺,mx,my,mz,Bx,By,Bz,E,̺2)
T (92)

and F, G, and H are flux functions in the x, y, and z directions [54, 55], respectively.

The source term S depends on the ion production due to photoionization and

ion-neutral chemistry, q1, q2, as well as on losses due to ion-neutral reactions, L1, L2
(H+ ion-electron recombination is neglected in this model), viz.:

S=(q1+q2−L1−L2,−νm−̺g, 0, 0, 0,

−m
̺
·(νm+̺g)+ Tq

γ−1(q1+q2)−
TL
γ−1(L1+L2),q2−L2)

T .
(93)
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In the above formulae, ̺ is the total ion density, ̺= ̺1+̺2, with ̺1 and ̺2 corre-

sponding to H+ ions and O+ ions, respectively. The symbol m≡ ̺V= (mx,my,mz)
denotes the momentum. B is the magnetic field. E is the total energy density. ν is the

ion-neutral drag collision frequency. The ratio of specific heats is γ=5/3. Tq =10
3K is

a production temperature of photoions and TL is a loss temperature due to a chemical

reaction of the O+ ions with the carbon dioxide. The other terms in the expressions

above are self-explanatory.

We assume that the magnetic field is perpendicular to the solar wind flow, while

the IMF is typically oriented about 42◦ from the Sun-Venus line in the proper sense

for an Archimedean spiral [57]. As the perpendicular magnetic field case is simpler

than the oblique field case, the present simulations will provide an insight into the

more complex case. Consequently, the perpendicular magnetic field case seems to be

motivated.

Equation (91) is solved in all three spatial dimensions of a spherical r, θ, φ

coordinate system by adopting a finite-volume method which uses a TVD scheme

which was already successfully applied for a single-component plasma [17, 27, 58].

The size of the Jacobian matrix for Equation (91)increases to 9×9 from 8×8 for one-
component MHD equations [55]. The eigen-value problem for this Jacobian consists of

two Alfvén, two fast, two slow, and two entropy waves. Consequently, there is one more

entropy wave in comparison to the eigen-waves of the Jacobian of the one-component

MHD equations. Details of the present approach can be found elsewhere [26, 55].

The inner and outer boundaries of the simulation region are set at about 1

Rp and 10 Rp, respectively. Here Rp = 6053km + 140km is the planetary radius.

While the inflow boundary conditions are maintained on the dayside of the outer

boundary, the zero-gradient boundary conditions are adopted on the downstream side.

The ion-neutral collision and ion chemical processes become dominant near the inner

boundary. Therefore, an ion chemical equilibrium and zero plasma velocity conditions

are adopted at the inner boundary. The ion temperature is fixed and held constant

at the inner boundary throughout the simulation process.

The simulation code used a 88×80×86 grid points along r×θ×φ directions.
This grid provides angular grid spacings ∆θ = 4.5◦ and ∆φ ≃ 4◦. The radial grid
was chosen nonuniform with a finest grid of 0.00025Rp at the inner boundary of the

simulation region. The coarsest grid of 0.33Rp was set at the outer boundary.

A typical computation begins with the introduction of the desired solar wind

values in the dayside within the numerical box. The numerical solution continues then

until the interaction process achieves an approximate steady state.

11.2. Numerical results and discussion

We report here only some of the results from our simulations. More details can

be found in Tanaka and Murawski [26] and Tanaka [55]. We present all numerical

results for the following solar wind parameters: proton density ne=14cm
−3, temper-

ature T = 105K, sound speed 61km/s, solar wind speed 311km/s which gives sonic

Mach number 5.1, the plasma β =0.6, and the magnetic field strength 15nT. These

parameters correspond to the maximum of solar activity [59].

Figure 6 shows the pressure profiles along the Sun-Venus line. In the upstream

solar wind, kinetic pressure ̺V 2 dominates gas pressure p and magnetic pressure
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Figure 6. The distributions of the gas pressure p, the magnetic pressure pB , and the dynamic

pressure ̺V 2 along the Sun-Venus line on the subsolar side. The horizontal axis shows the radial

distance normalized to the planet radius Rp and the vertical axis shows relative pressure values.

The bow shock at the distance 0.45 Rp, the ionopause at the altitude about 0.04 Rp, and the

magnetic barrier which corresponds to the maximum of the magnetic pressure should be noted

B2/(2µ). At the bow shock, kinetic energy of the solar wind is converted into thermal

energy. As a consequence of that, the gas pressure dominates over the kinetic pressure

downstream the bow shock. The distance between the bow shock and the planetary

surface is about 0.45Rp ≃ 2700km, where Rp ≃ 6053km is the radius of Venus
(Figure 6). With a distance closer to the planetary surface, the magnetic pressure

accommodates itself as a result of competitive ionospheric gas pressure, while the gas

pressure decreases at the same time. This behavior is a consequence of the magnetic

barrier formation whose location corresponds to the magnetic pressure maximum

(Figure 6). The magnetic barrier is supported by the gas pressure of cold ionospheric

plasma. This pressure is maintained by ionization and ion chemical processes in the

planetary upper atmosphere. At the bottom of the ionosphere, the gas pressure

is provided by the neutral atmosphere which is lying below through ion-neutral

collisions.

The ionopause occurs at the place where the impacting solar wind pressure is

balanced by the ionospheric pressure. It is seen in Figure 6 that the dynamic pressure

is negligibly small downstream the bow shock, as at the bow shock, the supersonic

solar wind flow is diverted into a subsonic flow. Therefore, the ionopause is placed at

the point where the gas pressure equals the magnetic pressure, at the distance of about

0.04Rp ≃ 240km from the planetary surface. The altitude at which the ionopause is
located is smallest at the nose, and it grows monotonically with the increasing SZA,

tq113e-e/70 17VI2009 BOP s.c., http://www.bop.com.pl



Godunov-Type Numerical Methods for One- and Two-Component... 71

Figure 7. Draping of magnetic field lines around Venus

reaching the largest altitude at the terminator. The ionopause altitude is about 1Rp
at the terminator [26].

Figure 7 shows the global configuration of the the magnetic field lines and

plasma density from the final configuration of the numerical simulations. The view is

from the tailside. The solar wind flows in from the left-hand side toward the planet.

The brown lines indicate magnetic field lines which pile up at the bow shock, and

then slip over the ionosphere, forming a magnetotail. Having been dragged through

the polar regions the magnetic field lines are convected equatorward by the field line

tension and the solar wind flow toward the antisolar direction. The magnetic field

geometry on the nightside is related to the draping of the solar wind magnetic field

over the obstacle on the dayside. A part of the draped magnetic field apparently

sinks into the wake of the planet to create lobes-like structures with sunward and

anti-sunward directed magnetic fields.

11.3. Concluding remarks

We have considered the solar wind’s interaction with the ionosphere of Venus

using numerical solutions of the two-component, three-dimensional MHD equations.

The solar wind for these solutions consists mainly of H+ ions, while the ionosphere’s

primary component consists of O+ ions. Loss effects due to the interaction of O+ ions

with molecules of the carbon dioxide are introduced. Such modeling has generally

been successful in reproducing the characteristics of the solar wind interaction with

Venus.

The main results are the following: The solar wind interaction with Venus leads

to the formation of the bow shock and an ionosphere which consists of cold, low

speed, weakly magnetized O+ ions. The ionosphere exhibits a blunt conic shape, with
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a highly structured ionotail. The ionotail is flattened with the growing distance from

the planetary surface, and the flattening is believed to be due to magnetic field tension

forces.

The present results can in principle be applied to any unmagnetized body that

has an ionosphere. In particular, the results are expected to be quite relevant to Mars,

e.g. [60], several comets, e.g. [38], and a moon of Saturn – Titan, e.g. [61].

12. Summary

This paper presents Godunov-type methods for wave propagation in fluids.

Although this presentation is far from complete the emphasis is on the methods

which are the most effective and best known methods for the author.

There are several conditions that numerical schemes should satisfy: the accuracy

and speed of numerical simulations, adequate representation (without generation of

spurious oscillations) of complex flows and steep profiles, as well as robustness of the

numerical code. A computer code is described as being robust if it has the virtue of

giving reliable results to a wide range of problems without needing to be retuned.

Modern numerical schemes such as shock-capturing schemes described in this paper

satisfy these conditions.

The existing numerical models demonstrate the feasibility of fluid simulations

in obtaining at least qualitative and, to some extent, quantitative features in the

magnetized fluid. With continued improvements in the computational methods and

computer resources, the usefulness and capability of the numerical approach should

continue to improve.
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[25] Tóth G 2000 J. Comp. Phys. 161 605

[26] Tanaka T and Murawski K 1997 J. Geophys. Res. 102 (19) 805

[27] Tanaka T 1994 J. Comp. Phys. 111 381

[28] Shyue K.-M. 2001 J. Comp. Phys. 171 678

[29] Aschwanden M, Fletcher L, Schrijver C J and Alexander D 1999 Astrophys. J. 520 880

[30] Aschwanden M 2003 Proc. NATO Workshop, Budapest, pp. 215–237

[31] Nakariakov V M 2003 The Dynamic Sun, (Dwivedi B, Ed.), CUP, pp. 314–334

[32] Williams D R, Mathioudakis M, Gallagher P T, Phillips K J H, McAteer R T J, Keenan F P,

Rudawy P and Katsiyannis A C 2002 MNRAS 336 747

[33] Nakariakov V M, Ofman L, Deluca E E, Roberts B and Davila J M 1999 Science 285 862

[34] Nakariakov V M and Ofman L 2001 Astron. Astrophys. 372 L53

[35] Roberts B, Edwin P M and Benz A O 1984 Astrophys J. 279 857

[36] Edwin P M and Roberts B 1983 Solar Phys. 88 179

[37] Murawski K and Roberts B 1994 Solar Phys. 151 305

[38] Murawski K, Aschwanden M and Smith J 1998 Solar Phys. 179 313

[39] Zingale M, Dursi L J, ZuHone J, Calder A C, Fryxell B, Plewa T, Truran J W, Caceres A,

Olson K and Ricker P M 2002 Astrophys J. Suppl. 143 539

[40] Murawski K 2002 Analytical and Numerical Methods for Wave Propagation in Fluids, World

Scientific, Singapore

[41] LeVeque R J 2002 Finite-volume Methods for Hyperbolic Problems, Cambridge

[42] Phillips J L and McComas D J 1991 Space Sci. Rev. 55 1

[43] Zhang T L, Luhmann J G and Russell C T 1990 J. Geophys. Res. 95 (14) 961

[44] Khurana K K and Kivelson M G 1994 J. Geophys. Res. 99 8505

[45] Luhmann J G, Russell C T, Scarf F L, Brace L H and Knudsen W C 1987 J Geophys. Res.

92 8545

[46] Mahajan K K, Mayr H G, Brace L H and Cloutier P A 1989 Geophys. Res. Lett. 16 759

[47] Zhang T L, Luhmann J G and Russell C T 1991 J. Geophys. Res. 96 (11) 145

[48] Brace L H, Hartle R E and Theis R F 1995 Adv. Space Res. 16 99

[49] Brace L H and Kliore A J 1991 Space Sci. Rev. 55 81

[50] Brace L H, Kasprzak W T, Taylor H A, Theis R F, Russell C T, Barnes A, Mihalov J D and

Hunten D M 1987 J. Geophys. Res. 92 15

[51] Brace L H, Theis R F, Mayr H G, Curtis S A and Luhmann J G 1982 J. Geophys. Res.

87 199

[52] Marubashi K, Grebowsky J M, Taylor H A, Jr., Luhmann J G, Russell C T and Barnes A

1985 J. Geophys. Res. 90 1385

[53] Tanaka T 1998 Earth Planets Space 50 259

[54] Tanaka T 2000 Adv. Space Res. 26 1577

[55] Tanaka T 1998 J. Comm. Res. Lab. 45 119

[56] Cravens T E, Kliore A J, Kozyra J U and Nagy A F 1981 J. Geophys. Res. 86 (11) 323

[57] Phillips J L, Luhmann J G and Russell C T 1986 J. Geophys. Res. 91 7931

[58] Tanaka T 1992 Comp. Fluid Dyn. J. 1 14

[59] Phillips J L, Luhmann J G and Russell C T 1984 J. Geophys. Res. 89 (10) 676

[60] Brecht S H and Ferrante J R 1991 J. Geophys. Res. 96 (11) 209

[61] Keller C N and Cravens T E 1994 J. Geophys. Res. 99 8505

tq113e-e/73 17VI2009 BOP s.c., http://www.bop.com.pl



74 TASK QUARTERLY 13 No 1–2

tq113e-e/74 17VI2009 BOP s.c., http://www.bop.com.pl


